- 无标题文档
查看论文信息

论文中文题名:

 改性镁渣基充填材料力学性能及本构模型研究    

姓名:

 程康力    

学号:

 18203078026    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081901    

学科名称:

 工学 - 矿业工程 - 采矿工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 能源学院    

专业:

 采矿工程    

研究方向:

 固废处理及矿山充填开采    

第一导师姓名:

 刘浪    

第一导师单位:

  西安科技大学    

论文提交日期:

 2021-06-23    

论文答辩日期:

 2021-06-05    

论文外文题名:

 Study on improving mechanical properties and constitutive model of modified magnesium slag-based filling materials    

论文中文关键词:

 改性镁渣基充填材料 ; 孔隙特征 ; 力学性能 ; 损伤强化系数 ; 损伤本构模型    

论文外文关键词:

 Magnesium slag cemented filling material ; pore characteristics ; mechanical property ; damage strengthening coefficient ; damage constitutive model     

论文中文摘要:

改性镁渣基充填材料是一种新型全固废胶结充填材料,主要是由不同比例的镁渣、粉煤灰和煤矸石加水混合、搅拌制成,其中镁渣和粉煤灰作为胶凝材料替代传统胶结充填材料中的水泥。其理念的实施可以减少镁渣、矸石等固体废料的堆放,降低水泥的使用,节省煤矿充填的开支,为资源利用和煤矿充填提供了一个既绿色又高效的解决方法。

为了探究不同灰砂比、料浆浓度、粉煤灰掺量下,改性镁渣基充填材料的孔隙结构特征和力学特性。本文设置13组不同配比的改性镁渣基充填材料试件,利用核磁共振试验和宏观力学试验分别得到充填材料的孔隙结构参数和力学性能参数。最后,依据充填材料内部孔隙等初始缺陷对改性镁渣基充填材料力学性能的影响,提出了由孔隙率和平均孔径两个孔隙参数决定的损伤强化系数,建立了基于损伤强化系数的改性镁渣基充填体损伤本构模型。研究内容和结果如下:

(1)灰砂比、料浆浓度、粉煤灰掺量对改性镁渣基充填材料的孔隙结构和力学特性有很大的影响。其中,灰砂比、料浆浓度与充填材料的孔隙结构参数呈现负相关关系,与力学性能参数呈现正相关关系,也就是说,灰砂比和料浆浓度越大,改性镁渣基充填材料的孔隙率和平均孔径越小,单轴抗压强度、残余强度和弹性模量越大。

(2)粉煤灰掺量可以极大地影响镁渣-粉煤灰胶凝材料的胶凝性能。研究表明,当胶凝材料中含有40%的粉煤灰时,改性镁渣基充填材料孔隙发育最好,力学性能最优。当粉煤灰掺量大于40%时,改性镁渣基充填材料孔隙尺寸和孔隙率变大,力学性能变差。

(3)改性镁渣基充填材料的孔隙结构对其力学性能的影响很大,其中孔隙率和平均孔径与充填材料强度之间存在拟合效果良好的非线性关系。

(4)改性镁渣基充填材料在单轴受压状态下的破坏过程主要是主裂纹的出现、扩展、汇聚以及数量的增多引起的。结合损伤本构模型可知,当损伤变量约为0.25时,应力达到峰值,应力-应变曲线呈下降趋势,损伤增长速率变大,充填材料容易损坏。

(5)将通过理论模型计算得到的本构模型曲线与UCS试验曲线进行对比,结果表明:本文提出的改性镁渣基充填体损伤本构模型与单轴压缩试验结果吻合较好,能够有效描述改性镁渣基充填体在单轴受压状态下的损伤演变规律及应力-应变曲线的发展过程。

论文外文摘要:

Modified magnesium slag-based filling material is a new type of solid waste cementing filling material, which is mainly made by mixing and mixing magnesium slag, fly ash and coal gangue in different proportions with water. Magnesium slag and fly ash are used as cementing materials to replace cement in traditional cementing filling materials. The implementation of the concept can reduce the stacking of solid wastes such as magnesium slag and gangue, reduce the use of cement, save the cost of coal mine filling, and provide a green and efficient solution for resource utilization and coal mine filling.
In order to explore the pore structure characteristics and mechanical properties of modified magnesium slag-based filling materials under different cement-sand ratio, slurry concentration and fly ash content. In this paper, 13 groups of specimens with different proportions of modified magnesium slag-based filling materials were set, and the pore structure parameters and mechanical property parameters of the filling materials were obtained by NMR test and macro mechanical test respectively. Finally, according to the influence of initial defects such as internal pores on the mechanical properties of the modified magnesium slag-based filling material, the damage strengthening coefficient determined by porosity and average pore diameter was proposed, and the damage strengthening constitutive model of the modified magnesium slag-based filling body was established based on the damage strengthening coefficient. The research contents and results are as follows:
(1) The cement to sand ratio, slurry concentration and fly ash content have great influence on the pore structure and mechanical properties of modified magnesium slag-based filling materials. Among them, the contrast ratio, concentration of slurry and the pore structure parameters of filling material is a negative correlation, and mechanics performance parameters appear positive correlation, that is to say, the contrast and slurry concentration, the greater the modified magnesium slag filling material of porosity and average pore diameter is smaller, the uniaxial compressive strength, residual strength and elastic modulus. 
(2) The content of fly ash can greatly affect the cementitious property of magnesium slag-fly ash cementitious material. The results show that when the cementitious material contains 40% fly ash, the pore development and mechanical properties of the modified magnesium slag-based filling material are the best. When the fly ash content is more than 40%, the pore size and porosity of the modified magnesium slag-based filling material become larger, and the mechanical properties become worse.
(3) The pore structure of the modified magnesium slag-based filling material has a great influence on its mechanical properties, and there is a nonlinear relationship between the porosity and average pore size and the strength of the filling material.
(4) The failure process of modified magnesium slag-based filling material under uniaxial compression is mainly caused by the appearance, expansion, convergence and increase of main cracks. Combined with the damage constitutive model, it can be seen that when the damage variable is about 0.25, the stress reaches the peak, the stress-strain curve shows a downward trend, the damage growth rate increases, and the filling material is prone to damage.
(5) The constitutive model of the curve is obtained by theoretical model calculation compared with UCS test curve, the results show that the proposed modified magnesium slag base filling body damage constitutive model and the uniaxial compression test results are in good agreement, can effectively describe the modification of magnesium slag base filling body under uniaxial compression condition of damage evolution law and the development process of the stress-strain curve.

 

参考文献:

[1] 曹世荣. 不同饱和度尾砂胶结充填体损伤破坏机理[D]. 赣州:江西理工大学,2018,06.

[2] Adam T. Cross, Hans Lambers. Young calcareous soil chronosequences as a model for ecological restoration on alkaline mine tailings. Science of the Total Environment. 2017, 12:168-175.

[3] Qi Chongchong, Chen Qiusong, Andy Fourie, et al. An intelligent modelling framework for mechanical properties of cemented paste backfill. Minerals Engineering. 2018, 07:16-27.

[4] Qi Chongchong, Chen Qiusong, Andy Fourie, et al. Pressure drop in pipe flow of cemented paste backfill: Experimental and modeling study. Powder Technology. 2018, 06: 9-18.

[5] Wu Aixiang, Wang Yong, Wang Hongjiang, et al. Coupled effects of cement type and water quality on the properties of cemented paste backfill. International Journal of Mineral Processing. 2015, 10:65-71.

[6] 张延大, 张续坤. 工业废渣制备硅灰石的工艺研究[J]. 中国非金属矿工业导刊. 2015, 06: 20-22.

[7] 李宪军, 张树元, 王芳芳. 镁渣废弃物再利用的研究综述[J]. 混凝土. 2011, 08: 97-124.

[8] 邓军平, 陈新年, 郭一萍. 镁渣和矿渣对复合水泥性能的影响[J]. 西安科技大学学报. 2008, 12: 735-739.

[9] 章启军, 刘育鑫, 吴玉锋. 金属镁渣的回收利用现状[J]. 再生资源与循环经济. 2011, 06: 30-32.

[10] 冯硕, 崔丽, 程芳琴. 金属镁渣的综合利用[J]. 科技情报开发与经济. 2011, 11: 162-163.

[11] 何芳,徐友宁,乔冈,等. 中国矿山地质灾害分布特征. 地质通报. 2011, 07:476-485.

[12] 谢旭阳, 田文旗, 王云海, 等. 我国尾矿库安全现状分析及管理对策研究. 中国安全生产科学技术. 2009, 01:7-11.

[13] 高英旭. 矿区废弃地植被恢复进展情况及对策[J]. 辽宁林业科技. 2016, 06: 41–43.

[14] 朱包忠, 谢永卫. 煤矸石综合利用的研究进展[J]. 贵州大学学报( 自然科学版) , 2007, 05 : 520-525.

[15] 肖琳芬. 加快中国煤矿智能化发展 建设“智能+绿色”新煤矿[J]. 高科技与产业化. 2020, 08: 24-27.

[16] Liu Lang, Ruan Shishan, Qi Chongchong. Co-disposal of magnesium slag and high-calcium fly ash as cementitious materials in backfill[J]. Journal of Cleaner Production. 2021, 01.

[17] 卢平. 制约胶结充填采矿法发展的若干充填体力学问题. 黄金. 1994,07:18-22.

[18] Mamadou Fall, Mostafa Benzaazoua, E. G. Saa. Mix proportioning of underground cemented tailings backfill. Tunnelling & Underground Space Technology Incorporating Trenchless Technology Research. 2008, 01: 80-90.

[19] Bayram Ercikdi, Ayhan Kesimal, Ferdi Cihangir, et al. Cemented paste backfill of sulphide-rich tailings: Importance of binder type and dosage. Cement & Concrete Composites. 2001, 04: 268-274.

[20] 周晖, 房营光, 禹长江. 广州软土固结过程微观结构的显微观测与分析. 岩石力学与工程学报. 2009, 09: 3830-3837.

[21] 赵爱琴. 利用镁渣研制新型墙体材料[J]. 山西建筑. 2003, 12: 48-49.

[22] 张泽鹏, 宋慧平, 程芳琴, 等. 镁渣对粉煤灰免烧砖性能的影响研究[J]. 粉煤灰综合利用. 2014, 06: 36-39.

[23] 陈泉. 不同养护制度下粉煤灰免烧砖抗冻特性研究[J]. 2018, 04: 61-64.

[24] M. Courtial, R. Cabrillac, R. Duval. Feasibility of the Manufacturing of Building Materials from Magnesium Slag[J]. Studies in environment science. 1991, (48):491-498..

[25] M. Courtial, R. Cabrillac, R. Duval. Recycling of magnesium slags in construction block form[J]. Studies in environment science. 1994, (60):599-604.

[26] 崔自治, 张晓龙, 李姗姗. 镁渣用作水泥基活性掺合料的研究与展望[J]. 混凝土. 2014, 11: 78-80.

[27] 昝和平, 赵晋海, 高建荣, 等. 镁渣配料煅烧水泥熟料的动力研究[J]. 武汉理工大学学报. 2007, 05: 38-45.

[28] 黄从运, 何劲松, 张明飞, 等. 利用镁渣作混合材生产复合硅酸盐水泥试验研究[J]. 水泥技术. 2005, 05: 21-22.

[29] 杨伟. 镁渣作水泥混合材的研究[J]. 建材技术与应用. 2011, 09: 11-13.

[30] 姚洪敏, 李安民, 郭鹏, 等. 镁渣镁渣配料在 1000 t/d 预分解窑上的生产实践[J]. 水泥. 2008, 03:18-21.

[31] MO Liwu, Hao Yuanyuan, Liu Yunpeng, et al. Preparation of calcium carbonate binders via CO2 activation of magnesium slag[J]. Cement and Concrete Research. 2019, 07: 81-90.

[32] 李亚芳. 镁渣填充材料的制备及其性能研究[D]. 西安:西安建筑科技大学. 2017, 07.

[33] 吴剑锋, 梁凤, 徐晓虹, 等. 镁渣多孔陶瓷滤球气孔率的调控[J]. 陶瓷学报. 2010, 01: 20-24.

[34] 杜强, 崔自治, 赵伟, 等. 镁渣改性沥青性能的试验研究[J]. 新型建筑材料. 2010, 02: 58-61.

[35] E. E. Kwon, Haakrho Yi, Jongseok Park. Transesterification of Used Vegetable Oil by Magnesium Slag as Heterogeneous Catalyst (MgO–CaO/AlO)[J]. Journal of Chemical Engineering of Japan. 2012, 10: 850-856.

[36] 李经宽, 乔晓磊, 金 燕. 金属镁渣作为脱硫剂的性能实验研究[J]. 太原理工大学学报. 2008, 06: 573-575.

[37] 樊保国, 杨靖, 刘军娥, 等. 镁渣脱硫剂的水合及添加剂改性研究[J]. 热能动力工程. 2013, 04: 415-419.

[38] You Chao, Qian Jueshi, Qin Jihui, et al. Effect of early hydration temperature on hydration product and strength development of magnesium phosphate cement (MPC)[J]. Cement and Concrete Research. 2015, 12: 179-189.

[39] Gaël Blanc, Christelle Tribout, Gilles Escadeillas, et al. Determination of the proportion of anhydrous cement using SEM image analysis[J]. Construction and Building Materials. 2016, 11: 157-164.

[40] Koohestani Babak, Koubaa Ahmed, Belem Tikou, et al. Experimental investigation of mechanical and microstructural properties of cemented paste backfill containing maple-wood filler[J]. Construction & Building Materials. 2016, 09: 222-228.

[41] 黄照东, 张德明, 刘一锴, 等. 柠檬酸浸法预处理对磷石膏充填体性能的影响[J]. 黄金科学技术. 2020, 01: 97-104.

[42] 齐兆军, 孙业庚, 刘树龙,等. 全尾砂新型充填胶凝材料早期强度及微观结构分析[J]. 矿业研究与开发. 2020, 11: 47-51.

[43] 郑娟荣, 谷 迪, 赵雪飞. 胶结剂种类及掺量对尾砂胶结膏体充填材料性能的影响[J]. 有色金属. 2015, 11: 83-88.

[44] 王炳文, 高利晶, 赵文华, 等. 玲珑金矿胶结剂固结尾砂的微观实验[J]. 矿业科学学报. 2019, 12: 524-530.

[45] 刘树龙, 李公成, 刘国磊, 等. 基于高炉矿渣胶凝材料的充填体早期强度特性研究及微观结构演化[J]. 矿业研究与开发. 2020, 11: 71-75.

[46] 陈莉薇, 高莉, 夏楚林, 等. 尾矿膏体胶结充填料的微观结构和力学性能研究[J]. 硅酸盐通报. 2016, 06: 1861-1866.

[47] 李鑫, 王炳文, 游家梁, 等. 尾砂胶结充填体力学性能与微观结构研究[J]. 中国矿业. 2016, 06: 169-172.

[48] 李建胜, 王东, 康天合. 基于显微CT试验的岩石孔隙结构算法研究[J]. 岩土工程学报. 2010, 11: 1703-1708.

[49] Sun Wei, Hou Kepeng, Yang Zhiquan, et al. X-ray CT three-dimensional reconstruction and discrete element analysis of the cement paste backfill pore structure under uniaxial compression[J]. Construction & Building Materials. 2017, 05: 69-78.

[50] 黄家国,许开明,郭少斌, 等. 基于S EM、NMR和X-CT的页岩储层孔隙结构综合研究[J]. 现代地质. 2015, 01:198-205.

[51] Wang Ping, Zhan Qu, Aeronautics SO. NMR technology based hydration damage evolution of hard brittle shale[J]. Rock & Soil Mechanics. 2015, 03: 687-693.

[52] Zhang Yan, Xiao Lintao, Liao Guangzhi. Spatially resolved pore-size - T 2 correlations for low-field NMR[J]. Microporous & Mesoporous Materials. 2017, 08: 142-147.

[53] 周科平, 李杰林, 许玉娟, 等. 冻融循环条件下岩石核磁共振特性的试验研究[J]. 岩石力学与工程学报. 2012, 04: 731-737.

[54] Li Jielin, Zhou Keping, Ke B. Association analysis of pore development characteristics and uniaxial compressive strength property of granite under freezing-thawing cycles[J]. Journal of China Coal Society. 2015, 08: 1783-1789.

[55] Li Xiangchen, Kang Yili, Haghighi M. Investigation of pore size distributions of coals with different structures by nuclear magnetic resonance (NMR) and mercury intrusion porosimetry (MIP)[J]. Measurement. 2018, 02:122-128.

[56] Zhang Junzhi, Guo Jie, Li Denghui, et al. The influence of admixture on chloride time-varying diffusivity and microstructure of concrete by low-field NMR[J]. Ocean Engineering. 2017, 06: 94-101.

[57] 杜晓方. 基于NMR技术的充填体孔隙结构的冻融损伤演化特征[J]. 煤矿安全. 2019, 09: 75-78.

[58] 董擎, 梁冰, 姜国利, 等. 灰砂比和硫酸盐对尾砂充填体早期抗压强度的影响环境[J]. 工程学报. 2016, 10: 5886-5892.

[59] 杨磊, 邱景平, 范凯, 等. 超细全尾砂胶结充填体的强度特征分析[J]. 硅酸盐通报. 2017, 01: 249-256.

[60] 闻奎武, 彭亮, 康瑞海, 等. 高硫极细尾砂充填料强度配比试验研究[J]. 采矿技术, 2016, 16(4):40-42.

[61] 杨啸, 杨志强, 高谦, 等. 混合充填骨料胶结充填强度试验与最优配比决策研究[J]. 岩土力学. 2016, 10: 635-641.

[62] 张金, 马聪, 金爱兵, 等. 胶结充填体强度特性试验研究[J]. 矿业研究与开发. 2021, 02: 124-129.

[63] 张雄天, 朱文志. 基于多因素的全尾砂胶结充填材料力学性能研究[J]. 有色金属. 2020, 03: 89-96.

[64] 陈博文, 王辉, 胡豪, 等. 基于活性率和分形维数的磷石膏充填体强度模型[J]. 化工矿物与加工. 2021, 04: 1-10.

[65] 郭育霞, 冉洪宇, 冯国瑞, 等. 酸性环境中矸石胶结充填体强度及徐变特征

[J]. 采矿与安全工程学报. 2021, 03: 361-369.

[66] 于恩毅, 黄旭东, 王珍岐, 等. 废石掺量对胶结充填体强度及变形破坏的影响[J]. 金属矿山. 2020, 08: 44-48.

[67] 赵康, 黄明, 严雅静, 等. 不同灰砂比尾砂胶结充填材料组合体力学 特性及协同变形研究[J]. 岩石力学与工程学报. 2021, 03: 1-9.

[68] 尹升华, 侯永强, 杨世兴, 等. 单轴压缩下混合集料胶结充填体变形破坏及能耗特征分析[J]. 中南大学学报自然科学版. 2021, 03: 936-947.

[69] 邹伟斌. 粉磨过程与颗粒粒径分布及水泥性能的关系探讨[J]. 新世纪水泥导报. 2018, 02: 53-61.

[70] GB/T 50266-2013, 工程岩体试验方法标准[S]. 2013.

[71] 邢淑芝, 谷开慧, 解玉鹏, 等. 核磁共振实验原理及数据分析[J]. 大学物理实验. 2010, 10: 25-29.

[72] 叶万军, 强艳红, 景红军. 基于核磁共振的不同含水率黄土古土壤冻融循环试验研究[J]. 工程地质学报. 2021, 01.

[73] Stelzner L, Powierza B, Oesch T, et al. Thermally-induced moisture transport in high-performance concrete studied by X-ray-CT and 1H-NMR[J]. Construction and Building Materials. 2019, 07: 600-609.

[74] Zhang J, Bian F, Zhang Y, et al. Effect of pore structures on gas permeability and chloride diffusivity of concrete[J]. Construction and Building Materials. 2018, 02: 402-413.

[75] Huang Q, Jiang Z, Gu X, et al. Numerical simulation of moisture transport in concrete based on a pore size distribution model[J]. Cement and Concrete Research. 2015, 01: 31-43.

[76] 李召峰, 张晨, 张健, 等. 不同水饱和度充填体力学性能及损伤机制研究[J]. 采矿与安全工程学报. 2020, 11.

[77] Jikai Zhou, Song Jin, Lu Sun. Experimental investigation on the influence of multiscale pores on the static and dynamic splitting tensile strength of cementitious materials based on the virtual pore method[J]. Construction and Building Materials. 2021.

[78] Aiqin Shen, Senlin Lin ⇑, Yinchuan Guo. Relationship between flexural strength and pore structure of pavement concrete under fatigue loads and Freeze-thaw interaction in seasonal frozen regions[J]. Construction and Building Materials. 2018, 04: 684-692.

[79] 岳文正, 陶果, 赵克超. 用核磁共振及岩石物理实验求地层束缚水饱和度及平均孔隙半径[J]. 测井技术. 2002, 01:

[80] 王志会, 吴爱祥, 王贻明. 胶结充填体强度设计三维解析模型进展及展望[J].矿业研究与开发. 2020, 01: 37-42.

[81] Liu L, Xin J, Feng Y, et al. Effect of the cement–tailing ratio on the hydration products and microstructure characteristics of cemented paste backfill[J]. Arabian Journal for Science and Engineering. 2019, 07: 6547-6556.

[82] 赵木子, 杨华王, 玉银, 等. 考虑基体混凝土水灰比影响的再生粗(细)骨料混凝土徐变模型[J]. 建筑结构学报. 2020, 09: 148-155.

[83] 侯永强, 尹升华, 曹永, 等. 单轴压缩下不同养护龄期尾砂胶结充填体损伤特性及能量耗散分析[J]. 中南大学学报(自然科学版),2020, 07: 1955-1965.

[84] Pichler B, Scheiner S, Hellmich C. From micron-sized needle-shaped hydrates to meter-sized shotcrete tunnel shells: micromechanical upscaling of stiffness and strength of hydrating shotcrete[J]. Acta Geotechnica. 2008, 04: 273-294.

[85] Pichler B, Hellmich C, Eberhardsteiner J. Spherical and acicular representation of hydrates in a micromechanical model for cement paste: prediction of early-age elasticity and strength[J]. Acta Mechanica. 2009, 03: 137-162.

[86] 赵奎, 谢文健, 曾鹏, 等. 不同浓度的尾砂胶结充填体破坏过程声发射特性试验研究[J]. 应用声学, 2020, 07: 543-549.

[87] 雪枫, 刘春康, 王宇. 金属矿尾废胶结充填体破裂演化过程原位CT扫描试验研究[J]. 岩土力学,2020, 10:1-8.

[88] 刘志祥, 刘青灵, 党文刚. 尾砂胶结充填体损伤软-硬化本构模型[J]. 山东科技大学学报自然科学版, 2012, 02: 36-41.

[89] 赵树果, 苏东良, 吴文瑞, 等.基于Weibull分布的充填体单轴压缩损伤模型研究[J]. 中国矿业, 2017, 02: 106-111.

[90] 汪杰, 宋卫东, 谭玉叶等. 水平分层胶结充填体损伤本构模型及强度准则[J]. 岩土力学, 2019, 05: 1731-1739.

[91] Cui Liang, Fall Mamadou. An evolutive elasto-plastic model for cemented paste backfill[J]. Computers and Geotechnics, 2016, 01: 19-29.

[92] 王勇, 吴爱祥, 王洪江等. 初始温度条件下全尾胶结膏体损伤本构模型[J]. 工程科学学报, 2017, 01: 31-38.

[93] Cui Liang, Fall Mamadou. A coupled thermo–hydro-mechanical–chemical model for underground cemented tailings backfill[J]. Tunnelling and Underground Space Technology, 2015, 08: 396-414.

[94] 刘志祥, 李夕兵, 戴塔根, 等. 尾砂胶结充填体损伤模型及与岩体的匹配分析[J]. 岩土力学, 2006. 09: 1442-1446.

[95] F. H. Wittmann, P. E. Roelfstra, H. Sadouki. Simulation and analysis of composite structures[J]. Materials Science and Engineering, 1985, 02: 239-248.

[96] 徐文彬, 潘卫东, 丁明龙. 胶结充填体内部微观结构演化及其长期强度模型[J]. 中南大学学报(自然科学版), 2015. 06: 1672-7207.

[97] 石东升, 王安. 矿渣细骨料混凝土孔隙结构对抗压强度的影响[J]. 混凝土, 2016, 03:80-83.

[98] Lian C, Zhuge Y, Beecham S. The relationship between porosity and strength for porous concrete. Construction and Building Materials. 2011;25(11):4294-8.

[99] Rakesh Kumar, B. Bhattacharjee. Porosity, pore size distribution and in situ strength of concrete[J]. Cement and Concrete Research. 2003, 01: 155-164.

[100] Erniati, Tjaronge MW, Zulharnah, Irfan UR. Porosity, Pore Size and Compressive Strength of Self Compacting Concrete Using Sea Water. Procedia Engineering. 2015;125:832-7.

[101] Jin Shanshan, Zhang Jinxin, Han Song. Fractal analysis of relation between strength and pore structure of hardened mortar[J]. Construction and Building Materials. 2017, 03: 1-7.

[102] Li Dongqi, Li Zongli, Lv Congcong, et al. A predictive model of the effective tensile and compressive strengths of concrete considering porosity and pore size.[J] Construction and Building Materials. 2018, 05: 520-526.

[103] Grassl P, Rempling R. A damage-plasticity interface approach to the meso-scale modelling of concrete subjected to cyclic compressive loading. Engineering Fracture Mechanics. 2008, 75: 4804-4818.

[104] Tang X, Zhou Y, Zhang C, Shi J. Study on the Heterogeneity of Concrete and Its Failure Behavior Using the Equivalent Probabilistic Model. Seismic Safety Evaluation of Concrete Dams. 2011, 04: 402-413.

[105] 刘晓丽, 王思敬, 王恩强. 单轴作用下岩土材料的双重介质本构模型[J].应用数学与力学. 2006, 10: 1193-1201.

[106] Krajcinovic D, Fanella D. A micromechanical damage model for concrete[J]. Engineering Fracture Mechanics. 1998, 05: 585-596.

[107] Lemaitre J. How to use damage mechanics[J]. Nuclear Engineering and Design. 1984, 02: 233-245.

中图分类号:

 TD.823.7    

开放日期:

 2021-06-23    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式