- 无标题文档
查看论文信息

论文中文题名:

 基于分数阶微分光谱的小麦条锈病遥感探测研究    

姓名:

 张腾    

学号:

 18210063039    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 081602    

学科名称:

 工学 - 测绘科学与技术 - 摄影测量与遥感    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 摄影测量与遥感    

研究方向:

 高光谱农业遥感    

第一导师姓名:

 竞霞    

第一导师单位:

 西安科技大学    

论文提交日期:

 2021-06-20    

论文答辩日期:

 2021-05-31    

论文外文题名:

 Research on Remote Sensing Detection of Wheat Stripe Rust Based on Fractional Differential Spectrum    

论文中文关键词:

 反射率光谱 ; 小麦条锈病 ; 分数阶微分 ; 光谱指数 ; 遗传-支持向量回归    

论文外文关键词:

 Reflectance Spectrum ; Wheat Stripe Rust ; Fractional Differential ; Spectral Index ; Genetic-Support Vector Regression    

论文中文摘要:

小麦条锈病具有流行性强,危害程度大等特点,严重影响了小麦的产量和质量。高光谱数据能够提供精细的地物光谱信息,被广泛应用于作物病害探测中。冠层高光谱数据容易受到背景和其它噪声信息的干扰,影响着小麦条锈病的遥感探测精度。对反射率光谱进行微分处理能够降低噪声干扰,突出光谱数据间细微差别,然而整数阶微分容易造成信号缺失,忽略掉部分有用的光谱信息。分数阶微分光谱能够呈现出原始光谱和整数阶微分光谱的“中间”光谱细节,平衡整数阶微分光谱的优缺点,在消除基线漂移、平缓背景干扰的同时可保留更多光谱信息。本文在利用Grunwald-Letnikov(GL)方法对条锈病胁迫下小麦冠层反射率光谱进行分数阶微分处理的基础上,利用相关系数、互信息等方法对分数阶微分光谱进行特征波段选择,以波段组合优化方法构建了两波段和三波段分数阶微分光谱指数,并将特征波段与分数阶微分光谱指数应用于小区控制实验和大田条件下的小麦条锈病遥感探测。

(1)通过GL方法对冠层原始光谱进行0~2阶分数阶微分处理(步长为0.1),采用相关系数和互信息分析了分数阶微分光谱对条锈病病情严重度的敏感性。结果表明,经过分数阶微分处理的光谱与条锈病病情严重度的敏感性得到增强,1.1~1.3阶微分光谱与病情严重度的最大相关系数和互信息均优于原始光谱和整数阶微分光谱,其中最大相关系数出现在1.2阶,对应波长为481nm,较原始光谱、一阶微分、二阶微分的最大相关系数分别提高了20.9%、3.9%和20.5%,最大互信息同样出现在1.2阶,对应波长为462nm,较原始光谱、一阶微分、二阶微分的最大互信息分别提高了72.9%、9.4%和10.8%。

(2)采用波段组合优化的方法构建了两波段分数阶微分光谱指数(FDI、FRI、FNDI)和三波段分数阶微分光谱指数(FIDI、FIRI、FPRI)。通过分析各指数与小麦条锈病严重度的相关性,利用最大相关系数确定了分数阶微分光谱指数的最优分数阶次及其对应波长,最终构建的两波段分数阶微分光谱指数为FDI0.4481, ρ475)、FRI1.3478, ρ622)、FNDI1.2481, ρ673),三波段分数阶微分光谱指数为FIDI1.1481, ρ442, ρ454)、FIRI1.2880, ρ670, ρ481)、FPRI0.5646, ρ400, ρ955),三波段分数阶微分光谱指数与小麦条锈病严重度的相关性优于两波段分数阶微分光谱指数,其中FPRI0.5646, ρ400, ρ955)与小麦条锈病严重度的相关性最高。

(3)采用相关系数(CC)、互信息(MI)、相关系数结合遗传-支持向量回归(CGA-SVR)和互信息结合遗传-支持向量回归(MGA-SVR)对各阶次分数阶微分光谱进行波段优选,并应用偏最小二乘(PLS)和支持向量回归(SVR)进行模型构建。小区实验数据验证结果表明,以1.3阶微分光谱构建的MGA-SVR模型的预测性能最好,验证集预测病情指数(DI)和实测DI的R2为0.871,较原始光谱最优模型(CGA-SVR模型)、一阶微分光谱最优模型(MGA-SVR模型)、二阶微分光谱最优模型(MGA-SVR模型)分别提高了13.6%、7.5%和6.2%。大田实验数据验证结果表明1.3阶微分光谱构建的MGA-SVR模型对病情严重度的预测结果优于整数阶微分光谱的最佳模型。

(4)以本文构建的两波段和三波段分数阶微分光谱指数为输入特征构建小麦条锈病严重度估算的PLS模型和SVR模型,并将其与常用的反射率光谱指数、“三边”参数、吸收特征构建的模型进行对比。结果表明,相同的输入特征下,SVR模型的预测精度均优于PLS模型,利用分数阶微分光谱指数构建的PLS模型和SVR模型的预测精度均高于其它输入特征所建模型精度,其中SVR模型预测DI与实测DI的R2为0.901,较光谱指数、“三边”参数、吸收特征的SVR模型分别提高了11.4%、14.1%和15.2%,以大田样本对不同输入特征的SVR模型进行验证,分数阶微分光谱指数的SVR模型对大田样本DI的预测精度高于其它输入特征的SVR模型,证明分数阶微分光谱指数能够提高小麦条锈病的遥感探测精度。

论文外文摘要:

Wheat stripe rust has the characteristics of strong epidemic and serious damage, which seriously affects the yield and quality of wheat. Hyperspectral data is widely used in crop disease detection because it can provide fine spectral information of ground features. Canopy hyperspectral data is easily disturbed by background and other noise information, which affects the remote sensing detection accuracy of wheat stripe rust. Differential processing of reflectance spectrum can reduce noise interference and highlight the subtle differences between spectral data. However, integer order differential is easy to cause signal loss and ignore part of useful spectral information. The fractional differential spectrum can present the "intermediate" spectral details of the original spectrum and the integer differential spectrum, balancing the advantages and disadvantages of the integer differential spectrum, more spectral information can be retained while eliminating baseline drift and smoothing background interference. In this paper, the Grunwald-Letnikov (GL) method was used to perform fractional differential processing on wheat canopy reflectance spectra under stripe rust stress. Then, correlation coefficients, mutual information and other methods were used to select the characteristic bands of the fractional differential spectra, the two-band and three-band fractional differential spectral indices were constructed by the band combination optimization method. Finally, the characteristic band and fractional differential spectral index were applied to the remote sensing detection of Wheat Stripe Rust under plot control experiment and field condition.

(1) The original spectrum of the canopy was processed with 0~2 order fractional differentiation (step length is 0.1) by the GL method, and the sensitivity of the fractional differential spectrum to the severity of stripe rust was analyzed using correlation coefficients and mutual information. The results showed that the sensitivity of the spectrum to the severity of stripe rust disease has been enhanced after fractional differential processing. The maximum correlation coefficient and mutual information between the 1.1~1.3 order differential spectrum and the severity of the disease were better than the original spectrum and the integer-order differential spectrum. The maximum correlation coefficient appeared at order 1.2 and the corresponding wavelength was 481nm, which was 20.9%, 3.9% and 20.5% higher than that of the original spectrum, the first order differential spectrum and the second order differential spectrum, respectively. The maximum mutual information also appeared at order 1.2, corresponding wavelength was 462nm, which was 72.9%, 9.4% and 10.8% higher than the maximum mutual information of original spectrum, first-order differential and second-order differential, respectively.

(2) The two-band fractional differential spectral indices (FDI, FRI, FNDI) and the three-band fractional differential spectral indices (FIDI, FIRI, FPRI) were constructed using the method of band combination optimization. By analyzing the correlation between each index and the severity of wheat stripe rust, using the maximum correlation coefficient to determine the optimal fractional order of the fractional differential spectral indices and its corresponding wavelength, the final two-band fractional differential spectral indices were FDI0.4481, ρ475), FRI1.3478, ρ622), FNDI1.2481, ρ673), the three-band fractional differential spectral indices were FIDI1.1481, ρ442, ρ454), FIRI1.2880, ρ670, ρ481), FPRI0.5646, ρ400, ρ955). The correlation between the three-band fractional differential spectral indices and the severity of wheat stripe rust was better than that of the two-band fractional differential spectral indices, and FPRI0.5646, ρ400, ρ955) had the highest correlation with the severity of wheat stripe rust.

(3) Correlation coefficient (CC), mutual information (MI), correlation coefficient combined with genetic support vector regression (CGA-SVR) and mutual information combined with genetic support vector regression (MGA-SVR) were used to optimize the bands of each order fractional differential spectrum. Partial least squares (PLS) and support vector regression (SVR) were used for model construction. The experimental data verification results of the cell showed that the MGA-SVR model constructed with the 1.3-order differential spectrum had the best predictive performance. The R2 between the predicted disease index (DI) of the validation set and the measured DI was 0.871, which were 13.6%, 7.5%, and 6.2% higher than the optimal model of the original spectrum (CGA-SVR model), the optimal model of the first-order differential spectrum (MGA-SVR model), and the optimal model of the second-order differential spectrum (MGA-SVR model), respectively. The Field experimental data verification results showed that the MGA-SVR model constructed by 1.3-order differential spectrum was better than the best model of integer-order differential spectrum in predicting the severity of the disease.

(4) The two-band and three-band fractional differential spectral indices constructed in this paper were used as input features to construct the PLS model and SVR model for estimating the severity of wheat stripe rust. And compared it with the commonly used models constructed by reflectance spectral index, "trilateral" parameters, and absorption characteristics. The results showed that under the same input characteristics, the prediction accuracy of the SVR model was better than that of the PLS model. Regardless of the modeling method adopted, the prediction accuracy of the PLS model and SVR model constructed using the fractional differential spectral index were higher than the accuracy of the models constructed with other input features. The R2 of the SVR model predicted DI and the measured DI was 0.901, which was 11.4%, 14.1% and 15.2% higher than the SVR model of spectral index, "trilateral" parameters, and absorption characteristics, respectively. The field samples were used to verify SVR models with different input characteristics. The SVR model of fractional differential spectral index had a higher prediction accuracy for the DI of field samples than SVR models with other input characteristics. It is proved that the fractional differential spectral index can improve the remote sensing detection accuracy of wheat stripe rust.

参考文献:

[1]王鹏伟. 西北地区小麦条锈病远程预警系统[D]. 杨凌: 西北农林科技大学, 2014.

[2]黄冲, 姜玉英, 李春广. 1987年-2018年我国小麦主要病虫害发生危害及演变分析[J]. 植物保护, 2020, 46(6): 186-193.

[3]谢水仙, 汪可宁, 陈杨林, 等. 我国小麦条锈病菌传播与高空气流关系的初步研究[J]. 植物病理学报, 1993(3): 13-19.

[4]马占鸿. 中国小麦条锈病研究与防控[J]. 植物保护学报, 2018, 45(1): 1-6.

[5]陈万权, 康振生, 马占鸿, 等. 中国小麦条锈病综合治理理论与实践[J]. 中国农业科学, 2013, 46(20): 4254-4262.

[6]黄冲, 姜玉英, 李佩玲, 等. 2017年我国小麦条锈病流行特点及重发原因分析[J]. 植物保护, 2018, 44(2): 162-166+183.

[7]鲁军景, 孙雷刚, 黄文江. 作物病虫害遥感监测和预测预警研究进展[J]. 遥感技术与应用, 2019, 34(1): 21-32.

[8]黄文江, 张竞成, 师越, 等. 作物病虫害遥感监测与预测研究进展[J]. 南京信息工程大学学报(自然科学版), 2018, 10(1): 30-43.

[9]郭洁滨, 黄冲, 王海光, 等. 基于高光谱遥感技术的不同小麦品种条锈病病情指数的反演[J]. 光谱学与光谱分析, 2009(12): 187-191.

[10]浦瑞良, 宫鹏. 高光谱遥感及应用[M], 北京: 高等教育出版社: 2003

[11]Wiggins K, Palmer R, Hutchinson W, et al. An investigation into the use of calculating the first derivative of absorbance spectra as a tool for forensic fibre analysis[J]. Science & Justice, 2007, 47(1): 9-18.

[12]Kharintsev S S, Salakhov M K. A simple method to extract spectral parameters using fractional derivative spectrometry[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2004, 60(8-9): 2125-2133.

[13]Tong P, Du Y, Zheng K, et al. Improvement of NIR model by fractional order Savitzky–Golay derivation (FOSGD) coupled with wavelength selection[J]. Chemometrics and Intelligent Laboratory Systems, 2015, 143: 40-48.

[14]陈凯. 基于光谱技术的橡胶树氮素水平无损诊断策略研究[D]. 海口: 海南大学,2018.

[15]黄文江, 师越, 董莹莹, 等. 作物病虫害遥感监测研究进展与展望[J]. 智慧农业, 2019, 1(4): 1-11.

[16]Jones C D, Jones J B, Lee W S. Diagnosis of bacterial spot of tomato using spectral signatures[J]. Computers and Electronics in Agriculture, 2010, 74(2): 329-335.

[17]Whetton R L, Hassall K L, Waine T W, et al. Hyperspectral measurements of yellow rust and fusarium head blight in cereal crops: Part 1: Laboratory study[J]. biosystems engineering, 2018, 166: 101-115.

[18]Azadbakht M, Ashourloo D, Aghighi H, et al. Wheat leaf rust detection at canopy scale under different LAI levels using machine learning techniques[J]. Computers and Electronics in Agriculture, 2019, 156: 119-128.

[19]Atherton D, Choudhary R, Watson D. Hyperspectral remote sensing for advanced detection of early blight (Alternaria Solani) disease in potato (Solanum Tuberosum) plants prior to visual disease symptoms[C]//2017 ASABE Annual International Meeting. American Society of Agricultural and Biological Engineers, 2017: 1.

[20]Adam E, Deng H, Odindi J, et al. Detecting the early stage of phaeosphaeria leaf spot infestations in maize crop using in situ hyperspectral data and guided regularized random forest algorithm[J]. Journal of Spectroscopy, 2017, 2017, 6961387.

[21]罗菊花, 黄文江, 等. 基于PHI影像敏感波段组合的冬小麦条锈病遥感监测研究[J]. 光谱学与光谱分析, 2010, 30(1): 184-187.

[22]姚志凤, 雷雨, 何东健. 基于高光谱成像的小麦白粉病与条锈病识别[J]. 光谱学与光谱分析, 2019, 39(3): 969-976.

[23]于通. 基于图像和光谱信息的典型叶片病害识别研究[D]. 长春:吉林大学, 2020.

[24]秦立峰, 张熹, 张晓茜. 基于高光谱病害特征提取的温室黄瓜霜霉病早期检测[J]. 农业机械学报, 2020, 51(11): 212-220.

[25]刘鹏, 张竞成, 杨娉婷, 等. 多生育期小麦条锈病光谱波段优选及监测研究[J]. 中国生物防治学报, 2017, 33(6): 833-841.

[26]Sonobe R, Yamashita H, Mihara H, et al. Hyperspectral reflectance sensing for quantifying leaf chlorophyll content in wasabi leaves using spectral pre-processing techniques and machine learning algorithms[J]. International Journal of Remote Sensing, 2021, 42(4): 1311-1329.

[27]Li X, Zhang Y, Bao Y, et al. Exploring the best hyperspectral features for LAI estimation using partial least squares regression[J]. Remote Sensing, 2014, 6(7): 6221-6241.

[28]Li L, Lu J, Wang S, et al. Methods for estimating leaf nitrogen concentration of winter oilseed rape (Brassica napus L.) using in situ leaf spectroscopy[J]. Industrial Crops and Products, 2016, 91: 194-204.

[29]Junges A H, Almança M A K, Fajardo T V M, et al. Leaf hyperspectral reflectance as a potential tool to detect diseases associated with vineyard decline[J]. Tropical Plant Pathology, 2020, 45(5): 522-533.

[30]Fernández C I, Leblon B, Haddadi A, et al. Potato late blight detection at the leaf and canopy levels based in the red and red-edge spectral regions[J]. Remote Sensing, 2020, 12(8): 1292.

[31]Shi Y, Huang W, Gonzalez-Moreno P, et al. Wavelet-based rust spectral feature set(WRSFs):A novel spectral feature set based on continuous wavelet transformation for tracking progressive host-pathogen interaction of yellow rust on wheat [J]. Remote Sensing 2018, 252(10): 1-19.

[32]Liu Z, Wu H, Huang J. Application of neural networks to discriminate fungal infection levels in rice panicles using hyperspectral reflectance and principal components analysis[J]. Computers and Electronics in Agriculture, 2010, 72(2): 99-106.

[33]Wang H, Qin F, Liu Q, et al. Identification and disease index inversion of wheat stripe rust and wheat leaf rust based on hyperspectral data at canopy level[J]. Journal of Spectroscopy, 2015, 2015, 651810.

[34]Jin N, Huang W, Ren Y, et al. Hyperspectral identification of cotton verticillium disease severity[J]. Optik, 2013, 124(16): 2569-2573.

[35]Zhang J, Wang N, Yuan L, et al. Discrimination of winter wheat disease and insect stresses using continuous wavelet features extracted from foliar spectral measurements[J]. Biosystems Engineering, 2017, 162: 20-29.

[36]Du S, Huang W, Wang R, et al. Application of continuum removal method for Estimating disease severity level of wheat powdery mildew[C]//Advanced Materials Research. Trans Tech Publications Ltd, 2012, 396.

[37]杨燕, 何勇. 基于高光谱图像的稻瘟病抗氧化酶值早期预测[J]. 农业工程学报, 2013, 29(20): 135-141.

[38]蒋金豹, 陈云浩, 黄文江. 利用高光谱红边与黄边位置距离识别小麦条锈病[J]. 光谱学与光谱分析, 2010, 30(6): 1614-1618.

[39]朱梦远, 杨红兵, 李志伟. 高光谱图像和叶绿素含量的水稻纹枯病早期检测识别[J]. 光谱学与光谱分析, 2019, 39(6): 1898-1904.

[40]董锦绘, 杨小冬, 杨贵军, 等. 基于近地高光谱信息的小麦条锈病病情指数反演[J]. 麦类作物学报, 2016, 36(12): 1674-1680.

[41]鲁军景, 黄文江, 张竞成, 等. 基于小波特征的小麦白粉病与条锈病的定量识别[J]. 光谱学与光谱分析, 2016, 36(6): 1854-1858.

[42]Cheng T, Rivard B, Sánchez-Azofeifa G A, et al. Continuous wavelet analysis for the detection of green attack damage due to mountain pine beetle infestation[J]. Remote Sensing of Environment, 2010, 114(4): 899-910.

[43]Calderón R, Navas-Cortés J A, Lucena C, et al. High-resolution airborne hyperspectral and thermal imagery for early detection of Verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices[J]. Remote Sensing of Environment, 2013, 139: 231-245.

[44]Ashourloo D, Mobasheri M R, Huete A. Evaluating the effect of different wheat rust disease symptoms on vegetation indices using hyperspectral measurements[J]. Remote Sensing, 2014, 6(6): 5107-5123.

[45]Das P K, Laxman B, Rao S V C K, et al. Monitoring of bacterial leaf blight in rice using ground-based hyperspectral and LISS IV satellite data in Kurnool, Andhra Pradesh, India[J]. International Journal of Pest Management, 2015, 61(4): 359-368.

[46]Shi Y, Huang W, Luo J, et al. Detection and discrimination of pests and diseases in winter wheat based on spectral indices and kernel discriminant analysis[J]. Computers and Electronics in Agriculture, 2017, 141: 171-180.

[47]王静, 景元书, 黄文江, 等. 冬小麦条锈病严重度不同估算方法对比研究[J]. 光谱学与光谱分析, 2015, 35(6): 1649-1653.

[48]Chen T, Zhang J, Chen Y, et al. Detection of peanut leaf spots disease using canopy hyperspectral reflectance[J]. Computers and electronics in agriculture, 2019, 156: 677-683.

[49]Zheng Q, Huang W, Cui X, et al. Identification of wheat yellow rust using optimal three-band spectral indices in different growth stages[J]. Sensors, 2019, 19(1): 35.

[50]Feng W, Shen W, He L, et al. Improved remote sensing detection of wheat powdery mildew using dual-green vegetation indices[J]. Precision Agriculture, 2016, 17: 608-627.

[51]Mahlein A.K, Rumpf T, Welke P, et al. Development of spectral indices for detecting and identifying plant diseases[J]. Remote Sensing of Environment, 2013, 128: 21-30.

[52]Zhang D, Wang Q, Lin F, et al. Development and evaluation of a new spectral disease index to detect wheat fusarium head blight using hyperspectral imaging[J]. Sensors, 2020, 20(8), 2260.

[53]Ashourloo D, Mobasheri M R, Huete A. Developing two spectral disease indices for detection of wheat leaf rust (Pucciniatriticina)[J]. Remote Sensing, 2014, 6(6): 4723-4740.

[54]Cao H, Zhang R, Yan F. Spread spectrum communication and its circuit implementation using fractional-order chaotic system via a single driving variable[J]. Communications in Nonlinear Science and Numerical Simulation, 2013, 18(2): 341-350.

[55]Duong P L T, Lee M. Optimal design of fractional order linear system with stochastic inputs/parametric uncertainties by hybrid spectral method[J]. Journal of Process Control, 2014, 24(10): 1639-1645.

[56]左延红, 程桦, 程堂春. 分数阶微分算子在煤矿监测数据融合处理中的应用[J]. 煤炭学报, 2020, 45(2): 819-826.

[57]Huang X, Sun T, Li Y, et al. A color image encryption algorithm based on a fractional-order hyperchaotic system[J]. Entropy, 2015, 17(1): 28-38.

[58]张雪峰, 闫慧. 基于中值滤波和分数阶滤波的图像去噪与增强算法[J]. 东北大学学报(自然科学版), 2020, 041(4): 482-487.

[59]Hemalatha S, Anouncia S M. Unsupervised segmentation of remote sensing images using FD based texture analysis model and ISODATA[J]. International Journal of Ambient Computing and Intelligence (IJACI), 2017, 8(3): 58-75.

[60]Wang X, Zhang F, Kung H, et al. Extracting soil salinization information with a fractional-order filtering algorithm and grid-search support vector machine (GS-SVM) model[J]. International Journal of Remote Sensing, 2020, 41(3): 953-973.

[61]张文坤, 汪西原, 宋佳乾. 基于分数阶微分差与高斯曲率滤波的边缘检测算法[J]. 计算机工程, 2019, 45(2): 213-219.

[62]Hong Y, Shen R, Cheng H, et al. Estimating lead and zinc concentrations in peri-urban agricultural soils through reflectance spectroscopy: Effects of fractional-order derivative and random forest[J]. Science of the Total Environment, 2019, 651: 1969-1982.

[63]Zhang Z, Ding J, Wang J, et al. Prediction of soil organic matter in northwestern China using fractional-order derivative spectroscopy and modified normalized difference indices[J]. Catena, 2019, 185: 104257.

[64]Hong Y, Guo L, Chen S, et al. Exploring the potential of airborne hyperspectral image for estimating topsoil organic carbon: Effects of fractional-order derivative and optimal band combination algorithm[J]. Geoderma, 2020, 365: 114228.

[65]Wang Z, Zhang X, Zhang F, et al. Estimation of soil salt content using machine learning techniques based on remote-sensing fractional derivatives, a case study in the Ebinur Lake Wetland National Nature Reserve, Northwest China[J]. Ecological Indicators, 2020, 119: 106869.

[66]Chen K, Li C, Tang R. Estimation of the nitrogen concentration of rubber tree using fractional calculus augmented NIR spectra[J]. Industrial Crops and Products, 2017, 108: 831-839.

[67]Bhadra S, Sagan V, Maimaitijiang M, et al. Quantifying leaf chlorophyll concentration of sorghum from hyperspectral data using derivative calculus and machine learning[J]. Remote Sensing, 2020, 12(13): 2082.

[68]张亚坤, 罗斌, 潘大宇, 等. 基于分数阶微分算法的大豆冠层氮素含量估测研究[J]. 光谱学与光谱分析, 2018, 038(10): 3221-3230.

[69]中华人民共和国国家质量监督检验检疫总局 中国国家标准化管理委员会. GB/T 15795-2011 小麦条锈病测报技术规范[S]. 北京: 中国标准出版社, 2011-11-19.

[70]Mahlein A K, Steiner U, Hillnhütter C, et al. Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases[J]. Plant methods, 2012, 8(1): 1-13.

[71]Chen J M. Evaluation of vegetation indices and a modified simple ratio for boreal applications[J]. Canadian Journal of Remote Sensing, 1996, 22: 229-242.

[72]Devadas R, Lamb D W, Simpfendorfer S, et al. Evaluating ten spectral vegetation indices for identifying rust infection in individual wheat leaves[J]. Precision Agriculture. 2009, 10: 459-470.

[73]Penuelas J, Filella I, Lloret P, et al. Reflectance assessment of mite effects on apple trees. International Journal of Remote Sensing. 1995, 16(14): 2727-2733.

[74]Zarco-Tejada P J, Berjón A, López-Lozano R, et al. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy[J]. Remote Sensing of Environment, 2005, 99(3): 271-287.

[75]Devadas R, Lamb D W, Backhouse D. Simpfendorfer, S. Sequential application of hyperspectral indices for delineation of stripe rust infection and nitrogen deficiency in wheat[J]. Precision Agriculture. 2015, 16(5): 477-491.

[76]Gitelson A A, Merzlyak M N, Chivkunova O B. Optical properties and nondestructive estimation of anthocyanin content in plant leaves[J]. Photochemistry and Photobiology, 2001, 74(1): 38-45.

[77]Daughtry C, Walthall C L, Kim M S, et al. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance[J]. Remote Sensing of Environment. 2000, 74(2): 229-239.

[78]Merzlyak M N, Gitelson A A, Chivkunova O B, et al. Non‐destructive optical detection of pigment changes during leaf senescence and fruit ripening[J]. Physiologia plantarum, 1999, 106(1): 135-141.

[79]Merton R, Huntington J. Early simulation results of the ARIES-1 satellite sensor for multi-temporal vegetation research derived from AVIRIS[C]// The English Annual JPL Airborne Earth Science Workshop, 1999, 8-14.

[80]Gamon J A, Peñuelas J, Field C B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency[J]. Remote Sensing of Environment. 1992, 41: 35-44.

[81]Naidu R A, Perry E M, Pierce F J, et al. The potential of spectral reflectance technique for the detection of Grapevine leafroll-associated virus-3 in two red-berried wine grape cultivars[J]. Computers and Electronics in Agriculture, 2009, 66(1): 38-45.

[82]Filella I, Serrano L, Serra J, et al. Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis[J]. Crop Science, 1995, 35(5): 1400-1405.

[83]Demetriades-Shah T H, Steven M D, Clark J A. High resolution derivative spectra in remote sensing[J]. Remote Sensing of Environment, 1990, 33(1): 55-64.

[84]Smith K L, Steven M D, Colls J J. Use of hyperspectral derivative ratios in the red-edge region to identify plant stress responses to gas leaks[J]. Remote sensing of environment, 2004, 92(2): 207-217.

[85]Gong P, Pu R, Heald R C. Analysis of in situ hyperspectral data for nutrient estimation of giant sequoia[J]. International Journal of Remote Sensing, 2002, 23(9): 1827-1850.

[86]竞霞, 白宗璠, 高媛, 等. 利用随机森林法协同SIF和反射率光谱监测小麦条锈病[J]. 农业工程学报, 2019(13): 154-161.

[87]鞠昌华, 田永超, 朱艳, 等. 油菜光合器官面积与导数光谱特征的相关关系[J]. 植物生态学报, 2008(3): 664-672.

[88]Clark R N, Roush T L. Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications[J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B7): 6329-6340.

[89]Schmidt K S, Skidmore A K. Spectral discrimination of vegetation types in a coastal wetland[J]. Remote sensing of Environment, 2003, 85(1): 92-108.

[90]王纪华, 赵春江, 黄文江. 农业定量遥感基础与应用[M]. 科学出版社, 2008.

[91]李粉玲, 常庆瑞. 基于连续统去除法的冬小麦叶片全氮含量估算[J]. 农业机械学报, 2017, 48(07): 174-179.

[92]向红英, 柳维扬, 彭杰, 等. 基于连续统去除法的南疆水稻土有机质含量预测[J]. 土壤, 2016(2): 389-394.

[93]郑煜, 常庆瑞, 王婷婷, 等.基于连续统去除和偏最小二乘回归的油菜SPAD高光谱估算[J]. 西北农林科技大学学报(自然科学版), 2019, 47(8): 37-45.

[94]Schmitt J M. Fractional derivative analysis of diffuse reflectance spectra[J]. Applied spectroscopy, 1998, 52(6): 840-846.

[95]Tariboon J, Ntouyas S K, Agarwal P. New concepts of fractional quantum calculus and applications to impulsive fractional q-difference equations[J]. Advances in Difference Equations, 2015, 2015(1): 1-19.

[96]Cajić M, Lazarević M P. Fractional order spring/spring-pot/actuator element in a multibody system: Application of an expansion formula[J]. Mechanics Research Communications, 2014, 62: 44-56.

[97]Salahshour S, Ahmadian A, Senu N, et al. On analytical solutions of the fractional differential equation with uncertainty: application to the Basset problem[J]. Entropy, 2015, 17(2): 885-902.

[98]Wang X, Zhang F, Kung H T, et al. New methods for improving the remote sensing estimation of soil organic matter content (SOMC) in the Ebinur Lake Wetland National Nature Reserve (ELWNNR) in northwest China[J]. Remote Sensing of Environment, 2018, 218: 104-118.

[99]Shannon C E. Communication theory of secrecy systems[J]. The Bell System Technical Journal, 2014, 28(4): 656-715

[100]范雪莉, 冯海泓, 原猛. 基于互信息的主成分分析特征选择算法[J]. 控制与决策, 2013, 28(6): 915-919.

[101]Kraskov A, Stögbauer H, Grassberger P. Estimating mutual information[J]. Physical review, 2004, 69(6): 066138

[102]罗批, 郭继昌, 李锵, 等.基于偏最小二乘回归建模的探讨[J].天津大学学报,2002(6): 783-786.

[103]丁世飞, 齐丙娟, 谭红艳. 支持向量机理论与算法研究综述[J]. 电子科技大学学报, 2011, 40(1): 2-10.

[104]Chen Y W, Lin C J. Combining SVMs with various feature selection strategies[M]//Feature extraction. Springer, Berlin, Heidelberg, 2006: 315-324.

[105]Keerthi S S, Lin C J. Asymptotic behaviors of support vector machines with Gaussian kernel[J]. Neural computation, 2003, 15(7): 1667-1689.

[106]Wu X, Zhu Y. A mixed‐encoding genetic algorithm with beam constraint for conformal radiotherapy treatment planning[J]. Medical Physics, 2000, 27(11): 2508-2516.

[107]许童羽, 郭忠辉, 于丰华, 等. 采用GA-ELM的寒地水稻缺氮量诊断方法[J]. 农业工程学报, 2020, 36(2): 209-218.

[108]Tian Y C, Yao X, Yang J, et al. Assessing newly developed and published vegetation indices for estimating rice leaf nitrogen concentration with ground-and space-based hyperspectral reflectance[J]. Field Crops Research, 2011, 120(2), 299-310.

[109]Thenkabail P S, Lyon J G, Huete A. Advances in hyperspectral remote sensing of vegetation and agricultural croplands: Chapter [J]. PLoS ONE 2011, 7, e37788.

中图分类号:

 TP79    

开放日期:

 2023-06-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式