论文中文题名: | 复杂煤岩体结构动力失稳预报与控制研究 |
姓名: | |
学号: | B201012023 |
保密级别: | 公开 |
学科代码: | 081901 |
学科名称: | 采矿工程 |
学生类型: | 博士 |
学位年度: | 2014 |
院系: | |
专业: | |
研究方向: | 煤矿动力灾害防治 |
第一导师姓名: | |
第一导师单位: | |
论文外文题名: | Prediction and Control Research on Structural Destabilization of Complex Coal-rock masses |
论文中文关键词: | |
论文外文关键词: | Complex condition ; Coal-rock mass ; Fault-like structure ; Dynamic destabilization |
论文中文摘要: |
针对煤岩体在开采扰动影响下由于动力载荷的作用将发生复杂的运动演化过程,形成新的更为复杂的煤岩体结构。尤其在急倾斜煤层水平分段综放开采中,煤岩体可形成大型的类断层结构。类断层结构所受的应力水平变化特异,煤岩体结构在高应力强卸荷作用下结构发生严重畸变,出现煤岩体结构动力结构动力失稳、冲击地压、大面积片帮和大体积冒顶等动力失稳现象。
通过变尺度平-立物理相似模拟实验模拟类断层结构演化规律,基于三维数值模拟进行复杂煤岩体结构动力作用特征分析,总结动力失稳灾害的破坏特征。复杂煤岩体典型的物质性、结构性与赋存性特有本质特征是控制动力学灾害的关键因素。在采动扰动影响下,顶板岩层经历“弯曲-折断-滑落”破断规律,底板岩层发生隆起、下滑破断规律,按破坏特征可以将顶板垮落特征分为冒落式顶板和倾覆式顶板,底板为下挫滑动式底板。工作面正上方的“顶板-破碎煤体-底板”破断之后的煤岩块会形成不断演化的拱状结构,拱状结构形态的演化是由半圆拱结构逐渐演化为拱高大、跨度长的近似抛物线状的拱结构,拱状结构能够出现短暂的平衡,使顶煤无法正常垮落放出,但拱状结构极不稳定,但这种拱状结构容易造成上方煤岩体发生失稳现象,随着工作面推进和拱高的不断加大,直接顶悬露面积不断加大,在非对称力作用下致使第一类顶板发生冒落,第一类顶板的冒落将会使上部煤岩体失去支撑,在自重倾向分力作用下将会沿层理面发生迅速的向下滑动,第一类冒落顶板产生了一次动力载荷,对工作面支架的稳定性及安全产生具有重要影响。第一类顶板及顶煤的大范围失稳向下充填采空区,会形成超规模的长距离、高斜度的大尺度采空区,致使基本顶失去法向支反力,基本顶在自重法向分力的影响下,致使岩层厚大,强度高的第二类顶板发生失稳,第二类倾覆顶板产生了第二次强度更大的动力载荷,致使大型类断层结构整体活化,可能诱发更大强度和规模的动力载荷的产生。
复杂煤岩体结构动力失稳的特点是在开采扰动影响下,工作面内部小结构的不断演化运动,致使极不稳定的拱状结构发生失稳,诱发工作面的顶底围岩结构失稳,最终诱发大型类断层结构活化整条连锁反应,所形成的超大规模采空区一旦发生整体动力失稳,将对矿井安全造成严重影响,极有可能诱发为灾害。
基于能量积聚和释放的围岩结构动力失稳前兆信息研究,利用应力应变、声发射、钻孔窥视等声、光、电监测手段,利用“声-震-波-力”指标多参量信息的综合分析,提出复杂煤岩体结构动力失稳多参量动力失稳预测方法。针对应力、应变、声发射、钻孔窥视等判定指标需要综合判定复杂煤岩体结构动力失稳,复杂煤岩体结构动力失稳危险性综合评价函数。
通过对围岩地质条件和力学行为及其演化规律等综合研究,建立灾害快速动态预测与动态调控新工艺。利用井上下爆破、注水等弱化技术手段,将大型煤岩体破断释放产生的集中载荷,并强化支护体系,形成煤岩体结构稳定性控制方法。且通过建立多源信息耦合的煤岩体稳定性动态实时评估系统,为煤岩体结构动力失稳预测预报提供新的方法,最终形成复杂煤岩体结构稳定性评价、预测和控制的系列化实用理论和技术,为开采矿井整体安全稳定提供保障,对煤矿安全开采具有重要的科学价值和工业应用价值。
﹀
|
论文外文摘要: |
Structural type of coal-rock masses would form a new more complex structure with dynamic loading under mining activity. Large-scale fault-like structure is formed when horizontal section top-coal caving is applied in the steeply coal seams. Severely deformation of the structure is happened with high loading. Particularly the stress is abnormal in horizontal direction. Destabilization of dynamic structure, large-scale rock-mass caving are easily developmented in the site.
Key factors for controlling dynamic hazards are connected with material, structural and occurrence traits of typical complex coal-rock masses. Caving of roof and floor are fallen into triple categories: collapse roof, tumble roof and slump floor. Arch of spanning structure composed with roof-broken coal-floor tends to a temporary stable strcuture. Semicurrcular arch structure has been evolved into the approximately parabolic structure with higher height of arch and larger spanning length. Top coal is hardly excavated with such a arch structure, while coal-rock masses are also possible to destablize in large-scale area resulting in methane emission, support pressure increment. broken process of roof is evolved "bend-break-slip". And floor would uplift and slide. The structure of arch is extremely unstable. With height and length of arch increasing, the collapse roof would be caving under nonsysmetric pressure and it would slide quickly in bedding plane with its self-weight, which influenced the stability of supportings and safe excavation in the site. Without enough bashing materials, a large-scale and high slope-angle mined-out area has been formed which resulted in being lack of support force at floors. The weight of basic floor made tumble roof unstable. With much more loadings than ever, the fault-like structure has been activated for harder dynamic laodings in the stope.
The traits of destabization of complex coal-rock masses is that with coal excavation, internal strcuture of the workingface is evolved continuously resulted in broken down of unstable arch of spanning structure and chain reaction of large fault-like structure. The dynamic destablization of supreme-scale mined-out area would be catastrophic.
Combined with precursor information of rock-mass destabilization and energy accumulation, prediction methology of rock-mass destabization has been gotten with sonic-light-electric measurements including stress-strain, acoustic emission, in-situ real deforamtion monitoring. Judgment parameters building up a comprehensive evaluation function would be assessed together for rock-mass destabization in complex mining condition.
Fast dynamic prediction and control technique is establize with analyzing rock-mass geological condition and the relative mechanic behavior. A new methology for predicting rock-mass destabilzation is built up with multi-source information coupled analysis, hybrid blasting and hydraulic fracturing for weakening roof and coal, optimization of roadway supporting. The practical theories and technologies concluded with all above listed would offer a security for improving the whole colliery safety, which possesses a lot of important scientific and industrial value for colliery safety.
﹀
|
中图分类号: | TD823 |
开放日期: | 2014-06-21 |