- 无标题文档
查看论文信息

论文中文题名:

 基于t-SSA-BP的综采工作面噪声职业健康损害评估模型研究    

姓名:

 高璐    

学号:

 21203226058    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 能源学院    

专业:

 资源与环境    

研究方向:

 煤矿安全管理    

第一导师姓名:

 高晓旭    

第一导师单位:

 西安科技大学    

第二导师姓名:

 刘结高    

论文提交日期:

 2024-06-19    

论文答辩日期:

 2024-06-03    

论文外文题名:

 Research on occupational health damage assessment model of noise in fully mechanized mining face based on t-SSA-BP    

论文中文关键词:

 综采工作面噪声 ; 职业健康损害评估 ; 近似马尔科夫毯 ; GBDT ; t-SSA-BP    

论文外文关键词:

 Noise of fully mechanized working face ; Occupational health damage assessment ; Approximate Markov blanket ; GBDT ; t-SSA-BP    

论文中文摘要:

噪声是影响煤矿企业安全生产的主要职业危害因素之一,在生产作业过程中,综采工作面噪声强度大、源头广,为降低过度噪声造成的人员伤残和重大经济损失,研究作业人员噪声职业健康损害评估模型,对煤矿企业安全生产管理具有重要意义。本研究以陕煤集团X煤矿14209综采工作面为研究对象,采用现场实测、理论分析及数值模拟方法构建了噪声职业健康损害评估模型,并设计实现噪声健康损害评估系统,量化了职业噪声对综采作业人员健康状况的影响,得到的研究结论如下:

(1)分析综采工作面噪声源并确定噪声作业岗位,依据现场检测方案的噪声测定结果,采煤机司机、乳化泵工、破碎机司机遭受着高强度的噪声危害,超前支护工及皮带机司机所受危害相对较小,综采作业期间噪声频率在2 kHz~9 kHz之间,噪声声压级主要保持在75 dB~100 dB。

(2)从人-机-环-管出发,分析噪声职业健康损害影响因素,探究了不同巷道因素对接噪岗位声场分布的影响,并进一步系统建立包含22个二级指标的噪声健康损害评估指标体系,经Fisher Score、最大信息数及近似马尔科夫毯进行特征选择后,筛选出岗位类别及个体年龄等9个特征作为健康损害评估关键影响因素。

(3)基于GBDT及t-SSA-BP算法构建噪声健康损害评估模型,分别对作业人员职业健康风险及健康损害状况展开预测。GBDT算法健康风险分类准确率为97.5%,经比较,几种健康风险模型预测准确率次序为:GBDT > GA-RF > PSO-LSSVM > RF > SVM >决策树;t-SSA-BP模型对健康损害状况预测R2达0.999,几种健康损害预测模型预测精度次序为:t-SSA-BP > SSA-BP > PSO-BP > CFA-PSO-RBF > PSO-GRNN。

(4)基于B/S架构开发噪声职业健康损害评估系统,通过软件测试验证了评估系统安全可靠,依据15208综采工作面作业人员健康损害状况系统评价结果,工作面作业人员整体健康风险较低,主要为可接受风险和潜在风险,无严重健康风险,并从噪声源、声音传播途径、噪声接收者及企业政府管理四方面提出防治措施,改善矿工噪声职业健康损害现状,降低听力损失发生率。

本研究通过对综采工作面健康损害评估模型的探究,提供了精准量化矿工听力健康损害的新思路,为实现煤矿企业职工健康管理高效化提供了理论基础研究。

论文外文摘要:

Noise is one of the main occupational hazard factors affecting the safety production of coal mine enterprises. In the process of production operation, the noise intensity of fully mechanized mining face is large and the source is wide. In order to reduce the personnel disability and major economic losses caused by excessive noise, it is of great significance to study the occupational health damage assessment model of workers' noise for the safety production management of coal mine enterprises. In this study, 14209 fully mechanized mining face of X coal mine was taken as the research object, and the health damage assessment model was constructed by field measurement, theoretical analysis and numerical simulation. The health damage assessment system was designed and implemented, and the influence of occupational noise on the health status of fully mechanized mining workers was quantified. The conclusions are as follows:

(1) Analyze the noise source and noise operation position of the fully mechanized mining face. According to the noise measurement results of the on-site detection scheme, the driver of the shearer, the emulsification pump worker, and the driver of the crusher suffer from high-intensity noise hazards. The harm of the advanced support worker and the belt driver is relatively small. During the fully mechanized mining operation, the noise frequency is between 2 kHz~9 kHz, the noise sound level is mainly maintained at 75 dB~100 dB.

(2) From the perspective of human-machine-environment-management, the influencing factors of noise occupational health damage are analyzed, and the influence of different roadway factors on the sound field distribution of noise posts is explored, a system of assessment index of noise health damage including 22 second-level indicators is further established. After feature selection by Fisher Score, maximum information number and approximate Markov blanket. Nine characteristics such as job category and individual age are selected as the key influencing factors of health damage assessment.

(3) Based on GBDT and t-SSA-BP algorithm, a noise health damage assessment model is constructed to predict the noise occupational health risk and health damage status of workers. The accuracy of health risk classification of GBDT algorithm is 97.5%, by comparison, the order of prediction accuracy of several health risk models is GBDT > GA-RF > PSO-LSSVM > RF > SVM > decision tree. The t-SSA-BP model predicts the health damage status with R2 of 0.999. The order of prediction accuracy of several health damage prediction models is: t-SSA-BP > SSA-BP > PSO-BP > CFA-PSO-RBF > PSO-GRNN.

(4) Based on the B/S architecture, the noise occupational health damage assessment system is developed, and the safety and reliability of the assessment system are verified by software testing. According to the system evaluation results of the health damage status of the workers in the 15208 fully mechanized mining face, the overall health risk of the workers in the working face is low, mainly acceptable risk and potential risk, without serious health risk. The prevention and control measures are put forward from four aspects: noise source, sound transmission route, noise receiver and enterprise government management, so as to improve the current situation of noise occupational health damage of miners and reduce the incidence of hearing loss.

Through the exploration of the health damage assessment model of fully mechanized mining face, this study provides a new idea for accurately quantifying the health damage of miners' hearing, and provides a theoretical basis for realizing the high efficiency of health management of employees in coal mine enterprises.

参考文献:

[1]袁亮. 我国煤炭主体能源安全高质量发展的理论技术思考[J]. 中国科学院院刊, 2023, 38(01): 11-22.

[2]王祖兵, 李克勇, 郑光, 等. 我国职业健康事业传承与发展[J]. 职业卫生与应急救援, 2019, 37(02): 101-106.

[3]顾大钊, 李全生. 基于井下生态保护的煤矿职业健康防护理论与技术体系[J]. 煤炭学报, 2021, 46(03): 950-958.

[4]丁百川. 我国煤矿主要灾害事故特点及防治对策[J]. 煤炭科学技术, 2017, 45(05): 109-114.

[5]关品品, 周玉竹, 宋宛亭, 等. 四川省煤矿井下噪声调查分析[J]. 中华劳动卫生职业病杂志, 2022, 40(02): 149-151.

[6]Li X T, Dong Q, Wang B S, et al. The influence of occupational noise exposure on cardiovascular and hearing conditions among industrial workers[J]. Scientific Reports, 2019, 9: 11524.

[7]刘霞, 王炜, 孙纳, 等. 职业性噪声所致高频听力损失与高血压发生风险的病例对照研究[J]. 中华劳动卫生职业病杂志, 2022, 40(10): 746-750.

[8]李国为, 杨鹏飞, 黄伟, 等. 噪声对矿工反应能力影响的实验研究[J]. 西安科技大学学报, 2022, 42(03): 423-429.

[9]陈育全, 鲍二宝, 林毓嫱, 等. 广州市某汽车制造企业噪声作业工人健康状况分析[J]. 职业与健康, 2020, 36(14): 1905-1908.

[10]Gerald J J, Paul J M. Noise exposure and hearing conservation in U.S. coal mines—A surveillance report[J]. Journal of Occupational and Environmental Hygiene, 2007, 4(01): 26-35.

[11]Davis H. noise exposure trends among violating coal mines, 2000 to 2021[D]. Morgantown: West Virginia University, 2022.

[12]杨明, 贾改妮, 刘毛毛, 等. 我国煤矿噪声研究进展科学知识图谱分析[J]. 中国安全科学学报, 2022, 32(05): 177-184.

[13]王浩, 蒋承林, 史莉莉. 煤矿井下噪声危害分析及对策[J]. 中国安全生产科学技术, 2011, 7(12): 183-187.

[14]雷柏伟, 吴兵, 程根银, 等. 煤矿井下主要设备噪声源测定分析研究[J]. 中国安全生产科学技术, 2011, 7(01): 72-75.

[15]景国勋, 郭绍帅, 王远声, 等. 基于有限元法的综采工作面噪声场仿真模拟与试验研究[J]. 安全与环境学报, 2019, 19(06): 1978-1983.

[16]王远声. 综采工作面噪声对作业人员影响关系研究[D]. 焦作: 河南理工大学, 2019.

[17]李丹丹. 不同类型巷道中噪声危害评价研究[D]. 廊坊: 华北科技学院, 2020.

[18]彭佑多, 谢伟华, 郭迎福, 等. 矿井巷道掘进工作面机器噪声时空特性研究[J]. 湖南科技大学学报, 2011, 26(03): 1-6.

[19]谢伟华. 矿井巷道及掘进工作面噪声预测研究[D]. 湘潭: 湖南科技大学, 2012.

[20]杨明, 全星苑, 刘毛毛, 等. 煤矿掘进工作面不同声源位置下声场分布[J]. 科学技术与工程, 2023, 23(19): 8449-8456.

[21]王建国, 傅文, 王延秋. 不同级别噪声对矿工生理指标及行为能力的影响研究[J]. 矿业安全与环保, 2019, 46(01): 99-103.

[22]栗婧, 王真, 秦亚茹, 等. 不同噪声强度对煤矿工人作业失误率的影响研究[J]. 中国安全科学学报, 2021, 31(02): 179-184.

[23]Friedman L S, Shannon B, Go L H T, et al. Poor adherence to dust, noise and safety regulations predict injury rates in underground coal mines[J]. Journal of Occupational and Environmental Medicine, 2023, 80(5): 254-259.

[24]景国勋, 吕鹏飞, 周霏, 等. 基于E-Prime的煤矿噪声对矿工反应时与出错数的影响效应研究[J]. 安全与环境学报, 2018, 18(06): 2285-2289.

[25]景国勋, 吕鹏飞, 赵攀飞, 等. 煤矿噪声对人的注意力影响实验研究[J]. 中国安全生产科学技术, 2017, 13(10): 164-168.

[26]景国勋, 王远声, 郭绍帅, 等. 短期噪声暴露对作业人员注意力的影响研究[J]. 河南理工大学学报, 2019, 38(02): 8-13.

[27]程根银, 陈绍杰, 魏志勇, 等. 井下噪声对人心理生理影响分析[J]. 西安科技大学学报, 2011, 31(06): 850-853.

[28]田水承, 梁清, 王莉, 等. 噪声与矿工行为安全关系研究及防控对策[J]. 西安科技大学学报, 2015, 35(05): 555-560.

[29]吴海. 综采工作面人—机—环境系统可靠性研究[D]. 湘潭: 湖南科技大学, 2007.

[30]周霏. 综采工作面不同环境条件对作业人员生理指标影响分析与研究[D]. 焦作: 河南理工大学, 2018.

[31]Camargo H E, Azman A S, Alcorn L. Development of noise controls for longwall shearer cutting drums[J]. Noise Control Engineering Journal, 2016, 64(5): 573-585.

[32]田震, 荆双喜, 赵丽娟, 等. 采煤机噪声与振动特性研究[J]. 工矿自动化, 2019, 45(03): 23-28.

[33]Szary M L, Chugh Y P, Hirschi J. Noise variability in underground room and pillar coal mines[J]. International Journal of Occupational Safety and Ergonomics, 2011, 17(3):301-308.

[34]Lutz E, Reed R J, Turner D, et al. Effectiveness evaluation of existing noise controls in a deep shaft underground mine[J]. Journal of Occupational And Environmental Hygiene, 2015, 12(5): 287-293.

[35]陈泽, 董旭东, 卞涛, 等. 采煤工作面职业病危害防治研究[J]. 煤炭工程, 2022, 54(S1): 230-234.

[36]王俊庭. 基于FXLMS算法的矿用有源降噪技术的研究[D]. 北京: 煤炭科学研究总院, 2016.

[37]Sweeney D D, Slagley J M, Smith D A. Insertion loss of noise barriers on an aboveground, full-scale model longwall coal mining shearer[J]. Journal of Occupational And Environmental Hygiene, 2010, 7(5): 272-279.

[38]刘志硕, 申金升, 卫振林. 我国职业噪声危害成因分析及总体控制对策[J]. 中国安全科学学报, 2003, (12): 56-59+1.

[39]刘照鹏. 煤矿综采工作面噪声的分析[J]. 煤矿安全, 2004, (02): 30-33.

[40]关维娟. 煤矿工作面作业环境及煤与瓦斯突出危险综合评价研究[D]. 淮南: 安徽理工大学, 2015.

[41]Anna P, Andreas S, Janice H. Health effects of occupational noise[J]. Current Pollution Reports, 2021, 7: 344-358.

[42]李春贺. 基于DEA的煤矿职业健康管理效率评价研究[J]. 煤矿安全, 2020, 51(09): 250-254.

[43]韩金子. 煤矿职业病危害评价模型研究与应用[D]. 西安: 西安科技大学, 2016.

[44]Sun K, Azman A S. Evaluating hearing loss risks in the mining industry through MSHA citations[J]. Journal of Occupational And Environmental Hygiene, 2018, 15(3): 246-262.

[45]Sun K, Azman A S, Camargo H E, et al. Risk assessment of recordable occupational hearing loss in the mining industry[J]. International Journal of Audiology, 2019, 58(11): 761-768.

[46]Vipperman J S, Bauer E R, Babich D R. Survey of noise in coal preparation plants[J]. Journal of The Acoustical Society Of America, 2007, 121(1): 197-205.

[47]Chen K H, Su S B, Chen K T. An overview of occupational noise-induced hearing loss among workers: epidemiology, pathogenesis, and preventive measures[J]. Environmental Health and Preventive Medicine, 2020, 25(1): 1-10.

[48]Erol I. Investigation of occupational noise-induced hearing loss of underground coal mines[J]. Mining Metallurgy & Exploration, 2022, 39(3): 1045-1060.

[49]贺飞, 王继仁, 程根银, 等. 井下有限空间内作业人员噪声危害调查[J]. 安全与环境学报, 2017, 17(03): 849-854.

[50]Ntlhakana L, Nelson G, Khoza S K. Estimating miners at risk for occupational noise-induced hearing loss: A review of data from a South African platinum mine[J]. South African Journal of Communication Disorders, 2020, 67(2): 1-8.

[51]Strzemecka J, Gozdziewska M, Skrodziuk J, et al. Factors of work environment hazardous for health in opinions of employees working underground in the 'Bogdanka' coal mine[J]. Annals of Agricultural and Environmental Medicine, 2019, 26(3): 409-414.

[52]Lu Y Q, Zhang Z, Yan H, et al. Effects of occupational hazards on job stress and mental health of factory workers and miners: A Propensity Score Analysis[J]. Biomed Research International, 2020, 2020: 1754897.

[53]Shkembi A, Smith L M, Bregg S, et al. Evaluating occupational noise exposure as a contributor to injury risk among miners[J]. Annals of Work Exposures and Health, 2022, 66(9): 1151-1161.

[54]Stokholm Z A, Erlandsen M, Schlünssen V, et al. A quantitative general population job exposure matrix for occupational noise exposure[J]. Annals of Work Exposures and Health, 2020, 64(6): 604-613.

[55]金蕾, 李宾, 王龙义, 等. 海南省某燃煤发电企业职业健康风险综合评估[J]. 职业与健康, 2021, 37(21): 2885-2890.

[56]郭进平, 尚旭光, 王雪妮. 基于二元语义和AHP法的矿山职业危害综合评价方法[J]. 中国安全科学学报, 2011, 21(08): 116-122.

[57]王明, 邓权龙, 田冬梅, 等. 煤矿井下职业危害的未确知测度评价模型及应用[J]. 矿业安全与环保, 2019, 46 (04): 54-58+63.

[58]屈扬, 张学博. 基于组合赋权云模型的煤矿作业场所职业危害综合评价[J]. 煤炭工程, 2021, 53(10): 153-159.

[59]李华, 田彦清, 钟兴润. 煤矿作业场所职业危害综合评价的同异反模型研究[J]. 安全与环境学报, 2012, 12(03): 216-219.

[60]王海椒, 邹晓雪, 刘丽华, 等. 模糊层次分析法在煤矿生产性噪声危害分级评价中的应用[J]. 中国工业医学杂志, 2019, 32(04): 286-289.

[61]黄希. 煤矿企业噪声职业危害综合评估及分级管理研究[D]. 北京: 首都经济贸易大学, 2017.

[62]梁志明, 曾庆民, 邓永愈, 等. 三种职业健康风险评估法在某大型设备制造企业噪声风险评估中的应用[J]. 环境与职业医学, 2020, 37(02): 144-149.

[63]金蕾, 李宾, 王龙义, 等. 海南省某燃煤发电企业职业健康风险综合评估[J]. 职业与健康, 2021, 37(21): 2885-2890.

[64]孙雪. 三种评估模型在复杂噪声致听力损失风险评估中的适用性应用[D]. 唐山: 华北理工大学, 2022.

[65]张渤苓, 王一然, 王露露, 等. 燃煤发电职业危害暴露健康负担评价方法[J]. 中国安全生产科学技术, 2021, 17(11): 179-185.

[66]佟瑞鹏, 张磊, 杜志托, 等. 煤矿井下不同作业场所的职业健康风险定量评价[J]. 中国安全生产科学技术, 2016, 12(02): 123-127.

[67]贾改妮, 蒋方, 杨明, 等. 煤矿井下不同作业场所的职业健康损害研究[J]. 中国安全科学学报, 2023, 33(04): 221-229.

[68]周晓凤, 尘兴邦, 刘兰亭, 等. 煤矿井下噪声诱发职业健康损害评估方法及应用[J]. 中国安全科学学报, 2022, 32(08): 208-214.

[69]王坤. 机械加工车间环境质量及其职业健康损害评价研究[D]. 重庆: 重庆大学, 2019.

[70]Fan Z, Xu F Y. Health risks of occupational exposure to toxic chemicals in coal mine workplaces based on risk assessment mathematical model based on deep learning[J]. Environmental Technology & Innovation, 2021, 22:101500.

[71]肖华. 某烟厂2013-2015年接触噪声作业人员职业健康状况研究[D]. 长春: 吉林大学, 2017.

[72]曾向阳, 孙进才, 陈克安. 室内障碍物对声传播作用的计算机模拟研究[J]. 声学技术, 2003, (01): 48-51+57.

[73]赵玲, 龚加兴, 黄大荣, 等. 基于Fisher Score与最大信息系数的齿轮箱故障特征选择方法[J]. 控制与决策, 2021, 36(09): 2234-2240.

[74]Reshef D N, Reshef Y A, Finucane H K, et al. Detecting novel associations in large data sets[J]. Science, 2011, 334(6062): 1518−1524.

[75]孙广路, 宋智超, 刘金来, 等. 基于最大信息系数和近似马尔科夫毯的特征选择方法[J]. 自动化学报, 2017, 43(05): 795-805.

[76]马陇飞, 萧汉敏, 陶敬伟, 等. 基于梯度提升决策树算法的岩性智能分类方法[J]. 油气地质与采收率, 2022, 29(01): 21-29.

[77]张西良. 岩体爆破环境效应预测的集成学习模型及工程应用[D]. 合肥: 中国科学技术大学, 2020.

[78]韩启迪, 张小桐, 申维. 基于梯度提升决策树(GBDT)算法的岩性识别技术[J]. 矿物岩石地球化学通报, 2018, 37(06): 1173-1180.

[79]贾丙宏, 祝文硕, 王瑞富, 等. 基于SSA-BP神经网络模型的风暴潮灾害损失评估[J]. 海洋预报, 2022, 39(02): 50-58.

[80]XUE J K, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.

[81]魏鹏飞, 樊小朝, 史瑞静, 等. 基于改进麻雀搜索算法优化支持向量机的短期光伏发电功率预测[J]. 热力发电, 2021, 50(12): 74-79.

[82]杨洁, 程晓健, 穆彦斌. 基于PSO-RBF神经网络的海战场电磁态势预测[J]. 现代电子技术, 2019, 42(03): 1-5.

[83]刘敏. 基于SpringBoot框架社交网络平台的设计与实现[D]. 长沙: 湖南大学, 2018.

[84]韩曙光. 职业健康监管系统的软件设计与实现[D]. 成都: 电子科技大学, 2015.

[85]高晓旭, 高璐, 潘相旭, 等. 基于t-SSA-BP的煤矿噪声职业健康损害预测[J]. 中国安全科学学报, 2023, 33(12): 214-222.

[86]赵雅雪, 王旭, 蒋传文, 等. 基于最大信息系数相关性分析和改进多层级门控LSTM的短期电价预测方法[J]. 中国电机工程学报, 2021, 41(01): 135-146+404.

[87]郑含博, 王伟, 李晓纲, 等. 基于多分类最小二乘支持向量机和改进粒子群优化算法的电力变压器故障诊断方法[J]. 高电压技术, 2014, 40(11): 3424-3429.

[88]丁茜, 赵晓东, 吴鑫俊, 等. 基于RBF核的多分类SVM滑塌易发性评价模型[J]. 中国安全科学学报, 2022, 32(03): 194-200.

[89]朱紫怡, 周飞, 王瑀, 等. 基于机器学习的锆石成因分类研究[J]. 地学前缘, 2022, 29(05): 464-475.

[90]郑度奎, 程远鹏, 李昊燃, 等. IAFSA-GRNN在油田集输管道CO_2腐蚀速率预测中的应用[J]. 中国安全科学学报, 2022, 32(01): 110-117.

[91]娄高中, 谭毅. 基于PSO-BP神经网络的导水裂隙带高度预测[J]. 煤田地质与勘探, 2021, 49(04): 198-204.

[92]张坤鳌, 赵凯. 基于改进CFA PSO-RBF神经网络的温室温度预测研究[J]. 计算机应用与软件, 2020, 37(06): 95-99+107.

[93]田睿, 孟海东, 陈世江, 等. 基于深度神经网络的岩爆烈度分级预测[J]. 煤炭学报, 2020, 45(S1): 191-201.

[94]尹会永, 周鑫龙, 郎宁, 等. 基于SSA优化的GA-BP神经网络煤层底板突水预测模型与应用[J]. 煤田地质与勘探, 2021, 49(06): 175-185.

[95]仝卫国, 郭超宇, 赵如意. 基于改进麻雀算法优化LSSVM的再循环箱浆液密度预测模型[J]. 电子测量技术, 2022, 45(01): 70-76.

[96]韩斐斐, 刘升. 基于自适应t分布变异的缎蓝园丁鸟优化算法[J]. 微电子学与计算机, 2018, 35(08): 117-121.

中图分类号:

 TD78    

开放日期:

 2024-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式