论文中文题名: | 煤矿采空区地面塌陷危险性评价与三维可视化 |
姓名: | |
学号: | 18208088018 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 083500 |
学科名称: | 工学 - 软件工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2021 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 人工智能与信息处理 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2021-06-21 |
论文答辩日期: | 2021-06-04 |
论文外文题名: | Risk Evaluation and Three-dimensional Visualization of Ground Collapse in Coal Mine Goaf |
论文中文关键词: | |
论文外文关键词: | Coal mine goaf ; deep learning ; risk assessment ; three-dimensional visualization ; Smart mine |
论文中文摘要: |
~采空区地面塌陷是煤矿企业常见的地质灾害之一,它破坏范围广、影响大、持续时间长,为了降低采空区冒落、失稳造成的重大经济损失和人员伤亡,研究煤矿采空区地面塌陷危险性评价,对煤矿企业安全生产尤为重要。本文将深度学习应用到煤矿采空区地面塌陷危险性评价中,并将其结果进行三维可视化。具体研究工作如下: |
论文外文摘要: |
~Ground subsidence in the goaf is one of the common geological disasters in coal mining enterprises. It has a wide range of damage, great impact and long duration. In order to reduce the major economic losses and casualties caused by the fall of the goaf and instability, the study of coal mine goaf The evaluation of the risk of ground collapse in the district is particularly important for the safe production of coal mine enterprises. In this paper, deep learning is applied to the evaluation of the risk of ground collapse in the goaf area of coal mines, and the results are visualized in three dimensions. The specific research work is as follows: |
中图分类号: | TP183 |
开放日期: | 2021-06-21 |