- 无标题文档
查看论文信息

论文中文题名:

 基于生态系统服务供需视角的陕西省生态安全格局构建    

姓名:

 刘艳    

学号:

 22210226106    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘工程    

研究方向:

 地理信息空间可视化    

第一导师姓名:

 杨永崇    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-17    

论文答辩日期:

 2025-06-08    

论文外文题名:

 Construction of Ecological Security Pattern in Shaanxi Province based on the Perspective of Ecosystem Service Supply and Demand    

论文中文关键词:

 景观生态风险 ; 生态系统服务供需 ; 电路理论 ; 生态安全格局 ; 陕西省    

论文外文关键词:

 Landscape ecological risk ; Supply and demand of ecosystem service ; Circuit theory ; Ecological security pattern ; Shaanxi province    

论文中文摘要:

随着我国经济高速发展,人类活动对自然生态系统的干扰日益增强,生态系统服务功能下降与人类需求增长之间的供需失衡问题日益突出,威胁区域生态安全、社会经济可持续发展和生态系统服务功能的提升。因此,构建区域生态安全格局,对保障社会可持续发展和提升人类福祉至关重要。

本研究以陕西省为研究区,基于1990年、2000年、2010年和2020年4个时期的土地利用数据、气象数据和社会经济等数据,综合运用景观生态风险评估模型、InVEST(Integrated Valuation of Ecosystem Services and Trade-offs)模型、生态系统服务供需比(Ecosystem Service Supply-Demand Ratio, ESSDR)、形态学空间格局(Morphological Spatial Pattern Analysis, MSPA)、电路理论和GIS空间分析等方法,探讨了1990-2020年陕西省景观格局和景观生态风险时空演变情况,定量评估了陕西省3项生态系统服务(产水服务、土壤保持服务和碳储量服务)的供应与需求关系,并分析了各项生态系统服务、综合生态系统服务供需变化,最后基于生态系统服务供需关系和形态学空间格局识别生态源地,采用电路理论构建了生态安全格局,并提出生态保护策略。主要研究结论如下:

1990-2020年陕西省景观类型尺度上整体表现为景观类型破碎化增强,空间异质性显著。各类景观的受干扰程度均呈现上升趋势,其中建设用地所受到的干扰影响最大。从景观损失度来看,水域的损失度持续居于首位,其次为耕地、未利用地、草地、建设用地和林地。景观生态风险变化方面,其空间分布呈现陕北>关中>陕南的格局,整体风险水平为中等,其中较高生态风险与较低生态风险水平的面积呈现增长态势,而低生态风险、中等生态风险及高生态风险水平的面积呈下降趋势。

陕西省生态系统服务总体供需态势良好,但不同区域间生态系统服务供需矛盾突出,城市建成区(如西安市、渭南市、榆林市)的生态系统服务供需失衡问题尤为显著,生态安全格局构建需求较为迫切。具体来看,陕西省1990-2020年产水服务、土壤保持服务和碳储量服务供给量总体上呈波动增加趋势,分别增加了96.86×108m³、13.82×107t和2.06×107t。产水服务和碳储量服务的需求量均呈现上升趋势,分别增加了160.86×107m3、563.17×105t;土壤保持需求量呈显著下降趋势,减少了83.24×106t。产水服务、土壤保持服务和碳储量服务的生态系统服务供需比均值均大于0,实现了供需的总量平衡。全省综合生态系统服务供需比整体呈现“V”字型变化趋势。

基于生态系统服务供需评估结果,识别1990-2020年各生态要素结果如下:生态源地的数量和面积分别为42个(45405.76km²)、55个(49355.62km²)、96个(58755.47km²)和72个(55904.29km²),主要分布在研究区陕南秦巴山地和陕北黄土高原沟壑区。生态阻力面受自然与人为因素影响,综合阻力值最高为4.7。生态廊道数量和长度分别为113条(3829.73km)、127条(3428.52km)、218条(4423.38km)和157条(3653.20km),紧密围绕着生态源地分布,整体呈纵向分布,贯穿南北。生态夹点面积分别为3809.9km²、3863.4km²、4140.5km²和3904.4km²,土地利用类型主要以草地为主,分布于廊道交点及源地附近。生态障碍点面积分别为4633.6km²、4239.9km²、4047.1km²和4532.3km²,耕地和草地为主要用地类型,集中分布在源地间狭窄通道及廊道关键节点。

(4)基于2020年的综合阻力面结果,本研究构建了最小累计阻力面并将研究区划分为5个等级的生态缓冲区。在此基础上结合生态源地、生态廊道、生态夹点以及生态障碍点等关键生态要素,整合生态缓冲区共同构建陕西省的生态安全格局,同时针对陕西省的生态本底条件及各生态要素的多样性,提出差异化的保护策略,为推进区域生态文明建设提供参考。

论文外文摘要:

With the rapid economic development of China, human activities are increasingly interfering with natural ecosystems. The imbalance between the decline in ecosystem service functions and the growing demand from humans has become more prominent, threatening regional ecological security, sustainable socio-economic development, and the enhancement of ecosystem services. Therefore, constructing a regional ecological security framework is crucial for ensuring sustainable development and improving human well-being.

This study focuses on Shaanxi Province, using land use data, meteorological data, and socio-economic data from four periods (1990, 2000, 2010 and 2020). A combination of methods, including the landscape ecological risk assessment model, InVEST (Integrated Valuation of Ecosystem Services and Trade-offs) model, Ecosystem Service Supply-Demand Ratio (ESSDR), Morphological Spatial Pattern Analysis (MSPA), circuit theory, and GIS spatial analysis, was employed to explore the spatiotemporal evolution of landscape patterns and landscape ecological risks in Shaanxi Province from 1990 to 2020. The study quantitatively assessed the supply-demand relationships of three ecosystem services in the province (water yield service, soil retention service, and carbon storage service), analyzed the changes in ecosystem services and the overall supply-demand dynamics, and finally, based on the ecosystem service supply-demand relationships and morphological spatial patterns, identified ecological sources. Using circuit theory, an ecological security framework was constructed, and corresponding ecological protection strategies were proposed. The main research conclusions are as follows:

From 1990 to 2020, the landscape of Shaanxi Province showed an overall increase in landscape fragmentation and significant spatial heterogeneity at the landscape type scale. The degree of disturbance to various landscape types has been increasing, with the greatest disturbance observed in construction land. In terms of landscape loss, water bodies experienced the highest loss, followed by arable land, unused land, grassland, construction land, and forest land. Regarding changes in landscape ecological risk, its spatial distribution followed the pattern of Northern Shaanxi greater than Guanzhong greater than Southern Shaanxi, with an overall risk level of moderate. Areas with higher ecological risk and lower ecological risk showed an increasing trend, while areas with low, moderate, and high ecological risk levels decreased accordingly.

The overall supply-demand situation of ecosystem services in Shaanxi Province is favorable, but there are prominent supply-demand imbalances in ecosystem services between different regions. The imbalance is particularly significant in urban built-up areas (such as Xi'an, Weinan, and Yulin), where the issue of ecosystem service supply-demand imbalance is especially pronounced, making the construction of an ecological security framework more urgent. Specifically, from 1990 to 2020, the supply of water yield services, soil retention services, and carbon storage services in Shaanxi Province showed a fluctuating increasing trend, with increases of 96.86×108 m³, 13.82×107 t, and 2.06×107 t, respectively. The demand for water yield services and carbon storage services has been rising, increasing by 160.86×107m3 and 563.17×105t, respectively; the demand for soil retention services has significantly declined, decreasing by 83.24×106t. The average ecosystem service supply-demand ratio for water yield, soil retention, and carbon storage services was greater than 0, achieving an overall supply-demand balance.The supply-demand ratio of integrated ecosystem services in the province as a whole shows a “V” shaped trend.

Based on the results of the ecosystem service supply-demand assessment, the identification of each ecological element from 1990 to 2020 is as follows: the number and area of ecological source sites were 42 (45405.76km²), 55 (49355.62km²), 96 (58755.47km²), and 72 (55904.29km²), primarily distributed in the southern Qinba Mountains and the Loess Plateau gully region in northern Shaanxi. The ecological resistance surface, influenced by both natural and human factors, has a maximum comprehensive resistance value of 4.7. The number and length of ecological corridors are 113 (3829.73km), 127 (3428.52km), 218 (4423.38km), and 157 (3653.2km), tightly surrounding the ecological source areas, with a longitudinal distribution running through the province from north to south. Ecological pinch points covered areas of 3809.9 km², 3863.4 km², 4140.5 km², and 3904.4 km², with grassland as the primary land use type, located at the intersections of corridors and near the source areas. Ecological barriers covered areas of 4633.6 km², 4239.9 km², 4047.1 km², and 4532.3 km², with arable land and grassland as the main land use types, concentrated in the narrow passages between the source areas and the key nodes of the corridors.

Based on the results of the 2020 comprehensive resistance surface, this study constructed the minimum cumulative resistance surface and divided the study area into five levels of ecological buffer zones.On this basis, key ecological elements such as ecological sources, ecological corridors, ecological pinch points and ecological obstacle points are combined, and ecological buffer zones are integrated to jointly build an ecological security pattern in Shaanxi Province.At the same time, considering the ecological baseline conditions of Shaanxi Province and the diversity of its ecological elements, differentiated protection strategies were proposed to provide reference for promoting regional ecological civilization construction.

参考文献:

[1] 朱玉鑫, 姚顺波. 基于生态系统服务价值变化的环境与经济协调发展研究——以陕西省为例 [J]. 生态学报, 2021, 41(9): 3331-3342.

[2] 侯鹏, 王桥, 申文明, 等. 生态系统综合评估研究进展:内涵、框架与挑战 [J]. 地理研究, 2015, 34(10): 1809-1823.

[3] 彭建, 赵会娟, 刘焱序, 等. 区域生态安全格局构建研究进展与展望 [J]. 地理研究, 2017, 36(3): 407-419.

[4] 赵其国, 黄国勤, 马艳芹. 中国生态环境状况与生态文明建设 [J]. 生态学报, 2016, 36(19): 6328-6335.

[5] 蔡为民, 张亦弛. 基于“反规划”理论的村庄“留白”用地选取研究——以天津市洪水庄村为例 [J]. 中国土地科学, 2020, 34(12): 34-43.

[6] 叶鑫, 邹长新, 刘国华, 等. 生态安全格局研究的主要内容与进展 [J]. 生态学报, 2018, 38(10): 3382-3392.

[7] 赵宇豪, 罗宇航, 易腾云, 等. 基于生态系统服务供需匹配的深圳市生态安全格局构建 [J]. 应用生态学报, 2022, 33(9): 2475-2484.

[8] 马克明, 傅伯杰, 黎晓亚, 等. 区域生态安全格局:概念与理论基础 [J]. 生态学报, 2004, 24(4): 761-768.

[9] 王效科, 苏跃波, 任玉芬, 等. 城市生态系统:人与自然复合 [J]. 生态学报, 2020, 40(15): 5093-5102.

[10] 潘博华. 基于生态系统服务和景观生态风险的生态安全格局构建与优化管控 [D]. 西安: 长安大学, 2023.

[11] 杨骐鸿. 基于生态系统服务供需的城市生态安全格局构建与管控 [D]. 济南: 山东建筑大学, 2023.

[12] Press M. Man's Impact on the Global Environment: Assessment and Recommendation for Action. Report of the Study of Critical Environmental Problems (SCEP) [J]. Mit Press, 1970.

[13] Ehrlich P R, Ehrlich A H, Holdren J P. Ecoscience: population, resources, environment [J]. 1977.

[14] Westman W E. How Much Are Nature's Services Worth? Measuring the social benefits of ecosystem functioning is both controversial and illuminating [J]. Science, 1977, 197(4307): 960-964.

[15] Ehrlich P, Ehrlich A. Extinction: the causes and consequences of the disappearance of species [J]. 1981.

[16] Daily G C, Söderqvist T, Aniyar S, et al. The value of nature and the nature of value [J]. Science, 2000, 289(5478): 395-396.

[17] Costanza, Robert, D'Arge, et al. The value of the world's ecosystem services and natural capital [J]. nature, 1997, 387(6630): 253-260.

[18] Millennium ecosystem assessment M. Ecosystems and human well-being[M]. Island press Washington, DC, 2005.

[19] 杨丽. 不同土地利用情景下赣南森林生态系统服务价值的时空动态评估 [D]. 南昌: 南昌大学, 2017.

[20] De Groot R S, Wilson M A, Boumans R M. A typology for the classification, description and valuation of ecosystem functions, goods and services [J]. Ecological economics, 2002, 41(3): 393-408.

[21] 刘晓荻. 生态系统服务 [J]. 环境导报, 1998, (1): 44-45.

[22] 欧阳志云, 王效科, 苗鸿. 中国陆地生态系统服务功能及其生态经济价值的初步研究 [J]. 生态学报, 1999, 19(5): 19-25.

[23] 谢高地, 甄霖, 鲁春霞, 等. 一个基于专家知识的生态系统服务价值化方法 [J]. 自然资源学报, 2008, 23(5): 911-919.

[24] 谢高地, 鲁春霞, 冷允法, 等. 青藏高原生态资产的价值评估 [J]. 自然资源学报, 2003, 18(2): 189-196.

[25] 李文华, 张彪, 谢高地. 中国生态系统服务研究的回顾与展望 [J]. 自然资源学报, 2009, 24(1): 1-10.

[26] Zella A Y, Kitali L J. Forecasting the Economic Value of Ecosystem Services in Coastal Areas of the Indian Ocean: A Case Study of the Kinondoni District, Tanzania [J]. Advances in Research, 2024, 25(5): 236-250.

[27] Assaye Y, Desta G, Molla E, et al. Assessment of Ecosystem Service Value Variation Over Land Use and Land Cover Dynamics in the Beles River Basin, Ethiopia [J]. Remote Sensing in Earth Systems Sciences, 2024, 7(2): 123-138.

[28] 王丹, 荆延德, 韩善梅, 等. 基于格网的南四湖流域土地利用碳排放与其生态系统服务价值时空关系分析 [J]. 生态学报, 2022, 42(23): 9604-9614.

[29] 李坦, 陈天宇, 惠宝航. 基于Meta分析的黄山市森林生态系统服务价值研究 [J]. 地理科学, 2022, 42(12): 2179-2188.

[30] 谢梦, 吴伟成. 赣东北土地利用及景观格局变化对生态系统服务价值的影响 [J]. 水土保持研究, 2024, 31(3): 331-341.

[31] 谢高地, 张彩霞, 张雷明, 等. 基于单位面积价值当量因子的生态系统服务价值化方法改进 [J]. 自然资源学报, 2015, 30(8): 1243-1254.

[32] Notte L, Alessandra, D'Amato, et al. Ecosystem services classification: A systems ecology perspective of the cascade framework [J]. Ecological indicators, 2017, 74: 392-402.

[33] 肖玉, 谢高地, 鲁春霞, 等. 基于供需关系的生态系统服务空间流动研究进展 [J]. 生态学报, 2016, 36(10): 3096-3102.

[34] 马琳, 刘浩, 彭建, 等. 生态系统服务供给和需求研究进展 [J]. 地理学报, 2017, 72(7): 1277-1289.

[35] Gong J, Shi J, Zhu C, et al. Accounting for land use in an analysis of the spatial and temporal characteristics of ecosystem services supply and demand in a desert steppe of Inner Mongolia, China [J]. Ecological indicators, 2022, 144: 109567.

[36] 李雪红. 基于生态系统服务供需关系的河西地区生态安全格局构建 [D]. 兰州: 西北师范大学, 2024.

[37] Baro F, Haase D, Gomez-Baggethun E, et al. Mismatches between ecosystem services supply and demand in urban areas: A quantitative assessment in five European cities [J]. Ecological indicators, 2015, 55: 146-158.

[38] Andersson E, Langemeyer J, Borgström S, et al. Enabling green and blue infrastructure to improve contributions to human well-being and equity in urban systems [J]. BioScience, 2019, 69(7): 566-574.

[39] Kroll F, Müller F, Haase D, et al. Rural–urban gradient analysis of ecosystem services supply and demand dynamics [J]. Land Use Policy, 2011, 29(3): 521-535.

[40] Stuerck J, Poortinga A, Verburg P H. Mapping ecosystem services: The supply and demand of flood regulation services in Europe [J]. Ecological indicators, 2014, 38: 198-211.

[41] 刘伟, 张帆, 魏云浩, 等. 珠三角城市群区域生态系统服务供需均衡关系 [J]. 生态学报, 2023, 43(11): 4461-4472.

[42] 杨宜男, 李敬, 王立, 等. 长三角地区城市化对典型生态系统服务供需的影响 [J]. 自然资源学报, 2022, 37(6): 1555-1571.

[43] 张蓬涛, 刘双嘉, 周智, 等. 京津冀地区生态系统服务供需测度及时空演变 [J]. 生态学报, 2021, 41(9): 3354-3367.

[44] 闫水玉, 唐俊. 城市绿色空间生态系统服务供需匹配评估方法:研究进展与启示 [J]. 城市规划学刊, 2022, (2): 62-68.

[45] 梁坤宇, 金晓斌, 张晓琳, 等. 耦合生态系统服务供需的生态安全格局构建——以苏南地区为例 [J]. 生态学报, 2024, 44(9): 3880-3896.

[46] Stern, E. K. Bringing the Environment In: The Case for Comprehensive Security [J]. Cooperation & Conflict, 1995, 30(3): 211-237.

[47] 赵士洞, 张永民. 生态系统评估的概念、内涵及挑战——介绍《生态系统与人类福利:评估框架》 [J]. 地球科学进展, 2004, 19(4): 650-657.

[48] 黄智洵, 王飞飞, 曹文志. 耦合生态系统服务供求关系的生态安全格局动态分析——以闽三角城市群为例 [J]. 生态学报, 2018, 38(12): 4327-4340.

[49] Staes J, Broekx S, Van Der Biest K, et al. Quantification of the potential impact of nature conservation on ecosystem services supply in the Flemish Region: A cascade modelling approach [J]. Ecosystem Services, 2017, 24: 124-137.

[50] Monteiro R, Ferreira J C, Antunes P. Green Infrastructure Planning Principles: An Integrated Literature Review [J]. Land, 2020, 9(12): 525.

[51] Franklin J F, Forman R T T. Creating landscape patterns by forest cutting: Ecological consequences and principles [J]. Landscape Ecology, 1987, 1(1): 5-18.

[52] Pirages D. Ecological security: Micro-threats to human well-being [M]. People and their Planet: Searching for Balance. Springer. 1999: 284-298.

[53] Moffett K B, Makido Y, Shandas V. Urban-Rural Surface Temperature Deviation and Intra-Urban Variations Contained by an Urban Growth Boundary [J]. Remote Sensing, 2019, 11(22): 2683.

[54] 彭建, 杨旸, 谢盼, 等. 基于生态系统服务供需的广东省绿地生态网络建设分区 [J]. 生态学报, 2017, 37(13): 4562-4572.

[55] 柯钦华, 周俏薇, 庄宝怡, 等. 基于生态系统服务供需平衡的粤港澳大湾区生态安全格局构建研究 [J]. 生态学报, 2024, 44(5): 1765-1779.

[56] 谢小平, 陈芝聪, 王芳, 等. 基于景观格局的太湖流域生态风险评估 [J]. 应用生态学报, 2017, 28(10): 3369-3377.

[57] 梅志坤. 陕西黄河流域土地利用变化及其景观生态风险评价 [D]. 杨凌: 西北农林科技大学, 2022.

[58] 许学工, 林辉平, 付在毅, 等. 黄河三角洲湿地区域生态风险评价 [J]. 北京大学学报(自然科学版), 2001, 37(1): 111-120.

[59] 丁雪姣, 沈强, 聂超甲, 等. 省域尺度下不同时序景观指数集与粒度效应分析 [J]. 中国农业资源与区划, 2019, 40(3): 111-120.

[60] 高宾, 李小玉, 李志刚, 等. 基于景观格局的锦州湾沿海经济开发区生态风险分析 [J]. 生态学报, 2011, 31(12): 3441-3450.

[61] 胡和兵, 刘红玉, 郝敬锋, 等. 流域景观结构的城市化影响与生态风险评价 [J]. 生态学报, 2011, 31(12): 3432-3440.

[62] 王介勇, 赵庚星, 杜春先. 基于景观空间结构信息的区域生态脆弱性分析——以黄河三角洲垦利县为例 [J]. 干旱区研究, 2005, 22(3): 317-321.

[63] 张月, 张飞, 王娟, 等. 基于LUCC的艾比湖区域生态风险评价及预测研究 [J]. 中国环境科学, 2016, 36(11): 3465-3474.

[64] 谢丽霞. 黄河上游生态功能区土地利用变化及其景观生态风险评价 [D]. 兰州: 西北师范大学, 2021.

[65] 高永年, 高俊峰, 许妍. 太湖流域水生态功能区土地利用变化的景观生态风险效应 [J]. 自然资源学报, 2010, 25(7): 1088-1096.

[66] 康紫薇, 张正勇, 位宏, 等. 基于土地利用变化的玛纳斯河流域景观生态风险评价 [J]. 生态学报, 2020, 40(18): 6472-6485.

[67] 陈心怡, 谢跟踪, 张金萍. 海口市海岸带近30年土地利用变化的景观生态风险评价 [J]. 生态学报, 2021, 41(3): 975-986.

[68] Ningrum A, Setiawan Y, Tarigan S. Annual Water Yield Analysis with InVEST Model in Tesso Nilo National Park, Riau Province [J]. IOP Conference Series: Earth and Environmental Science, 2022, 950(1): 012098.

[69] 汪晓珍, 吴建召, 吴普侠, 等. 2000-2015年黄土高原生态系统水源涵养、土壤保持和NPP服务的时空分布与权衡/协同关系 [J]. 水土保持学报, 2021, 35(4): 114-121+128.

[70] 王壮壮, 张立伟, 李旭谱, 等. 区域生态系统服务供需风险时空演变特征——以陕西省产水服务为例 [J]. 生态学报, 2020, 40(6): 1887-1900.

[71] Zhang L, Dawes W R, Walker G R. Response of mean annual evapotranspiration to vegetation changes at catchment scale [J]. Water Resources Research, 2001, 37(3): 701-708.

[72] Canadell J, Jackson R B, Ehleringer J R, et al. Maximum rooting depth of vegetation types at the global scale [J]. Oecologia, 1996, 108(4): 583-595.

[73] 江民. 西南喀斯特地区生态系统服务功能时空变化及驱动因子分析 [D]. 武汉: 华中农业大学, 2022.

[74] 刘睿, 周李磊, 彭瑶, 等. 三峡库区重庆段土壤保持服务时空分布格局研究 [J]. 长江流域资源与环境, 2016, 25: 932-942.

[75] 林世伟. “三江并流”区生态系统服务空间权衡与协同关系研究 [D]. 昆明: 云南大学, 2016.

[76] Kinnell P I A. Event soil loss, runoff and the Universal Soil Loss Equation family of models: A review [J]. Journal of Hydrology, 2010, 385(1-4): 384-397.

[77] Li S, Xiao W, Zhao Y, et al. Incorporating ecological risk index in the multi-process MCRE model to optimize the ecological security pattern in a semi-arid area with intensive coal mining: A case study in northern China [J]. Journal of Cleaner Production, 2020, 247: 119143.

[78] Wischmeier W H, Smith D D. Predicting Rainfall Erosion Losses ——A Guide To Conservation Planning [J]. United States Dept of Agriculture Agriculture handbook (USA), 1978.

[79] Williams J, Arnold J. A system of erosion—sediment yield models [J]. Soil Technology, 1997, 11(1): 43-55.

[80] 董潇楠, 谢苗苗, 张覃雅, 等. 承灾脆弱性视角下的生态系统服务需求评估及供需空间匹配 [J]. 生态学报, 2018, 38(18): 6422-6431.

[81] 蔡崇法, 丁树文, 史志华, 等. 应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究 [J]. 水土保持学报, 2000, 14(2): 19-24.

[82] 程明月, 姬广兴, 黄珺嫦, 等. 基于PLUS-InVEST模型的陕西省多情景土地覆盖模拟与碳储量评估 [J]. 环境科学, 2024: 1-17.

[83] Chuxiong D, Junyu L, Yaojun L, et al. Spatiotemporal dislocation of urbanization and ecological construction increased the ecosystem service supply and demand imbalance [J]. Journal of Environmental Management, 2021, 288: 112478.

[84] 杨洁, 谢保鹏, 张德罡. 基于InVEST和CA-Markov模型的黄河流域碳储量时空变化研究 [J]. 中国生态农业学报(中英文), 2021, 29(6): 1018-1029.

[85] 许澳康, 胡梦珺, 石晶, 等. 基于PLUS-InVEST模型的石羊河流域生态系统碳储量时空变化及多情景模拟 [J]. 中国环境科学, 2023, 44(6): 1-11.

[86] 徐丽, 于贵瑞, 何念鹏. 1980s-2010s中国陆地生态系统土壤碳储量的变化 [J]. 地理学报, 2018, 73(11): 2150-2167.

[87] Raich J W, Nadelhoffer K J. Belowground carbon allocation in forest ecosystems: global trends [J]. ECOLOGY, 1989, 70(5): 1346-1354.

[88] Alam S A, Starr M, Clark B J F. Tree biomass and soil organic carbon densities across the Sudanese woodland savannah: A regional carbon sequestration study [J]. Journal of Arid Environments, 2013, 89: 67-76.

[89] Giardina C P, Ryan M G. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature [J]. nature, 2000, 404(6780): 858-861.

[90] 陈光水, 杨玉盛, 刘乐中, 等. 森林地下碳分配(TBCA)研究进展 [J]. 亚热带资源与环境学报, 2007, 2(1): 34-42.

[91] Delaney M, Brown S, Lugo A E, et al. The Quantity and Turnover of Dead Wood in Permanent Forest Plots in Six Life Zones of Venezuela [J]. Biotropica, 1998, 30(1): 2-11.

[92] Yuan Y, Zhongke B, Junjie Z, et al. Investigating the trade-offs between the supply and demand for ecosystem services for regional spatial management [J]. Journal of Environmental Management, 2023, 325: 116591.

[93] 张欣蓉, 王晓峰, 程昌武, 等. 基于供需关系的西南喀斯特区生态系统服务空间流动研究 [J]. 生态学报, 2021, 41: 3368-3380.

[94] 陈田田, 黄强, 王强. 基于生态系统服务供需关系的成渝城市群生态安全分区识别 [J]. 山地学报, 2022, 40: 727-740.

[95] Ghosh T, Elvidge C D, Sutton P C, et al. Creating a Global Grid of Distributed Fossil Fuel CO2 Emissions from Nighttime Satellite Imagery [J]. Energies, 2010, 3(12): 1895-1913.

[96] Syrbe R U, Grunewald K. Ecosystem service supply and demand – the challenge to balance spatial mismatches [J]. International Journal of Biodiversity Science Ecosystem Services & Management, 2017, 13(2): 148-161.

[97] 曾兴兰, 陈田田. 基于生态系统服务供需的贵州省生态安全网络构建与优化 [J]. 山地学报, 2023, 41: 493-507.

[98] 景永才, 陈利顶, 孙然好. 基于生态系统服务供需的城市群生态安全格局构建框架 [J]. 生态学报, 2018, 38(12): 4121-4131.

[99] Dong J, Peng J, Liu Y, et al. Integrating spatial continuous wavelet transform and kernel density estimation to identify ecological corridors in megacities [J]. Landscape and Urban Planning, 2020, 199: 103815.

[100]刘永林, 高益忠, 陈明辉, 等. 广东省东莞市国土空间生态安全格局构建与分析 [J]. 自然资源遥感, 2024, 36(2): 126-134.

[101]倪庆琳, 侯湖平, 丁忠义, 等. 基于生态安全格局识别的国土空间生态修复分区——以徐州市贾汪区为例 [J]. 自然资源学报, 2020, 35(1): 204-216.

中图分类号:

 P208.2    

开放日期:

 2025-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式