- 无标题文档
查看论文信息

论文中文题名:

 过电流聚氯乙烯铜导线燃烧行为及熔痕特征影响机制研究    

姓名:

 李阳    

学号:

 18120089006    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 博士    

学位级别:

 工学博士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 消防科学与工程    

第一导师姓名:

 邓军    

第一导师单位:

 西安科技大学安全科学与工程学院    

论文提交日期:

 2022-06-23    

论文答辩日期:

 2022-06-02    

论文外文题名:

 The Effect Mechanism on Flame and Bead Characteristics of PVC-insulated Wire Carrying Overcurrent    

论文中文关键词:

 电气火灾 ; 过电流故障 ; BVR铜导线 ; 热解动力学 ; 燃烧行为 ; 熔化痕迹    

论文外文关键词:

 Electrical fire ; Overcurrent fault ; BVR copper wire ; Thermal decomposition kinetics ; Flame behaviors ; Beads and globules    

论文中文摘要:

电气火灾占到火灾总起数的三分之一左右,其中半数以上为电气线路火灾。相间短路、接地短路等常见故障都可能导致电气线路通电电流过大,发生过电流故障引发火灾。因此,开展过电流导线起火燃烧行为及典型痕迹特征的研究,对于精准查明电气线路火灾原因,高效地预防此类火灾,具有重要的现实意义。单根导线发生较大过电流故障时,导线自身即可起火燃烧,具有极大的火灾危险性。然而,目前国内外关于过电流导线熔化痕迹的认定存在较大分歧,造成分歧原因是过电流导线起火燃烧行为变化规律研究不够深入,绝缘热解及燃烧过程对熔化痕迹形成的影响机制不清。

本文在对过电流铜芯聚氯乙烯多芯软线(BVR)铜导线升温过程、熔断拉弧、起火燃烧进行数值模拟和理论分析的基础上,根据实际火灾调查发现,选择3种具有不同阻燃特性的铜导线,ZR-BVR(红)铜导线为调查过程中发现的问题导线样品,BVR(蓝)和ZR-BVR(黄)为严格符合国家标准的同型号铜导线,通过系统研究3种BVR铜导线绝缘材料热解动力学行为,及相应铜导线燃烧特性演变规律,探究了3种铜导线发生不同过电流值故障时起火燃烧行为变化规律,并对熔化痕迹特征的差异性进行了对比研究,揭示了过电流铜导线起火燃烧行为演变及熔化痕迹特征形成的主要影响机制,得出以下结论:

(1)建立了过电流铜导线温升数值仿真与理论模型,提出了过电流铜导线断路电弧引燃绝缘热解气体火焰燃烧转为扩散火焰稳定燃烧的理论判断,并明确了影响起火燃烧行为变化的因素。

(2)铜导线绝缘材料加热至400℃左右时发生热解放热反应,ZR-BVR(红)铜导线绝缘材料发生放热反应温度要比其他两种铜导线低约30℃。这是造成ZR-BVR(红)铜导线发生过电流故障时,绝缘破坏、起火燃烧的临界电流值小于其他两种铜导线的主要原因之一。

(3)BVR(蓝)铜导线热解放热反应单位时间放热量大,而其他两种阻燃型铜导线热解放热反应温度范围大,表现在燃烧特性上BVR(蓝)铜导线热释放速率峰值pHRR、火灾增长指数FGI更高。这决定着BVR(蓝)铜导线发生过电流故障起火燃烧后扩散火焰高度最高、预混火焰蔓延速度最快、燃烧持续时间最长,同时也是线芯小结痂痕产生的必要条件。

(4)ZR-BVR(黄)铜导线热解放热反应起始温度高,放热功率相对较低、反应最不充分是发生过电流故障时熔断拉弧所需时间最长、预混火焰蔓延速度最慢、火灾增长指数FGI最低的根本原因;此种铜导线具有随加热速率增高,热解放热功率增大的特点,这是其过电流值升高到一定程度(I≥210 A)后,失去良好阻燃效果,火蔓延至整根导线,具有较强的火灾危险性的主要诱因,同时也是此种铜导线产生凹坑痕的重要影响因素。

(5)I=130 A是3种铜导线熔断产生电弧熔化痕迹的临界值,I=150 A为ZR-BVR(红)铜导线起火燃烧后开始沿线蔓延的临界值,I=160 A、170 A分别是BVR(蓝)和ZR-BVR(黄)铜导线起火燃烧的临界值,I=190 A是3种铜导线火焰高度显著增加的临界值,也是BVR(蓝)铜导线产生小结痂痕的临界值。

(6)电弧熔化痕迹是可靠地认定铜导线发生过电流故障的关键痕迹物证,内部出现树枝晶区是其典型特征,随着电流值升高,枝晶逐渐长大,逐渐转变为等轴晶;热解反应起始温度越低,熔断时间越短,树枝晶完全转变为等轴晶的过电流值越低。BVR(蓝)铜导线产生线间小结痂痕,树枝晶也是其典型组织,随着过电流值增大,小结痂痕数量增大,体积增大,树枝晶逐渐转变为等轴晶。

借助本文研究结果,可以提高铜导线发生过电流故障认定的准确性,重建此故障引发火灾过程,提高电气火灾调查的科学性。

论文外文摘要:

Electrical fires account for one third of total fires. Over half of these electrical fires are attributed to electrical distribution. High-current fault may suddenly develop in a circuit, when some failures, such as short circuit, ground fault, floating neutral and so on, occur in electrical systems. Excessive ohmic heating of the conductor in which a large current persist can cause a fire. Therefore, the focus of investigation on flame and damage characteristics caused by overcurrent wire is essential for reconstruction of fire accidents, identification of the electrical fire cause, and prevent these fires. Even though no combustibles are near an overcurrent wire, this wire can also ignite itself to cause a fire. However, the methodology of locating the fault wire in fire in line with damage characteristics of conductor has not been accepted among fire investigators and scientists all over the world. The reason is that there is still a number of gaps where research on flame characteristics and self-ignition caused by overcurrent wires is unavailable. It needs more efforts to investigate on coupled effect mechanism of excessive-ohmic heating, insulation material pyrolysis, and combustion on globules formation.

In this work, we developed a simulation model to study the heating process of overcurrent wire. Theoretical research was conducted on wire glowing, melting opening, ignition caused by parting arc, and flame of pyrolysis products from insulation. According to real fire cases, we selected three types of 2.5 mm2 BVR copper wires, multistranded copper conductor coated by polyvinyl chloride insulation. ZR-BVR (red) copper wires were suspected to have quality problems from a real fire. BVR (blue) and ZR-BVR (yellow) copper wires met standards of flame retardant electric wires and cables. Theoretical and experimental works were conducted to clarify thermal decomposition kinetics of diverse insulation materials from the three wires. And then, combustion characteristics of these three wires were investigated through CONE. The variation of ignition and flame on overcurrent wires were explained with increasing currents. Arc beads and globules on copper conductors of these three fault wires were compared to evaluate typical characteristics of damages produced by overcurrent. Finally, it was verified that coupled influence mechanism of core heating, insulation decomposition, and flame on bead characteristics of copper conductor. The conclusions are followed:

(1) A numerical simulation model and a theoretical model were established to study the temperature increasing process of overcurrent wires. It was proposed that the gross overcurrent wire could melt in two and generate a parting arc which could ignite the hot gaseous mixture of air and product from insulation decomposition. Subsequently, this premixed flame would translate rapidly into diffusion flame from insulation. Major factors were verified to effect on those flame behaviors.

(2) Insulation materials coating copper conductors exposed to around 400℃ would start the exothermic decomposition reaction. For the ZR-BVR (red) wire, its insulation material’s initial temperature of this reaction was less 30℃ than that of two other wires. As thus, the critical currents of insulation breakdown, parting arc, and combustion of ZR-BVR (red) wire were lower than that of two other wires.

(3) Among three kinds of wires, the exothermic decomposition reaction of BVR (blue) wire indicated the maximum heat rate. By contrast, the extent of reaction temperature of both ZR-BVR wires was larger than that of BVR (blue) wire which have larger pHRR and FGI (Fire Growth Index). The flame height, premixed flame spread rate, and diffusion flame persistent time of overcurrent BVR (blue) wire were more than two other wire flowing various large currents due to larger exothermic decomposition reaction rate which was also the indispensable condition for blistering beads formation on copper cores.

(4) The highest initial temperature and the lowest heat rate of the insufficient combustion reaction of ZR-BVR (yellow) wires insulations contributed to more time required for parting arc, the minimum velocity of flame spread, and the minimum FGI of this wire. When the flowing current increased more than 210 A, this wire would be unable to restrain the flame spread to the end of wire, because of the increasing power of exothermic reaction with increasing heat rate, which could also be the major factor to develop surface distortion on copper conductors.

(5) For all three kinds of wires, the critical current of parting arc formation was 130A. when the current flowing in ZR-BVR (red), BVR (blue), and ZR-BVR (yellow) wires was respectively more than 150, 160, and 170 A, so that the flame could be ignited by parting arc to spread away. When the current increased at more than 190 A, the height of the flame on three types of wire would rise up suddenly, which might be the critical current for blistering beads formation on copper cores.

(6) Arc beads is the reliable physical evidence for identifying the overcurrent occurrence of multistranded copper wire. The typical structure of arc beads was dendrite appearing in some part of cross section. As the current increased, dendrite crystals would become larger. Simultaneously, isometric crystal would gradually replace dendrite crystal. Except BVR (blue) wire, no distinct globules emerged on copper conductors of two other wires carrying overcurrent. Dendrite crystals should also be the typical structure of blistering beads. When the current was elevated, the number, dimension, and structure of blistering beads would increase, and the crystal in cross section structure would enlarge.

This work will provide more assistants for reconstructing the fire caused by an overcurrent wire and identifying this fault occurrence in fire investigation.

参考文献:

[1] 中华人民共和国人民政府. 国务院安委会启动为期3年的电气火灾综合治理行动 [DB/OL]. http://www.gov.cn/xinwen/2017-05/03/content_5190668.htm.

[2] 中国消防网. 2020全国火灾及接出警情况[DB/OL]. https://mp.weixin.qq.com/s/dOdI2iKU7C47o56mFm2nwA.

[3] Babrauskas V. How do Electrical Wiring Fault Lead to Structure Ignitions? [J]. Investigator (the Journal of the International Association of Arson Investigations), 2002, 52(3):39-45.

[4] David J. I, Gerald A. H. Kirk’s Fire Investigation (Eighth Edition) [M]. NY: Pearson,2018.

[5] David J. I, Gerald A. H. 柯克火灾调查(第8版)[M]. 刘义祥, 李阳译. 北京: 化学工业出版社, 2021.

[6] National Fire Protection Association. NFPA 921: Guide for Fire and Explosion Investigations 2021 Edition [S]. National Fire Protection Association, 921.

[7] George C. 火灾调查员—NFPA921和NFPA1033的原则方法与实践(第5版)[M]. 张金专, 李阳译. 北京: 中国人事出版社, 2020.

[8] 王博, 李阳, 司永轩等. ZR-BV单芯铜导线过电流故障电弧熔痕特征研究[J]. 中国安全生产科学技术, 2019, 15(12): 41-47.

[9] Liang A , Li Y , Yang S . Study on the Rule of Blister Formation and Identification Technology of Multi-cores Copper Wires in Fire[J]. Materials Express, 2020.

[10] 陈晓坤, 陈言, 王伟峰,等. 单芯铜线过电流故障电弧熔痕的微观特征研究[J]. 中国安全生产科学技术, 2020, 16(12):136-142.

[11] 向熠堃, 李阳, 徐学岩. 铝合金导线过电流发热过程及痕迹特征[J]. 消防科学与技术, 2019, 38(5):734-738.

[12] 姜文宇, 吴坚, 孙烨, 等. 过电流故障铝导线熔痕部位与组织特征关联性研究[J]. 中国安全生产科学技术, 2022, 18(1):1-5.

[13] GB/T 19666-2019, 阻燃和耐火电线电缆通则[S]. 北京: 中国标准出版社, 2019.

[14] JB/T 8734.2-2016, 额定电压450/750及以下聚氯乙烯绝缘电缆电线和软线 第2部分: 固定布线用电缆电线[S]. 北京: 中国标准出版社, 2016.

[15] 杨硕, 李阳, 王勇,等. BVR多芯铜导线过电流故障下燃烧及火焰传播研究 [J]. 中国安全生产科学技术, 2021:17(5): 142-148.

[16] GB/T 16840-2012,电气火灾痕迹物证技术鉴定方法 第5部分:电气火灾物证识别和提取方法[S]. 北京: 中国标准出版社,2012.

[17] GB/T 16840-2021,电气火灾痕迹物证技术鉴定方法 第4部分:金相法 [S]. 北京: 中国标准出版社,2021.

[18] 消防杂志社. 2019年全国火灾数据统计[DB/OL]. http://www.fireplus119.com.

[19] JB/T 8732.2-2016, 额定电压450/750V及以下聚氯乙烯电缆电线及软线 第2部分:固定布线用电缆电线[S]. 北京: 中国标准出版社,2016.

[20] Ashraf M. Strengthening Forensic Science in the United States: A Path Forward[R]. D.C.: Committee on Identifying the Needs of the Forensic Science Community, 2009.

[21] Babrauskas V. Research on Electrical Fires: The State of the Art[C]. Fire Safety Science-Pr-oceedings of the Ninth International Symposium, 2008:3-18.

[22] 徐就麟. 电线电缆手册[M]. 北京: 机械工业出版社, 2014.

[23] 《电线电缆手册》编委会组. 电线电缆手册. 第1册[M]. 北京: 机械工业出版社, 2014.

[24] 宗刚, 王琨. 我国电线电缆行业现状与发展研究[J]. 电器工业, 2008(2):6.

[25] 陈灏洋. LDPE/TPE无卤阻燃电缆料的研制及交联工艺研究[D]. 扬州: 扬州大学, 2020.

[26] 谢启源, 陈丹丹, 丁延伟. 热重分析技术及其在高分子表征中的应用[J]. 高分子学报,2022,53(02):193-210.

[27] 丁延伟, 郑康, 钱义祥, 等. 热分析实验方案设计与曲线解析概论 [M]. 北京: 化学工业出版社, 2020.

[28] Cho Y S, Shim M J, Kim S W. Thermal Degradation Kinetics of PE by the Kissinger Equation[J]. Materials Chemistry and Physics, 1998, 52(1):94-97.

[29] Mo S J, Zhang J, Liang D, et al. Study on Pyrolysis Characteristics of Cross-linked Polyethylene Material Cable[J]. Procedia Engineering, 2013, 52:588-592.

[30] Wang C, Liu H, Zhang J, et al. Thermal Degradation of Flame-retarded High-voltage Cable Sheath and Insulation via TG-FTIR[J]. Journal of Analytical and Applied Pyrolysis, 2018, 134(SEP.): 167-175.

[31] Babrauskas V., Richard D., Emil Braun, et al. Fire Performance of Wire and Cable: Reaction-to-Fire Test-A Critical Review of the Existing Methods and of New Concepts[R]. U.S Department of commerce, 1991.

[32] Matheson A F, Charge R, Corneliussen T. Properties of PVC Compounds with Improved Fire Performance for Electrical Cables[J]. Fire Safety Journal, 1992, 19(1): 55-72.

[33] Barnes M A, Briggs P J, Hirschler M M, et al. A Comparative Study of the Fire Performance of Halogenated and Non-Halogenated Materials for Cable Applications. Part Ⅰ Tests on Materials and Insulated Wires[J]. Fire and Materials, 1996, 20(1): 1-16.

[34] Nakagawa Y. A Comparative Study of Bench-Scale Flammability Properties of Electric Cables with Different Covering Materials[J]. Journal of Fire Sciences, 1998, 16(3): 179-205.

[35] Sundstroem B, J Axelsson. Development of a Common European System for Fire Testing of Pipe Insulation based on En 13823 (SBI) and ISO 9705 (Room/Corner Test). 2003.

[36] 付强. 典型电缆燃烧性能研究[D].合肥: 中国科学技术大学,2012.

[37] 舒中俊, 徐晓楠, 杨守生, 等. 基于锥形量热仪试验的聚合物材料火灾危险评价研究[J]. 高分子通报, 2006(05): 37-44.

[38] 王蔚. 聚氯乙烯电缆火灾特性及其影响因素研究[D]. 合肥: 中国科学技术大学, 2008.

[39] 王蔚, 张和平, 万玉田. 基于锥形量热仪的PVC电缆燃烧性能试验研究[J]. 安全与环境学报, 2008, 8(2): 117-120.

[40] 付强, 张和平, 杨华,等. PVC电缆全尺寸燃烧试验与数值模拟研究[J]. 安全与环境学报, 2010,10(3):157-161.

[41] 付强, 张和平, 龚伦伦, 等. 基于CONE和MCC的典型电缆燃烧性能研究[J]. 火灾科学, 2012,21(1): 13-20.

[42] 李在辉, 胡源, 宋磊, 等. 聚氯乙烯电缆料老化前后的火灾危险性研究[J]. 火灾科学, 2011, 20(01): 56-61.

[43] 杨亮, 赵婧, 李玮瑜. 电线电缆燃烧性能分级体系与试验研究[J]. 消防科学与技术, 2017, 36(06): 748-751.

[44] 单威威. 临界温度下ZR-BVR线绝缘材料老化后火灾危险性研究[D]. 焦作: 河南理工大学, 2019.

[45] 单威威, 王健. 电线电缆绝缘材料燃烧及热老化研究进展[J]. 塑料, 2020, 49(03): 151-155.

[46] Wang Zh, Wang J. Comparative Thermal Decomposition Characteristics and Fire Behaviors of Commercial Cables[J]. Journal of Thermal Analysis and Calorimetry, 2020, 144(4) :1-10.

[47] 王志. 线缆绝缘材料热解特性与线缆燃烧及火蔓延行为研究[D]. 合肥: 中国科学技术大学, 2020.

[48] Zhi W, Wei R, Ouyang D, et al. Investigation on Thermal Stability and Flame Spread Behavior of New and Aged Fine Electrical Wires[J]. Journal of Thermal Analysis and Calorimetry, 2020, 140(1): 157-165

[49] Hirschler M.M. Survey of Fire Testing of Electrical Cables [J]. Fire and Materials, 1992, 16(3): 107-118.

[50] Kikuchi M., Fujita O., Ito K. Experimental Study on Flame Spread Over Wire Insulation in Microgravity[C]. Proc. Combust. Inst.29, 1998: 2507-2514.

[51] Fujita O., Nishizawa K., Ito K. Effect of Low External Flow on Flame Spread over Polyethylene-insulated Wire in Microgravity [C]. Proc. Combust. Inst.29, 2005: 2545-2552.

[52] Nakamura Y., Yoshimura N., Fujita O. Opposed-wind Effect on Flame Spread of Electric Wire in Sub-atmospheric Pressure [J]. Thermal Science Technology, 2008, 3(3): 430-441.

[53] Kim M.K., Chung S.H., Fujita O. Effect of AC Electric Fields on Flame Spread over Electric Wire [C]. Proc. Combust. Inst.33, 2011:1145-1151.

[54] Fujita O., Kyono T., Kido Y. Ignition of Electrical Wire Insulation with Short-term Excess- Electric Current in Microgravity [C]. Proc. Combust. Inst.33, 2011: 2617-2623.

[55] Konno Y , Hashimoto N , Fujita O . Role of Wire Core in Extinction of Opposed Flame Spread over Thin Electric Wires [J]. Combustion and Flame, 2020, 220(9):7-15.

[56] Sun P, Rodriguez A, Kim W I, et al. Effect of External and Internal Heating on the Flame Spread and Phase Change of Thin Polyethylene Tubes [J]. International Journal of Thermal Sciences, 2021, 168: 107054.

[57] Kobayashi Y, Nakaya S, Tsue M, et al. Flame Spread over Polyethylene-insulated Copper and Stainless-steel Wires at High Pressure [J]. Fire Safety Journal, 2020, 120: 103062.

[58] 孔文俊, 劳世奇, 张培元. 功能模拟微重力导线的可燃性 [J]. 燃烧科学与技术, 2006, 12(1): 1-4.

[59] 孔文俊, 王宝瑞, 劳世奇. 低压下导线绝缘层着火先期征兆研究 [J]. 工程热物理学报, 2007, 28(6): 107-1049.

[60] 夏伟, 汪凯, 王宝瑞, 等. 弱浮力下导线绝缘层早期燃烧特性研究 [J]. 工程热物理学报, 2016, 37(4): 501-507.

[61] Shao X, Wenjun K. Smoke Emission and Temperature Characteristics of the Long-term Overload Wire in Space [J]. Journal of Fire Science, 2019, 37(2): 99-116.

[62] Wang X, He H, Zhao L, et al. Ignition and Flame Propagation of Externally Heated Electrical Wires with Electric Currents [J]. Fire Technology, 2016, 52(2):533-546.

[63] He H, Zhang Q, Tu R. Molten Thermoplastic Dripping Behavior Induced by Flame Spread over Wire Insulation under Overload Currents [J]. Journal of Hazardous Materials, 2016, 320: 628-634.

[64] He H, Wang X, Zhang Q, et al. The Influence of Currents on the Ignition and Correlative Smoke Productions for PVC-Insulated Electrical Fire [J]. Fire Technology, 2017, 53: 1275-1289.

[65] 何豪. 通电聚乙烯导线火蔓延伴随的熔融滴落行为研究[D]. 合肥: 中国科学技术大学, 2017.

[66] 王晓伟. 典型通电导线燃烧特性与烟颗粒形谱特征研究[D]. 合肥: 中国科学技术大学, 2015.

[67] Wang Z, Zhou T, Wei R, et al. Experimental Study of Flame Spread over PE-insulated Single Copper Core Wire under Varying Pressure and Electric Current [J]. Fire and Materials, 2020.

[68] Zhao L, Zhang Q, Tu R, et al. Effects of Electric Current and Sample Orientation on Flame Spread over Electrical Wires [J]. Fire Safety Journal, 2020, 112(2): 112-118.

[69] Zhang Y, Tang K, Liu Z, et al. Experimental Study on Thermal and Fire Behaviors of Energized PE-insulated Wires under Overload Currents [J]. Journal of Thermal Analysis and Calorimetry, 2020: 1-7.

[70] Morgan J. SFPE Handbook of Fire Protection Engineering (Fifth Edition) [M]. London: Springer New Yorker Heidelberg Dordrecht, 2016.

[71] Babrauskas V. Ignition Handbook [M]. Issaquah WA: Fire SciencePublishers/Society of Fire Protection Engineers, 2003.

[72] 王博. 基于支持向量机的铜导线过电流典型痕迹识别技术研究[D]. 北京: 中国人民警察大学, 2020.

[73] 林庆文. 铺地过电流铜导线绝缘燃烧及痕迹特征研究[D]. 北京: 中国人民警察大学, 2021.

[74] 申婷. 地铁隧道电线电缆火灾危险性研究[D]. 北京: 首都经济贸易大学, 2018.

[75] 黄锐等译. 聚氯乙烯大全(第2卷)[M]. 北京: 化学工业出版社, 1985.

[76] 胡营仙. 阻燃聚氯乙烯电缆料的研究[D]. 石家庄: 河北科技大学, 2016.

[77] 严兵. 高阻燃聚氯乙烯电缆料的制备及应用研究[D]. 苏州: 苏州大学, 2013.

[78] 米桢, 聂小安. 阻燃增塑剂制备技术研究现状及发展趋势[J]. 生物质化学工程, 2011, 45(05): 46-50.

[79] 石万聪, 石志博, 蒋平平. 增塑剂及其应用[M]. 北京: 化学出版社, 2002.

[80] 孙英娟, 宋京朔, 刘岩辉. 粉煤灰/三氧化二锑对软质聚氯乙烯阻燃消烟作用研究[J]. 塑料科技, 2022, 50(01): 40-44.

[81] 樊晓伟, 孙洪波, 张盈, 等. CDP阻燃涂料对聚氯乙烯塑料电缆的保护作用研究[J]. 塑料科技, 2021, 49(03): 52-55.

[82] 高伟杰. 阻燃聚氯乙烯研究进展及在工程中的应用[J]. 合成材料老化与应用, 2019, 48(05): 132-136.

[83] 郝慧颖. 聚氯乙烯阻燃电缆料的配方和性能研究[D]. 石家庄: 石家庄铁道大学, 2018.

[84] Babrauskas, V. Arc Mapping: A Critical Review[J]. Fire Technology, 2018, 54(3):749-780.

[85] Erlandsson R, Strand G. An Investigation of Physical Characteristics Indicating Primary or Secondary Electrical Damage[J]. Fire Safety Journal, 1985, 8(2):97-103.

[86] Babrauskas, V. Fire due to Electrical Arcing: Can ‘Cause’ Beads be Distinguished from ‘Victim’ Beads by Physical or Chemical Testing? [J]. Fire and Materials, 2003: 189-201.

[87] Levinson D W. Copper Metallurgy as a Diagnostic Tool for Analysis of the Origin of Building Fires[J]. Fire Technology, 1977, 13(2): 211–222.

[88] Etiling B V. Electrical Wiring in Building Fires[J]. Fire Technology, 1978, 14(2): 317–325.

[89] Gray D A, Drysdale D D, Lewis F A. Identification of Electrical Sources of Ignition in Fires[J]. Fire Safety Journal, 1983, 6(2): 147–150.

[90] Novak C J, Stoliarov S I, Keller M R, et al. An Analysis of Heat Flux Induced Arc Formation in a Residential Electrical Cable[J]. Fire Safety Journal, 2013, 55:61-68.

[91] Fisher R P, Stoliarov S I, Keller M R. A Criterion for Thermally Induced Failure of Electri-cal Cable[J]. Fire Safety Journal, 2015, 72:33-39.

[92] Tomoyasu, Iwashita, Michael, et al. Leakage Currents Precede Short Circuits in PVC-insulat-ed Cable when Exposed to External Radiant Heat[J]. Fire and Materials, 2017,41:339-348.

[93] Iwashita T, Hagimoto Y, Sugawa O. Characterization of Arc Beads on Energized Conductor-s Exposed to Radiant Heat[J]. Fire and Materials, 2017,41:1072-1078.

[94] 荣彦超, 李阳, 刘义祥等. 基于Matlab的短路熔痕凝固过程中熔体温度测算方法[J]. 中国安全生产科学技术, 2020, 16(08):77-83.

[95] June D, Yang L, Huifei L, et al. Metallurgical Analysis of the 'Cause' Arc Beads Pattern C-haracteristics Under Different Short-circuit Currents[J]. Journal of Loss Prevention in the Pr-ocess Industries, 2020, 68: 1-9.

[96] 李阳. 短路激烈程度对铜包铝导线熔珠引燃能力及组织特征的影响[J]. 安全与环境学报, 2018, 18(05): 1816-1822.

[97] 孙卓尔, 周洋, 李阳. 铜导线一次短路熔痕受热过程中的理化反应[J]. 消防科学与技术, 2021, 40(08): 1259-1262.

[98] 余韬, 刘义祥, 李阳, 等. 护套线过电流诱发短路故障起火过程及痕迹特征[J]. 消防科学与技术, 2022, 41(01): 142-145.

[99] 刘义祥, 李阳, 刘彬. 铜导线短路熔痕中共晶体的定量金相研究[J]. 消防科学与技术, 2022, 41(02): 279-281.

[100] 孙卓尔, 周洋. 基于热分析的短路熔痕组织变化研究综述[J]. 消防科学与技术, 2019, 38(09): 1342-1344.

[101] 李阳, 金南江, 孙烨, 等. PVC护套线过电流诱发短路过程及绝缘燃烧速率研究[J]. 安全与环境学报: 1-7[2022-02-27].

[102] 孙烨, 李阳, 王朴真, 等. RVVB护套线过电流诱发短路故障发生概率与起火燃烧过程分析[J]. 中国安全生产科学技术, 2021, 17(03): 137-142.

[103] 王希庆, 韩宝玉, 邸曼. 电气火灾原因技术鉴定方法[M]. 沈阳: 辽宁大学出版社, 1997.

[104] 张明, 邸曼, 夏大维, 等. 铜导线短路熔痕内部孔洞形态特征参数的研究[J]. 消防科学与技术, 2011, 30(07): 651-654.

[105] 叶海伦, 梁栋, 林基深,等. 不同燃烧环境下铝导线二次短路熔珠金相孔洞特征[J]. 消防科学与技术, 2017, 36(3): 410-414.

[106] 杨文兵, 莫善军, 梁栋, 等. 短路火灾灰色区域熔痕鉴定实践和应用研究[J]. 消防科学与技术, 2017, 36(01): 127-131.

[107] 王莉, 姚浩伟, 曾祥安, 等. 电气火灾短路熔痕相变的XRD分析[J]. 消防科学与技术, 2014, 33(10): 1211-1214.

[108] 李国辉. 火灾现场铜导体短路熔痕特征稳定性研究[J]. 消防科学与技术, 2018, 37(08): 1100.

[109] 张金专, 刘强, 于春华. 过负荷铜导线金相显微特征分析[J]. 火灾科学, 2009, 18(04): 212-217.

[110] 张金专. 过负荷时间和倍数对铜导线金相组织的影响[J]. 消防科学与技术, 2009, 28(07): 543-545.

[111] 王晶晶. 过负荷电流对铜导线断后伸长率和断面收缩率的影响[J]. 理化检验-物理分册, 2021, 57(08): 26-28.

[112] 中国建筑东北设计研究院, 建设部. 中华人民共和国行业标准民用建筑电气设计规范:民用建筑电气设计规范[M]. 北京: 中国建筑工业出版社, 2008.

[113] National Fire Protection Association. NFPA 70: National Electrical Code [S]. National Fire Protection Association, 2017.

[114] Incropera F, DeWitt D, Bergman T, 等. 传热和传质基本原理: Fundamentals of heat and mass transfer[M]. 葛新石, 叶宏译. 北京: 化学工业出版社, 2007.

[115] Chu C. Correlating Equations for Laminar and Turbulent Free Convection from a Horizontal Cylinder[J]. International Journal of Heat and Mass Transfer, 1975.

[116] Morgan V T. The Overall Convective Heat Transfer from Smooth Circular Cylinders[J]. Advances in Heat Transfer 1975, 11: 199-264.

[117] 熊一蓉. 电缆金属穿墙套管发热机理研究[D]. 北京: 华北电力大学(北京), 2020.

[118] 刘雪扬, 李奇. 基于COMSOL的铜-铜电连接的仿真分析[J]. 东北电力技术, 2019 , 40(04): 28-30.

[119] 何强. 基于COMSOL的混合动力汽车动力耦合机构瞬态温度场研究[D]. 重庆: 重庆大学, 2013.

[120] Lowke J J. Simple Theory of Free-burning Arcs[J]. Journal of Physics D Applied Physics, 1979, 12(11):1873.

[121] Pflanz H. Steady State and Transient Properties of Electric Arcs[D]. Eindhoven, Netherland: Technische Hogeschool 1967.

[122] Stokes A, Oppenlander W. Electric Arcs in Open Air [J]. Journal of Physics D: Applied Physics, 1991: 24-26.

[123] Litchfield, E.L. Minimum Ignition-energy Concept and Its Application to Safety Engineering [R]. Bureau of Mines, Pittsburgh, PA,1959.

[124] Fenn, John B. Lean Flammability Limit and Minimum Spark Ignition Energy. Commercial Fluids and Pure Hydrocarbons [J]. Industrial and Engineering Chemistry, 1951, 43(12): 2865-2869.

[125] Gregory E, James L, Scott R. Fire Dynaimics (Second Edition) [M]. NY: Pearson, 2016.

[126] Drysdale D. An Introduction to Fire Dynamics: Third Edition[M]. West Sussex UK: John Wiley and Sons, 2011.

[127] Reynolds W C. The Element Potential Method for Chemical Equilibrium Analysis: Implementation in the Interactive Program STANJAN, Version 3[J]. Technical Rept, 1986.

[128] Babrauskas V. Development of the Cone Calorimeter—A Bench‐scale Heat Release Rate Apparatus Based on Oxygen Consumption[J]. Fire and Materials, 1984, 8(2): 81-95.

[129] Babrauskas V. The Development and Evolution of the Cone Calorimeter: A Review of 12 Years of Research and Standardization[J]. Astm Special Technical Publication, 1995(1): 3-22.

[130] ISO Ⅰ.5660-2015.Reaction-to-fire Tests–Heat Release, Smoke Production and Mass Loss Rate-Part 1: Heat Release Rate (Cone Calorimeter Method) and Smoke Rate [S]. Switzerland: International Organization for Standardiztion, 2015.

[131] ASTM E 1354-2017. Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products using an Oxygen Consumption Calorimeter [S]. US.: The American Society of Testing Materials, 2017.

[132] ASTM E 2058-2000 Standard Test Methods for Measurement of Synthetic Polymer Material Flammability Using a Fire Propagation Apparatus (FPA) [S]. US.: The American Society of Testing Materials, 2000.

[133] Tewarson A, Khan M M. A New Standard Test Method for the Quantification of Fire Propagation Behavior of Electrical Cables using Factory Mutual Research Corporation's small-scale Flammability Apparatus[J]. Fire Technology, 1992, 28(3): 215-227.

[134] Khan M, Jr R. Comparison of Flammability Measurements in Vertical and Horizontal Exhaust Duct in the ASTM E‐2058 Fire Propagation Apparatus[J]. Fire and Materials, 2003, 27(6): 253-266.

[135] Khan M, Jr R, Alpert R. Screening of Plenum Cables using a Small-scale Fire Test Protocol[J]. Fire and materials, 2006, 30(1): 65-76.

[136] ASTM E3-11 Standard Guide for Preparation of Metallographic Specimens [S]. ASTM Committee, 2011.

[137] Richter F, Rein G. A Multiscale Model of Wood Pyrolysis in Fire to Study the Roles of Chemistry and Heat Transfer at the Mesoscale [J]. Combustion and Flame, 2020, 216: 316-325.

[138] John, E, White, et al. Biomass Pyrolysis Kinetics: A Comparative Critical Review with Relevant Agricultural Residue Case Studies[J]. Journal of Analytical and Applied Pyrolysis, 2011, 91(1): 1-33.

[139] Vyazovkin S, Burnham A, Criado J, et al. ICTAC Kinetics Committee Recommendations for Performing Kinetic Computations on Thermal Analysis Data[J]. Thermochimica Acta, 2011, 520(1-2): 1-19.

[140] 徐亮. 聚氯乙烯热解及火灾行为[J]. 消防科学与技术, 2014, 33(07): 741-744.

[141] 师奇松, 陈喆. 聚氯乙烯的热解特性和热解动力学的研究[J]. 北京石油化工学院学报, 2009, 17(01): 1-4.

[142] Jdsa B, Yan D, Sis A. A Quantitative Comparison of the Pyrolysis and Combustion Behavior of Plasticized and Rigid Poly (Vinyl Chloride) using Two-dimensional Modeling[J]. Fire Safety Journal, 111.

[143] Miandad R, Barakat M, Aburiazaiza A S, et al. Catalytic Pyrolysis of Plastic Waste: A Review[J]. Process Safety and Environmental Protection, 2016, 102: 822-838.

[144] Jie Y, Sun L, Ma C, et al. Thermal Degradation of PVC: A Review[J]. Waste Management, 2016, 48(FEB.): 300-314.

[145] 韩斌. 聚氯乙烯等塑料废弃物热解特性及动力学研究[D]. 天津: 天津大学, 2012.

[146] 田原宇, 吕永康, 谢克昌. PVC的热解/红外(Py/FTIR)研究[J]. 燃料化学学报, 2002, (06): 569-572.

[147] 任浩华, 王帅, 王芳杰, 等. PVC热解过程中HCl的生成及其影响因素[J]. 中国环境科学, 2015, 35(08): 2460-2469.

[148] Richter F, Rein G. A Multiscale Model of Wood Pyrolysis in Fire to Study the Roles of Chemistry and Heat Transfer at the Mesoscale[J]. Combustion and Flame, 2020, 216: 316-325.

[149] Romain M, Sonnier R, Zavaleta P, et al. Fire Behavior of Halogen-free Flame Retardant Electrical Cables with the Cone Calorimeter[J]. Journal of Hazardous Materials, 2018.

[150] Babrauskas V, Peacock R D. Heat Release Rate: The Single most Important Variable in Fire Hazard[J]. Fire Safety Journal, 1992, 18(3): 255-272.

[151] Schartel B, Hull T R. Development of Fire-retarded Materials—Interpretation of Cone Calorimeter Data[J]. Fire and Materials, 2007.

[152] 崔忠圻, 覃耀春. 金属学与热处理 [M]. 北京: 机械工业出版社, 2020.

中图分类号:

 D631.6    

开放日期:

 2022-06-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式