论文中文题名: |
高时空分辨率PWV反演研究
|
姓名: |
杜正
|
学号: |
19210061041
|
保密级别: |
保密(1年后开放)
|
论文语种: |
chi
|
学科代码: |
0816
|
学科名称: |
工学 - 测绘科学与技术
|
学生类型: |
硕士
|
学位级别: |
工学硕士
|
学位年度: |
2022
|
培养单位: |
西安科技大学
|
院系: |
测绘科学与技术学院
|
专业: |
测绘科学与技术
|
研究方向: |
GNSS气象学
|
第一导师姓名: |
姚顽强
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2022-06-23
|
论文答辩日期: |
2022-06-08
|
论文外文题名: |
Research on PWV retrieval with high spatio-temporal resolution
|
论文中文关键词: |
大气可降水量 ; 校正 ; 缺失填补 ; 数据融合 ; 高时空分辨率
|
论文外文关键词: |
precipitable water vapor ; calibration ; filling gaps ; data fusion ; high spatio-temporal resolution
|
论文中文摘要: |
︿
大气水汽是天气形成和传播的物质基础,高度参与了全球水循环和能量交换。在长时间尺度上,水汽的变化更是被认为有助于气候变化的重要的反馈机制,与云、降水、辐射和陆面过程密切相关。由于水汽分布在时间和空间上的易变性,定义大气可降水量(Precipitable Water Vapor, PWV)作为表示和量化水汽的常用指标,该指标也成为监测大气活动的关键因子。随着各种水汽探测手段的发展和全球PWV数据的积累共享,时空不连续和分辨率粗糙成为限制其进一步应用的最大挑战。本文以PWV在短临天气预报和气候研究等方面的各种应用需求为出发点,共分高空间分辨率PWV反演、高时间分辨率PWV反演和高时空分辨率PWV反演三部分内容,以期通过联合多数据源的优势解决高分辨率的高精度水汽数据获取难题,主要工作和内容总结如下:
(1) 卫星遥感技术是高空间分辨率水汽监测的有效途径,其获取的PWV受遥感技术和仪器质量的影响并不如全球导航卫星系统(Global Navigation Satellite System, GNSS)精确。针对上述问题,本文在充分考虑水汽的时间渐变和季节周期特性后,提出了一种基于GNSS约束的MERSI/FY-3A PWV季节自适应校准方法,以提升卫星水汽产品质量的方式促进国产FY-3A多年水汽资料再应用。实验结果表明该校准方法建模数据成本较低,可以快速更新校准系数以适应PWV时空动态变化特征。
(2) 完整的PWV时间序列需要稳健的再处理方法获取,其中缺失填补和分辨率提升均是基于水汽数据特征推导出来的适当假设。由于再分析数据集的长时间跨度和完整空间覆盖优点,本文引入最新一代数据集ERA5提出了时空加权(Spatio-temporal Weighted, STW)方法。在充分考虑了不同水汽数据源间的空间关联、数据差异和时间相关等特性后,实现高时间分辨率的PWV完整序列获取。实验结果表明STW方法在各种尺度的缺失填补和分辨率提升方面均优于现有的时间插值和模型替换两种方法。
(3) 在多种可用水汽数据源的条件下,充分发挥现有技术的优势是获取高时空分辨率PWV的最佳解决方法。这种数据融合可以有效削弱或消除不同类型PWV数据的局限,改善单一数据反演中的时空不连续问题,但是只能满足空间或时间尺度的水汽应用需求。因此,本文针对现状提出理论上可兼顾时空分辨率和精度的双步PWV融合(Two-step based PWV fusion, TPF)方法,先空间后时间逐步实现高时空分辨率PWV反演。实验结果表明:双步PWV融合方法联合了多技术的水汽信息,可以在保证精度的前提下有效提升水汽监测的时空分辨率。降雨期间的性能评估结果可以进一步验证双步PWV融合方法的可靠性。
﹀
|
论文外文摘要: |
︿
Atmospheric water vapour is the material basis for weather formation and propagation that is highly participates in the global water cycle and energy exchange. On long time scales, changes in water vapour are considered to be an important feedback mechanism contributing to climate change, which is closely related to cloud, precipitation, radiation and land surface processes. Due to the spatial and temporal variations in water vapour distribution, Precipitable Water Vapor (PWV) is defined as a common metric for representing and quantifying water vapour, and this metric has become a key factor in monitoring atmospheric activities. With the development of various approaches of measuring water vapour and the accumulation and sharing of global PWV data, spatial and temporal discontinuities and coarse resolution have become the biggest challenges limiting its further application. Starting from the various application requirements of PWV in short-term weather forecasting and climate research, this paper is divided into three parts: PWV retrieval with high spatial resolution, PWV retrieval with high temporal resolution and PWV retrieval with high spatio-temporal resolution, with a view to solving the problem of acquiring high-resolution and high-precision PWV data by combining the advantages of multiple data sources. The mainly research in this study are as follows:
(1) Satellite remote sensing technology is an effective approach to monitor water vapour at high spatial resolution, but the PWV acquired by it is not as accurate as the Global Navigation Satellite System (GNSS) due to the influence of remote sensing technology and instrument quality. To address the above problems, this paper proposes a seasonal adaptive calibration method for MERSI/FY-3A PWV based on GNSS after considering the temporal gradient and seasonal variation of water vapor, and promotes the re-application of of FY-3A multi-year PWV data by improving the quality of satellite products. The experimental results show that the seasonal adaptive calibration method has a low cost of modeling data and can quickly update the calibration coefficient to adapt to the spatio-temporal dynamic variations of PWV characteristics.
(2) The complete time series of PWV requires robust reprocessing methods, especially filling gaps and resolution improvement are based on appropriate assumptions derived from the data characteristics. Due to the advantages of long time periods and complete spatial coverage of the reanalysis dataset, the spatio-temporal Weighted (STW) method is proposed in this paper by introducing the latest generation dataset ERA5. After taking into account the spatial association, data variation and temporal correlation among different water vapour data sources, the complete time series of PWV is obtained with high temporal resolution. The experimental results show that the STW method outperforms the existing linear interpolation and period model methods in terms of filling gaps and resolution improvement at various schemes.
(3) Under the condition of multiple available water vapor data sources, taking advantage of existing technologies is the best solution to obtain high spatio-temporal resolution PWV. Such data fusion can effectively weaken or eliminate the limitations of different types of PWV data and improve the spatial and temporal discontinuities of a single technique, but can only meet the needs of water vapour applications at spatial or temporal scales. Therefore, this paper proposes a Two-step based PWV fusion (TPF) method that can combine spatial and temporal resolution and accuracy, and gradually realizes PWV retrieval with high spatio-temporal resolution in a step-by-step process. The experimental results show that the TPF method can effectively improve the spatio-temporal resolution of water vapor monitoring with guaranteed accuracy by combining the water vapor information from multiple technologies. The performance evaluation during rainfall can further validate the reliability of the TPF method.
﹀
|
参考文献: |
︿
[1] Mengistu Tsidu G, Blumenstock T, Hase F. Observations of precipitable water vapour over complex topography of Ethiopia from ground-based GPS, FTIR, radiosonde and ERA-Interim reanalysis[J]. Atmospheric Measurement Techniques Discussions,2014,7(9): 9869–9915. [2] Li Z, Muller J P, Cross P. Comparison of precipitable water vapor derived from radiosonde, GPS, and Moderate-Resolution Imaging Spectroradiometer measurements[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D20). [3] Held I M, Soden B J. Water vapor feedback and global warming[J]. Annual review of energy and the environment, 2000, 25(1): 441-475. [4] Stevens B. Waterin the atmosphere[J]. Physics Today, 2013, 66(6): 29-34. [5] 刘严萍,王勇,丁克良,刘晓,占伟.基于CMONOC的GNSS水汽短时频域特征研究[J].大地测量与地球动力学,2021,41(11):1118-1122. [6] Zhang B, Yao Y, Xin L, et al. Precipitable water vapor fusion: An approach based on spherical cap harmonic analysis and Helmert variance component estimation[J]. Journal of Geodesy, 2019, 93(12): 2605-2620. [7] Chahine M T. The hydrological cycle and its influence on climate[J]. Nature, 1992, 359(6394): 373-380. [8] Jin S, Luo O F. Variability and climatology of PWV from global 13-year GPS observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(7): 1918-1924. [9] Zhao Q, Yao Y, Yao W Q, et al. Near-global GPS-derived PWV and its analysis in the El Niño event of 2014–2016[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2018, 179: 69-80. [10] Xiong Z, Zhang B, Yao Y. Comparisons between the WRF data assimilation and the GNSS tomography technique in retrieving 3-D wet refractivity fields in Hong Kong[J]. Annales Geophysicae,2019,37(1): 25-36. [11] Haji-Aghajany S, Amerian Y, Verhagen S, et al. An optimal troposphere tomography technique using the WRF model outputs and topography of the area[J]. Remote Sensing, 2020, 12(9): 1442. [12] Zhao Q, Ma X, Yao W, et al. A new typhoon-monitoring method using precipitation water vapor[J]. Remote Sensing, 2019, 11(23): 2845. [13] Zhao Q, Ma X, Yao W, et al. Improved drought monitoring index using GNSS-derived precipitable water vapor over the loess plateau area[J]. Sensors, 2019, 19(24): 5566. [14] Zhao Q, Liu Y, Yao W, et al. A novel ENSO monitoring method using precipitable water vapor and temperature in southeast China[J]. Remote Sensing, 2020, 12(4): 649. [15] Zhao Q, Liu Y, Ma X, et al. An improved rainfall forecasting model based on GNSS observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(7): 4891-4900. [16] Li H, Wang X, Choy S, et al. Detecting heavy rainfall using anomaly-based percentile thresholds of predictors derived from GNSS-PWV[J]. Atmospheric Research, 2022, 265: 105912. [17] 施闯,周凌昊,范磊,张卫星,曹云昌,王成,肖锋,吕国卿,梁宏.利用北斗/GNSS观测数据分析“21·7”河南极端暴雨过程[J].地球物理学报,2022,65(01):186-196. [18] Chen B, Liu Z. Global water vapor variability and trend from the latest 36 year (1979 to 2014) data of ECMWF and NCEP reanalyses, radiosonde, GPS, and microwave satellite[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(19): 11,442-11,462. [19] Li X, Zhang L, Cao X, et al. Retrieval of precipitable water vapor using MFRSR and comparison with other multisensors over the semi-arid area of northwest China[J]. Atmospheric research, 2016, 172: 83-94. [20] Wang M, Fang X, Hu S, et al. Variation characteristics of water vapor distribution during 2000–2008 over Hefei (31.9 N, 117.2 E) observed by L625 lidar[J]. Atmospheric Research, 2015, 164: 1-8. [21] Halthore R N, Eck T F, Holben B N, et al. Sun photometric measurements of atmospheric water vapor column abundance in the 940‐nm band[J]. Journal of Geophysical Research: Atmospheres, 1997, 102(D4): 4343-4352. [22] Kaufman Y J, Gao B C. Remote sensing of water vapor in the near IR from EOS/MODIS[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(5): 871-884. [23] Liu Z, Chen B, Chan S T, et al. Analysis and modelling of water vapour and temperature changes in Hong Kong using a 40‐year radiosonde record: 1973–2012[J]. International Journal of Climatology, 2015, 35(3): 462-474. [24] Niell A E, Coster A J, Solheim F S, et al. Comparison of measurements of atmospheric wet delay by radiosonde, water vapor radiometer, GPS, and VLBI[J]. Journal of Atmospheric and Oceanic Technology, 2001, 18(6): 830-850. [25] Nilsson T, Elgered G. Long‐term trends in the atmospheric water vapor content estimated from ground‐based GPS data[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D19). [26] Lee S W, Kouba J, Schutz B, et al. Monitoring precipitable water vapor in real-time using global navigation satellite systems[J]. Journal of geodesy, 2013, 87(10): 923-934. [27] Menzel W P, Smith W L, Herman L D. Visible infrared spin–scan radiometer atmospheric sounder radiometric calibration: an inflight evaluation from intercomparisons with HIRS and radiosonde measurements[J]. Applied Optics, 1981, 20(20): 3641-3644. [28] Chang L, Gao G, Jin S, et al. Calibration and evaluation of precipitable water vapor from MODIS infrared observations at night[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 53(5): 2612-2620. [29] Jackson D L, Wick G A, Bates J J. Near‐surface retrieval of air temperature and specific humidity using multisensor microwave satellite observations[J]. Journal of Geophysical Research: Atmospheres, 2006, 111(D10). [30] Prasad A K, Singh R P. Validation of MODIS Terra, AIRS, NCEP/DOE AMIP‐II Reanalysis‐2, and AERONET Sun photometer derived integrated precipitable water vapor using ground‐based GPS receivers over India[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D5). [31] Zhang Q, Ye J, Zhang S, et al. Precipitable water vapor retrieval and analysis by multiple data sources: Ground-based GNSS, radio occultation, radiosonde, microwave satellite, and NWP reanalysis data[J]. Journal of Sensors, 2018, 2018. [32] Wang S, Xu T, Nie W, et al. Evaluation of precipitable water vapor from five reanalysis products with ground-based GNSS observations[J]. Remote Sensing, 2020, 12(11): 1817. [33] Realini E, Sato K, Tsuda T, et al. Local-scale precipitable water vapor retrieval from high-elevation slant tropospheric delays using a dense network of GNSS receivers[M]//IAG 150 Years. Springer, Cham, 2015: 485-490. [34] Williams S, Bock Y, Fang P. Integrated satellite interferometry: Tropospheric noise, GPS estimates and implications for interferometric synthetic aperture radar products[J]. Journal of Geophysical Research: Solid Earth,1998,103(B11): 27051-27067. [35] Janssen V, Ge L, Rizos C. Tropospheric corrections to SAR interferometry from GPS observations[J]. GPS solutions, 2004, 8(3): 140-151. [36] Li Z, Muller J P, Cross P. Comparison of precipitable water vapor derived from radiosonde, GPS, and Moderate‐Resolution Imaging Spectroradiometer measurements[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D20). [37] Emardson T R, Simons M, Webb F H. Neutral atmospheric delay in interferometric synthetic aperture radar applications: Statistical description and mitigation[J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B5). [38] 李颖,张俊东,陈庆涛.GPS大气可降水量空间插值方法对比研究[J].气象与环境科学,2013,36(01):1-6. [39] Emardson T R, Johansson J M. Spatial interpolation of the atmospheric water vapor content between sites in a ground‐based GPS network[J]. Geophysical research letters, 1998, 25(17): 3347-3350. [40] Li Z, Fielding E J, Cross P, et al. Interferometric synthetic aperture radar atmospheric correction: GPS topography‐dependent turbulence model[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B2). [41] Xu W B, Li Z W, Ding X L, et al. Interpolating atmospheric water vapor delay by incorporating terrain elevation information[J]. Journal of Geodesy, 2011, 85(9): 555-564. [42] 尹慧芳,党亚民,薛树强,聂晶.基于高阶泰勒级数展开式的对流层延迟量内插研究[J].大地测量与地球动力学,2013,33(06):155-159. [43] 杨成生,张勤,张双成,赵超英.改进的Kriging算法用于GPS水汽插值研究[J].国土资源遥感,2013,25(01):39-43. [44] Setiyoko A, Arymurthy A M, Arief R. Effects of different sampling densities and pixel size on kriging interpolation for predicting elevation[C]//2018 International Conference on Signals and Systems (ICSigSys). IEEE, 2018: 73-78. [45] Liu C, Zheng N, Zhang K, et al. A new method for refining the GNSS-derived precipitable water vapor map[J]. Sensors, 2019, 19(3): 698. [46] Yang F, Guo J, Meng X, et al. Establishment and assessment of a new GNSS precipitable water vapor interpolation scheme based on the GPT2w model[J]. Remote Sensing, 2019, 11(9): 1127. [47] Jarlemark P O J, Emardson T R. Strategies for spatial and temporal extrapolation and interpolation of wet delay[J]. Journal of Geodesy, 1998, 72(6): 350-355. [48] Iwabuchi T, Naito I, Mannoji N. A comparison of Global Positioning System retrieved precipitable water vapor with the numerical weather prediction analysis data over the Japanese Islands[J]. Journal of Geophysical Research: Atmospheres, 2000, 105(D4): 4573-4585. [49] Ning T, Wickert J, Deng Z, et al. Homogenized time series of the atmospheric water vapor content obtained from the GNSS reprocessed data[J]. Journal of Climate, 2016, 29(7): 2443-2456. [50] Heo J H, Ryu G H, Jang J D. Optimal interpolation of precipitable water using low earth orbit and numerical weather prediction data[J]. Remote Sensing, 2018, 10(3): 436. [51] Gueymard C A. Impact of on-site atmospheric water vapor estimation methods on the accuracy of local solar irradiance predictions[J]. Solar energy, 2014, 101: 74-82. [52] Sharifi M A, Sam Khaniani A, Joghataei M. Comparison of GPS precipitable water vapor and meteorological parameters during rainfalls in Tehran[J]. Meteorology and Atmospheric Physics, 2015, 127(6): 701-710. [53] Wang X, Zhang K, Wu S, et al. Water vapor‐weighted mean temperature and its impact on the determination of precipitable water vapor and its linear trend[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(2): 833-852. [54] Zhao Q, Ma X, Yao W, et al. A drought monitoring method based on precipitable water vapor and precipitation[J]. Journal of Climate, 2020, 33(24): 10727-10741. [55] Li Z. Production of Regional 1 km× 1 km Water Vapor Fields through the Integration of GPS and MODIS Data[C]//Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004). 2004: 2396-2403. [56] Chang L, Jin S. MODIS infrared (IR) water vapor calibration model and assessment[C]//2013 21st International Conference on Geoinformatics. IEEE, 2013: 1-5. [57] 段茜茜,曲建光,高伟,王帅民.基于GPS的MODIS近红外可降水量季节性模型建立[J].测绘工程,2017,26(12):21-26. [58] 刘备,王勇,娄泽生,占伟.CMONOC观测约束下的中国大陆地区MODIS PWV校正[J].测绘学报,2019,48(10):1207-1215. [59] 王勇,董思思,刘严萍,任栋,李江波.区域MODIS水汽季节修正模型[J].遥感信息,2020,35(01):9-14. [60] Khaniani A S, Nikraftar Z, Zakeri S. Evaluation of MODIS Near-IR water vapor product over Iran using ground-based GPS measurements[J]. Atmospheric Research, 2020, 231: 104657. [61] Xu J, Liu Z. Radiance-based retrieval of total water vapor content from sentinel-3A OLCI NIR channels using ground-based GPS measurements[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 104: 102586. [62] 张俊东,陈秀万,李颖,罗鹏,万玮,曹艳丰.基于GPS数据的MODIS近红外水汽改进反演算法研究[J].地理与地理信息科学,2013,29(02):40-44. [63] He J, Liu Z. Water vapor retrieval from MODIS NIR channels using ground-based GPS data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(5): 3726-3737. [64] Ccoica-López K L, Pasapera-Gonzales J J, Jimenez J C. Spatio-temporal variability of the precipitable water vapor over Peru through MODIS and ERA-Interim time series[J]. Atmosphere, 2019, 10(4): 192. [65] Alshawaf, F., Fersch, B., Hinz, S., Kunstmann, H., Mayer, M., & Meyer, F. J. (2015). Water vapor mapping by fusing InSAR and GNSS remote sensing data and atmospheric simulations. Hydrology and Earth System Sciences, 19(12), 4747-4764. [66] Afshar M H, Yilmaz M T, Crow W T. Impact of rescaling approaches in simple fusion of soil moisture products[J]. Water Resources Research, 2019, 55(9): 7804-7825. [67] Kathuria D, Mohanty B P, Katzfuss M. Multiscale data fusion for surface soil moisture estimation: A spatial hierarchical approach[J]. Water Resources Research, 2019, 55(12): 10443-10465. [68] Li X, Long D. An improvement in accuracy and spatiotemporal continuity of the MODIS precipitable water vapor product based on a data fusion approach[J]. Remote Sensing of Environment, 2020, 248: 111966. [69] Zhang B, Yao Y. Precipitable water vapor fusion based on a generalized regression neural network[J]. Journal of Geodesy, 2021, 95(3): 1-14. [70] Yao Y, Xu X, Hu Y. Establishment of a regional precipitable water vapor model based on the combination of GNSS and ECMWF data[J]. Atmospheric Measurement Techniques Discussions, 2018: 1-21. [71] Zhao Q, Du Z, Li Z, et al. Two-step precipitable water vapor fusion method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022: 60: 1-10. [72] Zhao Q, Du Z, Yao W, et al. Hybrid precipitable water vapor fusion model in China[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 208: 105387. [73] Xiong Z, Zhang B, Sang J, et al. Fusing Precipitable Water Vapor Data in CHINA at Different Timescales Using an Artificial Neural Network[J]. Remote Sensing, 2021, 13(9): 1720. [74] Ma X, Yao Y, Zhang B, et al. Improving the accuracy and spatial resolution of precipitable water vapor dataset using a neural network-based downscaling method[J]. Atmospheric Environment, 2022, 269: 118850. [75] Yao Y, Xu X, Xu C, et al. Establishment of a real-time local tropospheric fusion model[J]. Remote Sensing, 2019, 11(11): 1321. [76] 张卫星. 中国区域融合地基GNSS等多种资料水汽反演、变化分析及应用[D].武汉大学,2016. [77] Thayer G D. An improved equation for the radio refractive index of air[J]. Radio Science, 1974, 9(10): 803-807. [78] Zhu D, Zhang K, Yang L, et al. Evaluation and Calibration of MODIS Near-Infrared Precipitable Water Vapor over China Using GNSS Observations and ERA-5 Reanalysis Dataset[J]. Remote Sensing, 2021, 13(14): 2761. [79] Zhao Q, Yang P, Yao W, et al. Hourly PWV dataset derived from GNSS observations in China[J]. Sensors, 2020, 20(1): 231. [80] 赵庆志. 地基GNSS水汽反演关键技术研究及其应用[D].武汉大学,2017. [81] He J, Liu Z. Comparison of satellite-derived precipitable water vapor through near-infrared remote sensing channels[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12): 10252-10262. [82] Xie Y, Li Z, Hou W, et al. Validation of FY-3D MERSI-2 Precipitable Water Vapor (PWV) Datasets Using Ground-Based PWV Data from AERONET[J]. Remote Sensing, 2021, 13(16): 3246. [83] Gao B C, Kaufman Y J. Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near‐infrared channels[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D13). [84] Gong S, Hagan D F, Lu J, et al. Validation on MERSI/FY-3A precipitable water vapor product[J]. Advances in Space Research, 2018, 61(1): 413-425. [85] Ma X, Yao Y, Zhang B, et al. FY-3A/MERSI precipitable water vapor reconstruction and calibration using multi-source observation data based on a generalized regression neural network[J]. Atmospheric Research, 2022, 265: 105893. [86] 杨军,董超华,卢乃锰,杨忠东,施进明,张鹏,刘玉洁,蔡斌.中国新一代极轨气象卫星——风云三号[J].气象学报,2009,67(04):501-509. [87] 胡秀清,黄意玢,陆其峰,郑婧.利用FY-3A近红外资料反演水汽总量[J].应用气象学报,2011,22(01):46-56. [88] Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999-2049. [89] Gelaro R, McCarty W, Suárez M J, et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2)[J]. Journal of climate, 2017, 30(14): 5419-5454. [90] Harada Y, Kamahori H, Kobayashi C, et al. The JRA-55 Reanalysis: Representation of atmospheric circulation and climate variability[J]. Journal of the Meteorological Society of Japan. Ser. II, 2016, 94(3): 269-302. [91] Klos A, Hunegnaw A, Teferle F N, et al. Statistical significance of trends in Zenith Wet Delay from re-processed GPS solutions[J]. GPS Solutions, 2018, 22(2): 1-12. [92] 赵庆志, 杜正, 姚顽强, 姚宜斌. GNSS约束的MERSI/FY-3A PWV校准方法[J]. 测绘学报, 2022, 51(2): 159-168. [93] Wei J, Li Z, Cribb M, et al. Improved 1 km resolution PM 2.5 estimates across China using enhanced space–time extremely randomized trees[J]. Atmospheric Chemistry and Physics, 2020, 20(6): 3273-3289. [94] Böhm J, Möller G, Schindelegger M, et al. Development of an improved empirical model for slant delays in the troposphere (GPT2w)[J]. GPS solutions, 2015, 19(3): 433-441. [95] Hernández‐Pajares M, Lyu H, Aragón‐Àngel À, et al. Polar Electron Content From GPS Data‐Based Global Ionospheric Maps: Assessment, Case Studies, and Climatology[J]. Journal of Geophysical Research: Space Physics, 2020, 125(6): e2019JA027677. [96] 黄良珂,莫智翔,刘立龙,谢劭峰.顾及时变递减因子的中国大陆地区大气可降水量垂直改正模型[J].测绘学报,2021,50(10):1320-1330. [97] 赵庆志,杜正,吴满意,姚宜斌,姚顽强.利用多源数据的PWV混合模型构建[J/OL].武汉大学学报(信息科学版), 2022, 1-14. [98] Zhu X, Chen J, Gao F, et al. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions[J]. Remote Sensing of Environment, 2010, 114(11): 2610-2623. [99] Ferreira J E, Pinheiro M T, Santos W R, et al. Graphical representation of chemical periodicity of main elements through boxplot[J]. Educación Química, 2016, 27(3): 209-216.
﹀
|
中图分类号: |
P228.4
|
开放日期: |
2023-06-24
|