- 无标题文档
查看论文信息

题名:

 LN2/CO2非均相成核制干冰与 灭火性能研究    

作者:

 张首石    

学号:

 20220089023    

保密级别:

 保密(1年后开放)    

语种:

 chi    

学科代码:

 083700    

学科:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位:

 工学硕士    

学位年度:

 2023    

学校:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 煤火灾害防治    

导师姓名:

 张铎    

导师单位:

 西安科技大学安全科学与工程学院    

提交日期:

 2023-06-15    

答辩日期:

 2023-06-04    

外文题名:

 Study on dry-ice preparation and fire extinguishing performance of LN2/CO2 heterogeneous nucleation    

关键词:

 LN2/CO2 ; 干冰 ; 非均相成核 ; 成核剂 ; 灭火性能    

外文关键词:

 LN2/CO2 ; Dry ice ; Heterogeneous nuclei ; Nucleating agent ; Fire extinguishing performance    

摘要:

煤炭是我国的基础能源和重要工业原料,为国民经济和社会可持续发展提供了可靠能源保障。目前我国约有56%的煤矿存在煤自燃可能性,对煤矿安全生产带来巨大影响,因此开展煤矿自燃灾害的有效治理研究具有重要意义。传统灭火技术广泛应用于煤矿安全生产,但降温降氧能力有限。基于此,本文提出利用LN2/CO2制备干冰,并加入成核剂提升干冰成核效率,组成气液固三相混合物输入火区,并通过理论分析、实验测试和数值模拟的方法,对该技术开展研究,具体内容如下:

(1)基于干冰升华、凝华在平衡状态下的可逆特征,利用阿伦尼乌斯公式推导了平衡状态下的CO2成核动力学模型;通过自主搭建的干冰升华实验系统,测定不同干冰质量在不同温度下的升华时间,计算了动力学模型中的干冰升华系数K为15.49,升华潜热E为97.45KJ/Kg。

(2)应用自主搭建的LN2/CO2干冰制备实验系统,分析LN2/CO2注输比、成核剂种类(氯化钙、尿素、氯化钠)、成核剂质量对混合管道内温度、压力及干冰生成的影响。结果表明:当CO2注输量不变,增大LN2/CO2注输比时,管道内温度降低、压力升高,干冰生成量增多,CO2更易发生凝华;LN2/CO2注输比不变,氯化钙成核剂提高CO2转化效率能力最强,CO2凝华需要的过冷度降低致使干冰颗粒增加,管道内温度最低,达157K;LN2/CO2注输比不变,加入氯化钙成核剂发现,质量为640g时管路内温度最低,为153K,压力最高,为789KPa,此时CO2成核效率最高,并且干冰转化效率与成核剂质量成正相关。

(3)自主搭建松散煤体降温实验台,分析LN2/CO2注输比、成核剂种类对自燃煤体温度的影响。结果表明:在注输阶段,当提高LN2/CO2注输比,箱体内自燃煤体各测点温度持续下降,并且煤温降低速率随LN2/CO2注输比升高而增大,煤体低温区域呈锥形扩大;在停注阶段,随着LN2/CO2注输比增大,煤体回温速率减慢,平衡时箱体内温度更低;加入成核剂后,煤体在注输阶段温度仍有下降,温降速率更快,在停注阶段,回温速率进一步减慢,其中氯化钙成核剂对煤温抑制效果最佳。

(4)通过Ansys Fluent对注输LN2/CO2的采空区温度场和氧气浓度场进行模拟,通过改变注输流量、注入位置,探讨LN2/CO2对采空区的降温降氧效果。结果表明:注入位置不变,LN2/CO2注输比越大,对采空区惰化效果越强,三带宽度越窄,采空区降温区域越大;注输比不变,当注入口距离进风巷40m时,采空区内惰化效果最佳,低温区域面积最大。

外文摘要:

Coal is the basic energy and important industrial material, and provides reliable energy guarantee for sustainable development of the national economy and society. At present, about 56% of coal mines have the possibility of spontaneous coal combustion, which has a huge impact on coal mine safety production. Therefore, it is of great significance to carry out effective control research on spontaneous coal disaster. Traditional fire extinguishing technology is widely used in coal mine safety production, but its cooling and oxygen reduction ability is limited. Based on this, this paper proposes to use LN2/CO2 to prepare dry ice, add nucleating agent to improve the nucleation efficiency of dry ice, compose gas-liquid-solid three-phase mixture and input it into the fire area, and carry out research on this technology through theoretical analysis, experimental testing and numerical simulation. Specific contents are as follows:

(1) Based on the reversible characteristics of sublimation and condensation of dry ice under equilibrium state, the dynamic model of CO2 nucleation under equilibrium state was deduced by Arrhenius formula; The sublimation time of different masses of dry ice at different temperatures was measured by the independently built dry ice sublimation experiment system. The sublimation coefficient K of dry ice was calculated to be 15.49, and the latent heat of sublimation E was calculated to be 97.45KJ/Kg.

(2) The self-established LN2/CO2 dry ice preparation experimental system was used to analyze the effects of LN2/CO2 injection/delivery ratio, type of nucleating agent (calcium chloride, urea, sodium chloride) and quality of nucleating agent on temperature, pressure and dry ice generation in the mixing pipeline. The results showed that when the CO2 injection and delivery rate remained unchanged and the LN2/CO2 injection and delivery ratio increased, the temperature in the pipeline decreased, the pressure increased, the dry ice production increased, and CO2 was more likely to condense. LN2/CO2 injection and delivery ratio remained unchanged, calcium chloride nucleating agent had the strongest ability to improve CO2 conversion efficiency, and the decrease of the undercooling required for CO2 condensation resulted in the increase of dry ice particles, and the lowest temperature in the pipeline was 157K. LN2/CO2 injection and delivery ratio remained unchanged, and calcium chloride nucleating agent was added. It was found that when the mass was 640g, the temperature inside the pipeline was the lowest, 153K, and the pressure was the highest, 789KPa. At this time, CO2 nucleation efficiency was the highest, and the dry ice conversion efficiency was positively correlated with the mass of nucleating agent.

(3) Independently build an experimental platform for cooling loose coal mass, and analyze the effects of LN2/CO2 injection/delivery ratio and types of nucleating agents on the temperature of spontaneous combustion coal mass. The results show that with the increase of LN2/CO2 injection/transport ratio, the temperature of spontaneous combustion coal at each measuring point in the box continues to decrease, and the coal temperature decreasing rate increases with the increase of LN2/CO2 injection/transport ratio, and the low temperature area of coal body expands conically. At the stop injection stage, with the increase of LN2/CO2 injection and delivery ratio, the coal body temperature recovery rate slows down, and the temperature inside the box is lower at equilibrium.

(4) The temperature field and oxygen concentration field of goaf during injection and transport of LN2/CO2 were simulated by Ansys Fluent, and the cooling and oxygen reduction effect of LN2/CO2 on goaf was discussed by changing the injection and transport flow rate and injection position. The results show that the higher LN2/CO2 injection/delivery ratio is, the stronger the effect on goaf inerting is, the narrower the width of the three zones is, and the larger the goaf cooling area is. When the injection and delivery ratio is unchanged, the idling effect in the goaf is the best and the area of low temperature area is the largest when the distance between the injection port and the air inlet is 40m.

参考文献:

[1] 杨恩忠.浅议现代采煤技术在矿井的运用与发展[J].科技风,2013,11(14): 99.

[2] 鲜学福,王宏图,姜德义等.我国煤矿矿井防灭火技术研究综述[J].中国工程科学,2001,23(12): 28-32.

[3] 薛黎明,侯运炳,蔡先锋等.中国煤炭消费与经济发展水平之间关系的协整分析[J].中国矿业, 2011,20(01): 31-35.

[4] 邵昊,蒋曙光,吴征艳,等.二氧化碳和氮气对煤自燃性能影响的对比试验研究[J].煤炭学报, 2014, 39(11): 2244-2249.

[5] 王德明.矿井火灾学[M].徐州:中国矿业大学出版社, 2008.

[6] Hu Xincheng, Yang Shengqiang, Zhou Xiuhong, et al. Coal spontaneous combustion prediction in gob using chaos analysis on gas indicators from upper tunnel[J]. Journal of Natural Gas Science and Engineering, 2015, 26: 461-469.

[7] 耿铭.正压通风矿井煤层群火灾综合治理技术. 煤炭技术. 2018,37(2):217-219.

[8] 苗雷云.均压防灭火技术在浅埋煤层矿井火灾防治中的应用.能源研究.2019.5:24-25+63.

[9] 王开胜,孟文锋,刘鑫.基于厚煤层开采临近老空区高温火灾治理的索. 2019,34(2):73~76.

[10] 李鹏,秦清河.补连塔煤矿22307工作面疏放水期间火灾防治技术[J].煤矿安全, 2017,48(03):129-132.

[11] 李士戎. 二氧化碳抑制煤炭氧化自燃性能的实验研究[D].西安科技大学,2008.

[12] 关欣杰. 采空区开放式注液态CO2防灭火技术研究[D].西安科技大学,2016.

[13] 宋宜猛. 采空区分区渗流与煤自燃耦合规律研究[D].中国矿业大学(北京),2012.

[14] 王振平,马砺,文虎等.CO2与N2抑制煤炭氧化自燃对比实验研究[J].煤矿安全,2010,41(02):14-17.

[15] 徐俊. 惰性介质的防灭火效果研究[D].中国矿业大学,2016.

[16] 梁志远. 氮气-细水雾两相流采空区流动特性及应用研究[D].太原理工大学,2019.

[17] 曾成隆,鄯梦涛.干冰灭火技术在二景煤矿的应用[J].煤矿安全,2018,49(11):125-127+131.

[18] Maass O,Barnes W.Some thermal constants of solid and liquid carbon dioxide[J].Proceedings of the Royal Society of London Series A, Containing Papers of a Mathematical and Physical Character,1926, 111(757):224-44.

[19] Giau Q W,Egan C.Carbon dioxide.The heat capacity and vapor pressure of the solid.The heat of sublimation.Thermodynamic and spectroscopic values of the entropy [J].The Journal of Chemical Physics, 1937,5(1):45-54.

[20] Manzhelii,V.G.,et al."Thermal expansion, heat capacity, and compressibility of solid CO2." physica status solidi (b) 44.1 (1971): 39-49.

[21] Cook T, Davey G. The density and thermal conductivity of solid nitrogen and carbon dioxide [J].Cryogenics,1976,16(6):363-369.

[22] 卢倪,卢俊.冷霜的凝聚模型和多孔结构的形成[J].低温与超导,1985, 76(03):17-24.

[23] 卢倪,卢俊.深冷霜凝聚的数学模型[J].华中工学院学报,1986,82(03):405-408.

[24] Jäger,Andreas,and Roland Span."Equation of state for solid carbon dioxide based on the Gibbs free energy."Journal of Chemical & Engineering Data 57.2 (2012):590-597.

[25] Takeuchi O, Hironaka S, Shimada Y. Study on Solidification of Carbon Dioxide Using Cold Energy of Liquefied Natural Gas [J]. Heat Transfer Asian Research, 2000, 29(4): p.249-268.

[26] Clodic D,Younes M.A new method for CO2 capture: frosting CO2 at atmospheric pressure[C]//Sixth International Conference on Greenhouse Gas control Technologies GHGT6, Kyoto, Japan. 2002: 155-160.

[27] Clodic D,ElHitti R,Younes M,et al.CO2 capture by anti-sublimation Thermo-economic process evaluation[C]//4th Annual Conference on Carbon Capture and Sequestration. Alexandria^eVA VA: National Energy Technology Laboratory, 2005: 2-5.

[28] Hlavinka M W, Hernandez V N, Dan M C. Proper interpretation of freezing and hydrate prediction results from process simulation [J]. 2006,

[29] Zhang N,Lior N.A novel near-zero CO2 emission thermal cycle with LNG cryogenic exergy utilization[J].Energy, 2006, 31(10): 1666-1679.

[30] Tuinier,M. J.,M. van Sint Annaland, and J. A. M. Kuipers. "A novel process for cryogenic CO2 capture using dynamically operated packed beds—An experimental and numerical study." International Journal of Greenhouse Gas Control 5.4 (2011): 694-701.

[31] Tuinier,M.J.,et al."Cryogenic CO2 capture using dynamically operated packed beds." Chemical Engineering Science 65.1 (2010): 114-119.

[32] Lively, Ryan P., William J. Koros, and J. R. Johnson. "Enhanced cryogenic CO2 capture using dynamically operated low-cost fiber beds." Chemical engineering science71 (2012): 97-103.

[33] Hees W G,Monroe C M.Method and system for extracting carbon dioxide by anti-sublimation at raised pressure: U.S. Patent 8,163,070[P]. 2012-4-24.

[34] Nielson B J. Cryogenic Carbon Capture using a Desublimating Spray Tower [J]. 2013,

[35] Naletov V A, Lukyanov V L, Kulov N N, et al. An Experimental Study of Desublimation of Carbon Dioxide from a Gas Mixture [J]. Theoretical Foundations of Chemical Engineering, 2014, 48(3): 312-319.

[36] 袁灵成.基于低温凝华法的二氧化碳捕集技术理论与实验研究[D].浙江大学,2015.

[37] 袁灵成, 姜晓波, 邱利民,等.CO2低温凝华可视化实验装置设计 [J].低温工程, 2015, 65(03): 30-36.

[38] Cao X, Yang W, Jin X.Numerical simulation of CO2 condensation process from CH4-CO2 binary gas mixture in supersonic nozzles [J].Separation and Purification Technology, 2017,

[39] 王建熊.二氧化碳低温凝华捕集的可视化实验研究[ D];浙江大学, 2018.

[40] 王建熊,姜晓波, 邱利民,等.二氧化碳低温凝华捕集的实验研究 [J].低温工程, 2018, 01): 47-52+68.

[41] 姜晓波,王雅宁,邱利民.二氧化碳凝华及升华初步实验研究 [J].低温工程, 2019, 03): 29-34.

[42] 王雅宁.二氧化碳凝华过程动态模型与晶体形态实验研究 [D];浙江大学, 2019.

[43] 张国伟.干冰颗粒的深冷制备与浆液输送研究[D].西安科技大学,2020.

[44] Tsuruta T,Tanaka H and Masuoka T.Condensation process at liquid-vapor interface and condensation coefficient, Thermal Science & Engineering 1995,3(3): 85-90.

[45] Tsuruta T,Tanaka H and Masuoka T.Condenstion/evaporation coefficient and velocity distributions at liquid-vapor interface, Thermal Science & Engineering 1999, 3(3):85-90.

[46] Matsumoto M, Yasuoka K and Kataoka Y.Molecular dynamics of fluid phase change, Fluid Phase Equilibria 1998, 144: 307-314.

[47] 李印室,何雅玲,孙杰,陶文铨,温度对Lennard流体凝结过程影响的研究[J],2006,40(11):45-47.

[48] 井丁丁,张美景,王永莉,等.青霉素亚砜结晶生长与成核动力学[J]. 化工学报,2014,65(1):182-189.

[49] 冯靖伊.水蒸气凝结核化和单体生长的分子动力学模拟[D].华中科技大学,2017.

[50] 刘洪里,唐继国,刘洪涛,等. 过冷水中单个蒸汽气泡凝结动力学过程研究[J]. 原子能科学技术,2019,53(6):1029-1035.

[51] Pavel Krasnochtchekov,K. Albe,R. S.Averback.Simulations of the inert gas condensation processes[J]. Zeitschrift für Metallkunde,2003,94(10):

[52] 王博,李传博,吕洪彬,等.草酸铈成核和晶体生长动力学[J].核化学与放射化学,2021,43(4):309-317.

[53] 黄起中,舒成.基于Friedman法的成核PP非等温结晶动力学研究[J].塑料工业,2021,49(4):134-137,15.

[54] 李维杰,宋立勇,刘宝林.植冰技术在低温生物医学中的应用进展[J].制冷技术,2021,41(02):11-16.

[55] 华泽钊,任禾盛.低温生物医学技术[M].北京:科学出版社,1994.

[56] William R.Cotton.Thermodynamics and microphysics of clouds.Colorado State University,2000.

[57] Vonnegut, B. The Nucleation of Ice Formation by Silver Iodide[J]. Journal of Applied Physics, 1947, 18(7):593-595.

[58] KOJIMA T, SOMA T, OGURI N. Effect of ice nucleation by droplet of immobilized silver iodide on freezing of rabbit and bovine embryos[J]. Theriogenology, 1988, 30(6): 1199- 1207.

[59] ZACHARIASSEN K E, KRISTIANSEN E. Ice nucleation and antinucleation in nature[J]. Cryobiology, 2000, 41(4): 257-279

[60] DU N, LIU X Y. Controlled ice nucleation in microsized water droplet[J]. Applied Physics Letters, 2002, 81(3): 445- 447.

[61] D Bai, Chen G, Zhang X , et al. Microsecond Molecular Dynamics Simulations of the Kinetic Pathways of Gas Hydrate Formation from Solid Surfaces[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2011, 27(10):5961-7.

[62] Bai D ,Chen G ,Zhang X ,et al. How Properties of Solid Surfaces Modulate the Nucleation of Gas Hydrate[J]. Scientific Reports, 2015, 5(1):12747.

[63] Massie I ,Selden C ,Hodgson H , et al. Cryopreservation of Encapsulated Liver Spheroids for a Bioartificial Liver: Reducing Latent Cryoinjury Using an Ice Nucleating Agent[J]. Tissue Engineering Part C Methods, 2011.

[64] 徐爱祥. 冰晶动力学行为与粒径分布演化规律研究[D].中南大学,2014.

[65] RAU W. Eiskeimbildung durch dielektrische Polarisation[J]. Zeitschrift für Naturforschung A, 1951, 6(11): 649-657.

[66] Petersen A ,Schneider H , Rau G , et al. A new approach for freezing of aqueous solutions under active control of the nucleation temperature[J]. Cryobiology, 2006, 53(2):248-257.

[67] HICKLING R. Transient, high-pressure solidification associated with cavitation in water[J]. Physical Review Letters, 1994, 73(21): 2853-2586.

[68] HUNT J, JACKSON K. Nucleation of solid in an undercooled liquid by cavitation[J]. Journal of Applied Physis,1966,37(1):254-257.

[69] CHOW R, BLINDT R, CHIVERS R, et al. A study on the primary and secondary nucleation of ice by power ultrasound[J]. Ultrasonics, 2015, 43(4): 227-230.

[70] KONSTANTINIDIS A K, KUU W Y, OTTEN L, et al.Controlled nucleation in freeze-drying: effects on pore size in the dried product layer, mass transfer resistance,and primary drying rate[J]. Journal of Pharmaceutical Sciences,2017, 100(8): 3453-3470.

[71] GASTEYER T H, SEVE R R B, HUNEK B, et al.Lyophilization system and method: ZLPCT/US2007/ 003281[P]. 2007-02-07.

[72] PETZOLD G, AGUILERA J M. Ice morphology:fundamentals and technological applications in foods[J].Food Biophysics, 2009, 4(4): 378-396.

[73] RAMBHATLA S, RAMOT R, BHUGRA C, et al. Heat and mass transfer scale-up issues during freeze drying: II. control and characterization of the degree of supercooling[J]. AAPS PharmSciTech, 2004, 5(4): 54-62.

[74] PATEL S M, BHUGRA C, PIKAL M J. Reduced pressure ice fog technique for controlled ice nucleation during freeze-drying[J]. AAPS PharmSciTech, 2009, 10(4): 1406- 1411.

[75] KIM A G. Cryogenic injection to control a coal waste bank fire [J]. International Journal of Coal Geology, 2004, 59(1/2): p.63-73.

[76] CHAIKEN R F, KIM A G, KOCIBAN A M, et al.Cryogenic slurry for extinguishing underground fires [J]. 1994,

[77] 李娟,石玉美,汪荣顺.液氮中单管加注二氧化碳气体的实验研究 [J]. 低温与超导, 2008, 1): 9-11+5.

[78] 张辛亥,郑仲明,邢二军,等.一种深冷惰气制雪防灭火方法及装置, CN108005712A [P]. 2017-12-08].

[79] 张辛亥,郑仲明,邢二军,等.一种深冷惰气制雪防灭火装置, CN207583424U [P]. 2017-12-08].

[80] 王志宇. 采空区复合惰气高效惰化与优化实验研究[D].中国矿业大学,2021.

[81] 牛阔,杜文州,王厚旺,张延松.基于采空区流场的遗煤自燃危险区域判定及复合惰化技术研究[J].矿业安全与环保,2021,48(01):23-27.

[82] 邹宗旺,牛俊国,唐礼.深井自燃煤层注复合惰气防灭火技术研究[J].山东煤炭科技,2020(04):111-112+121.

[83] 柳东明.易自燃煤层采空区N2与CO2惰性耦合气体运移规律[J].煤矿安全,2020,51(08):227-231.

[84] 苏涛.正旺煤矿11103工作面采空区综合防灭火方案应用[J].能源与节能, 2020,34(03) : 157-160+162.

[85] Wenzel, Robert N.RESISTANCE OF SOLID SURFACES TO WETTING BY WATER[J]. Transactions of the Faraday Society, 1936, 28(8):988-994.

[86] 邢二军. 红庆河煤矿综放面采空区自燃预测与防治研究[D].西安科技大学,2019.

中图分类号:

 TD752.2    

开放日期:

 2026-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式