- 无标题文档
查看论文信息

论文中文题名:

 横向氧化镓MOSFET的结构设计与性能研究    

姓名:

 程梅霞    

学号:

 20207223102    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085400    

学科名称:

 工学 - 电子信息    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 电子与通信工程    

研究方向:

 宽禁带半导体器件    

第一导师姓名:

 栾苏珍    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-15    

论文答辩日期:

 2023-06-02    

论文外文题名:

 Structure Design and Performance Study of Lateral Gallium Oxide MOSFET    

论文中文关键词:

 氧化镓 ; 横向MOSFET ; 增强型 ; 异质结    

论文外文关键词:

 gallium oxide ; lateral MOSFET ; E-mode ; heterojunction    

论文中文摘要:

在宽带隙半导体器件快速发展的同时,作为超宽带隙半导体材料的Ga2O3因其独特的优势得到极大的重视。从材料本身的特性来看,Ga2O3具有超宽的带隙(4.9 eV)、高的临界击穿电场(8 MV/cm)以及高的巴利加优值(3444)。氧化镓理论上的损耗远低于硅、碳化硅以及氮化镓。同时,大尺寸、高质量的天然衬底可通过熔融生长的方法获得,具有低花费、低导通密度的优点。

目前为止,关于Ga2O3基的肖特基势垒二极管、金属氧化物半导体场效应晶体管(MOSFET)和日盲光电探测器等器件的报道很多,在这些器件中,MOSFET成为大功率器件的主流。目前氧化镓 MOSFET 器件的研究多为耗尽型且无法进行P型掺杂,基于此设计了横向增强型的异质结金属氧化物半导体场效应晶体管。主要研究成果如下:

(1)首先在Sentaurus TCAD软件中添加了氧化镓材料的模型参数,主要包括能带、热力学、迁移率、碰撞离化、雪崩击穿等模型。提出了增强型的横向SiC/Ga2O3异质结金属氧化物半导体场效应晶体管,充分利用了PN结的开关特性与击穿特性,此次设计实现了0.82 V的开启电压和1817 V的高击穿电压。之后对器件的各部分参数进行了对比分析,研究各部分参数对器件电学性能的影响。通过对比发现SiC的长度、厚度以及掺杂浓度,沟道层的厚度、掺杂浓度,金属功函数等对器件电学特性的影响比较明显;当栅长大于2微米时其对器件转移特性的影响减小;栅源距离和栅漏距离主要影响器件的输出特性;介电常数的增加,会使器件的阈值电压和饱和漏电流都随之增加。

(2)设计了新型增强型(E-mode)的斜面NiO/Ga2O3异质结金属氧化物半导体场效应晶体管,实现了0.153 V的开启电压和3069 V的击穿电压,其对应的功率品质因数高达3.602 GW/cm2。相对于普通NiO/Ga2O3异质结器件和传统的Ga2O3器件而言,加入斜面NiO器件的阈值电压和饱和漏电流都有了明显的提高;综上所述,加入斜面P型掺杂的NiO可以作为提高器件性能的一种思路。

(3)加入非理想效应研究其对器件性能的影响,主要包括陷阱和自热效应两种,其中陷阱研究了固定电荷、界面态(施主和受主)对器件输出特性的影响,自热效应研究了不同环境温度、不同的热阻、不同的衬底厚度以及不同的晶向时的输出特性曲线的变化规律。通过研究发现温度升高会导致器件的饱和漏电流降低。[010]晶向由于具有较高的热导率,能够提升半导体材料中载流子的迁移率,降低散射现象对载流子迁移率的影响。通过对不同热阻的研究发现,该值小于0.005 cm2KW-1时,其对器件自热效应的影响较小。

论文外文摘要:

With the rapid development of broad band gap semiconductor devices, Ga2O3, as an ultra-wide band gap semiconductor material, has received great attention due to its unique advantages. From the characteristics of the material itself, Ga2O3 has an ultra-wide band gap (4.9 eV), a high critical breakdown electric field (8 MV/cm), and high Baliga figure of merit (3444). The theoretical loss of gallium oxide is much lower than that of Si, SiC and GaN. At the same time, natural substrates with large size and high quality can be obtained by melt growth, which has the advantages of low cost and low conduction density.

So far, there are many reports on Ga2O3-based Schottky barrier diodes, MOSFETs and solar-blind photodetectors. Among these devices, MOSFETs have become the mainstream of high-power devices. At present, most of the research on gallium oxide MOSFET devices is depletion type and cannot be P-doped. Based on this, a laterally enhanced heterojunction metal oxide semiconductor field effect transistor is designed. The main research results are as follows :

(1)Firstly, the model parameters of gallium oxide materials are added in Sentaurus TCAD, including bandgap, thermodynamic, mobility, impact ionization, avalanche and so on. An enhanced lateral SiC/Ga2O3 heterojunction metal oxide semiconductor field effect transistor is proposed, which makes full use of the switching characteristic and breakdown characteristic of PN junction. The design achieves an threshold voltage of 0.82 V and a high breakdown voltage of 1817 V. After that, the parameters of each part of the device were compared and analyzed to study the influence of each part of the parameters on the electrical performance of the device. Through comparison, it is found that the length, thickness and doping concentration of SiC, the thickness and doping concentration of channel layer, and the metal work function have obvious influence on the electrical characteristics of the device. When the gate is longer than 2 microns, its influence on the transfer characteristics is reduced. The gate-source distance and gate-drain distance mainly affect the output characteristics of the device. The increase of dielectric constant will increase the threshold voltage and saturation current of the device.

(2)A novel E-mode slope NiO/Ga2O3 heterojunction metal oxide semiconductor field effect transistor is designed, which achieves a turn-on voltage of 0.153 V and a breakdown voltage of 3069 V. The corresponding power figure of merit is as high as 3.602 GW/cm2.Compared with the common NiO/Ga2O3 heterojunction device and the traditional Ga2O3 device, the threshold voltage and saturation current of the device with inclined NiO have been significantly improved. In summary, the addition of inclined P-type doped NiO can be used as an idea to improve device performance.

(3) The effects of non-ideal effects on device performance are studied, mainly including the trap and the self-heating effect. The trap studies the influence of fixed charge and interface state (donor and acceptor ) on the output characteristics of the device. The self-heating effect studies the variation of the output characteristic curve of different ambient temperature, different thermal resistance, different substrate thickness and different crystal orientation. It is found that the increase of temperature will lead to the decrease of saturation current of the device. Due to its high thermal conductivity, the [010] crystal orientation can improve the carrier mobility in semiconductor materials and reduce the influence of scattering on carrier mobility. Through the study of different thermal resistance, it is found that when the value is less than 0.005 cm2KW-1, it has little effect on the self-heating effect of the device.

参考文献:

[1] Higashiwaki M, Sasaki K, Murakami H, et al. Recent progress in Ga2O3 power devices [J]. Semiconductor Science and Technology, 2016, 31(3): 034001.

[2] J T R. SiC and GaN Transistors—Is There One Winner for Microwave Power Applications? [J]. Proceedings of the IEEE, 2002, 90(6): 1032-1047.

[3] 董林鹏. 氧化镓材料特性及光电探测器研究 [D]. 西安: 西安电子科技大学, 2019.

[4] Krueger B W, Dandeneau C S, Nelson E M, et al. Variation of Band Gap and Lattice Parameters of β−(AlxGa1−x)2O3 Powder Produced by Solution Combustion Synthesis [J]. Journal of the American Ceramic Society, 2016, 99(7): 2467-2473.

[5] Oshima Y, Víllora E G, Matsushita Y, et al. Epitaxial growth of phase-pure ε-Ga2O3 by halide vapor phase epitaxy [J]. Journal of Applied Physics, 2015, 118(8): 085301.

[6] Playford H Y, Hannon A C, Barney E R, et al. Structures of uncharacterised polymorphs of gallium oxide from total neutron diffraction [J]. Chemistry, 2013, 19(8): 2803-2813.

[7] Pearton S J, Yang J, Cary P H, et al. A review of Ga2O3 materials, processing, and devices [J]. Applied Physics Reviews, 2018, 5(1): 1-56.

[8] 阎广硕. 基于β-Ga2O3的pn结二极管的制备与性能研究 [D]. 西安: 西安电子科技大学, 2020.

[9] Stepanov S, Nikolaev V, Bougrov V, et al. GALLIUM OXIDE PROPERTIES AND APPLOCATION-A REVIEW [J]. 2016, 44: 63-86.

[10] Bartic M, Baban C-I, Suzuki H, et al. β-Gallium Oxide as Oxygen Gas Sensors at a High Temperature [J]. Journal of the American Ceramic Society, 2007, 90(9): 2879-2884.

[11] Mock A, Korlacki R, Briley C, et al. Band-to-band transitions, selection rules, effective mass, and excitonic contributions in monoclinic β-Ga2O3 [J]. Physical Review B, 2017, 96(24): 245205.

[12] Jessen G, Chabak K, Green A, et al. Toward Realization of Ga2O3 for Power Electronics Applications [M]. //2017 75th Annual Device Research Conference (DRC). IEEE. 2017: 1-2.

[13] Li L, Auer E, Liao M, et al. Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts [J]. Nanoscale, 2011, 3(3): 1120-1126.

[14] Rebien M, Henrion W, Hong M, et al. Optical properties of gallium oxide thin films [J]. Applied Physics Letters, 2002, 81(2): 250-252.

[15] Orita M, Ohta H, Hirano M, et al. Deep-ultraviolet transparent conductive β-Ga2O3 thin films [J]. Applied Physics Letters, 2000, 77(25): 4166-4168.

[16] Kim S, Kim S j, Kim K h, et al. Improved performance of Ga2O3/ITO-based transparent conductive oxide films using hydrogen annealing for near-ultraviolet light-emitting diodes [J]. physica status solidi (a), 2014, 211(11): 2569-2573.

[17] Yan Z, Takei H, Kawazoe H. Electrical Conductivity in Transparent ZnGa2O4 Redection and Surface-Layer Structure Transformation [J]. Journal of the American Ceramic Society, 1998, 81(1): 180-186.

[18] Wu Y-L, Luan Q, Chang S-J, et al. Highly Sensitive β-Ga2O3 Nanowire Nanowires Isopropyl Alcohol Sensor [J]. IEEE Sensors Journal, 2014, 14(2): 401-405.

[19] Gong H, Zhou F, Xu W, et al. 1.37 kV/12 A NiO/β-Ga2O3 Heterojunction Diode With Nanosecond Reverse Recovery and Rugged Surge-Current Capability [J]. IEEE Transactions on Power Electronics, 2021, 36(11): 12213-12217.

[20] Wang Y, Gong H, Lv Y, et al. 2.41 kV Vertical P-Nio/n-Ga2O3 Heterojunction Diodes With a Record Baliga's Figure-of-Merit of 5.18 GW/cm2 [J]. IEEE Transactions on Power Electronics, 2022, 37(4): 3743-3746.

[21] Kachhawa P, Chaturvedi N. A Simulation Approach for Depletion and Enhancement Mode in β-Ga2O3 MOSFET [J]. IETE Technical Review, 2021, 39(6): 1410-1418.

[22] Varley J B, Janotti A, Franchini C, et al. Role of self-trapping in luminescence andp-type conductivity of wide-band-gap oxides [J]. Physical Review B, 2012, 85(8): 081109.

[23] Fujioka H, Morkoç H, Chyi J-I, et al. Ga2O3 Schottky barrier and heterojunction diodes for power electronics applications [M]. //Gallium Nitride Materials and Devices XIII. International Society for Optics and Photonics. 2018: 1053212.

[24] Higashiwaki M, Sasaki K, Kuramata A, et al. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates [J]. Applied Physics Letters, 2012, 100(1): 013504.

[25] Higashiwaki M, Sasaki K, Kamimura T, et al. Depletion-mode Ga2O3 metal-oxide-semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics [J]. Applied Physics Letters, 2013, 103(12): 123511.

[26] Wong M H, Sasaki K, Kuramata A, et al. Field-Plated Ga2O3 MOSFETs With a Breakdown Voltage of Over 750 V [J]. IEEE Electron Device Letters, 2016, 37(2): 212-215.

[27] Green A J, Chabak K D, Heller E R, et al. 3.8-MV/cm Breakdown Strength of MOVPE-Grown Sn-Doped Ga2O3 MOSFETs [J]. IEEE Electron Device Letters, 2016, 37(7): 902-905.

[28] Chabak K D, Moser N, Green A J, et al. Enhancement-mode Ga2O3 wrap-gate fin field-effect transistors on native (100) β-Ga2O3 substrate with high breakdown voltage [J]. Applied Physics Letters, 2016, 109(21): 213501.

[29] Kelson Chabak, Andrew Green, Neil Moser, et al. Gate-recessed, laterally-scaled β-Ga2O3 MOSFETs with high-voltage enhancement-mode Operation [M]. 2017 75th Annual Device Research Conference (DRC). South Bend, USA; IEEE. 2017: 1-2.

[30] Zeng K, Vaidya A, Singisetti U. 1.85 kV Breakdown Voltage in Lateral Field-Plated Ga2O3 MOSFETs [J]. IEEE Electron Device Letters, 2018, 39(9): 1385-1388.

[31] Wong H, Braga N, Mickevicius R, et al. Normally-off Dual-gate Ga2O3 planar MOSFET and FinFET with high ION and BV [M]. 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD). Chicago, USA; IEEE. 2018: 379-382.

[32] Mun J K, Cho K, Chang W, et al. 2.32 kV Breakdown Voltage Lateral β-Ga2O3 MOSFETs with Source-Connected Field Plate [J]. Ecs Journal of Solid State Science and Technology, 2019, 8(7): Q3079-Q3082.

[33] Tetzner K, Bahat Treidel E, Hilt O, et al. Lateral 1.8 kV β-Ga2O3 MOSFET With 155 MW/cm2 Power Figure of Merit [J]. IEEE Electron Device Letters, 2019, 40(9): 1503-1506.

[34] Wong M H, Murakami H, Kumagai Y, et al. Enhancement-Mode β-Ga2O3 Current Aperture Vertical MOSFETs With N-Ion-Implanted Blocker [J]. IEEE Electron Device Letters, 2020, 41(2): 296-299.

[35] Sharma S, Zeng K, Saha S, et al. Field-Plated Lateral Ga2O3 MOSFETs With Polymer Passivation and 8.03 kV Breakdown Voltage [J]. IEEE Electron Device Letters, 2020, 41(6): 836-839.

[36] Je J Y, Yong Y J, Ho L C, et al. Fluorine-based plasma treatment for hetero-epitaxial β-Ga2O3 MOSFETs [J]. Applied Surface Science, 2021, 558: 149936.

[37] Do H-B, Phan-Gia A-V, Nguyen V Q, et al. Optimization of normally-off β-Ga2O3 MOSFET with high Ion and BFOM: A TCAD study [J]. AIP Advances, 2022, 12(6): 065024.

[38] Lv Y, Zhou X, Long S, et al. Lateral source field-plated β-Ga2O3 MOSFET with recorded breakdown voltage of 2360 V and low specific on-resistance of 560 mΩ cm2 [J]. Semiconductor Science and Technology, 2019, 34(11): 11LT02.

[39] Feng Z Q, Cai Y C, Li Z, et al. Design and fabrication of field-plated normally off beta-Ga2O3 MOSFET with laminated-ferroelectric charge storage gate for high power application [J]. Applied Physics Letters, 2020, 116(24): 243503.

[40] Zhou X, Liu Q, Xu G, et al. Realizing High-Performance β-Ga₂O₃ MOSFET by Using Variation of Lateral Doping: A TCAD Study [J]. IEEE Transactions on Electron Devices, 2021, 68(4): 1501-1506.

[41] Wang X, Yan S, Mu W, et al. Enhancement-Mode Ga2O3 FET With High Mobility Using p-Type SnO Heterojunction [J]. IEEE Electron Device Letters, 2022, 43(1): 44-47.

[42] Lei W, Dang K, Zhou H, et al. Proposal and Simulation of Ga2O3 MOSFET With PN Heterojunction Structure for High-Performance E-Mode Operation [J]. IEEE Transactions on Electron Devices, 2022, 69(7): 3617-3622.

[43] 张弘鹏. Ga2O3基 MOSFET 的设计及关键工艺研究 [D]. 西安: 西安电子科技大学, 2021.

[44] 孙喆宇. Ga2O3功率器件的耐压特性研究 [D]. 西安: 西安电子科技大学, 2020.

[45] Lophitis N, Antoniou M, Udrea F, et al. Gate Commutated Thyristor With Voltage Independent Maximum Controllable Current [J]. IEEE Electron Device Letters, 2013, 34(8): 954-956.

[46] 张熬, 陈鹏, 周婧, 等. 半导体的禁带宽度与温度关系研究 [J]. 光电子技术, 2019, 39(3): 160-167.

[47] Rafique S, Han L, Mou S, et al. Temperature and doping concentration dependence of the energy band gap in β-Ga2O3 thin films grown on sapphire [J]. Optical Materials Express, 2017, 7(10): 3561-3570.

[48] Irmscher K, Galazka Z, Pietsch M, et al. Electrical properties of β-Ga2O3 single crystals grown by the Czochralski method [J]. Journal of Applied Physics, 2011, 110(6): 063720.

[49] Oishi T, Koga Y, Harada K, et al. High-mobility β-Ga2O3(201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact [J]. Applied Physics Express, 2015, 8(3): 031101.

[50] Neal A T, Mou S, Lopez R, et al. Incomplete Ionization of a 110 meV Unintentional Donor in β-Ga2O3 and its Effect on Power Devices [J]. Scientific Reports, 2017, 7(1): 13218.

[51] Park J, Hong S-M. Simulation Study of Enhancement Mode Multi-Gate Vertical Gallium Oxide MOSFETs [J]. ECS Journal of Solid State Science and Technology, 2019, 8(7): Q3116-Q3121.

[52] Krishnendu G, Uttam S. Impact ionization in β-Ga2O3 [J]. Journal of Applied Physics, 2018, 124(8): 085707.

[53] R. V O, H. D M. Measurement of the ionization rates in diffused silicon p-n junctions [J]. Solid-State Electronics, 1970, 13(5): 583-608.

[54] Dong H, Xue H, He Q, et al. Progress of power field effect transistor based on ultra-wide bandgap Ga2O3 semiconductor material [J]. Journal of Semiconductors, 2019, 40(1): 011802.

[55] Sasaki K, Kuramata A, Masui T, et al. Device-Quality β-Ga2O3 Epitaxial Films Fabricated by Ozone Molecular Beam Epitaxy [J]. Applied Physics Express, 2012, 5(3): 035502.

[56] Lv Y, Zhou X, Long S, et al. Source-Field-Plated β-Ga2O3 MOSFET with Record Power Figure of Merit of 50.4 MW/cm2 [J]. IEEE Electron Device Letters, 2019, 40(1): 83-86.

[57] Schwierz M R F. Electron Mobility Models for 4H, 6H, and 3C SiC [J]. IEEE Transactions on Electron Devices, 2001, 48(7): 1442-1447.

[58] Wong M H, Sasaki K, Kuramata A, et al. Anomalous Fe diffusion in Si-ion-implanted β–Ga2O3 and its suppression in Ga2O3 transistor structures through highly resistive buffer layers [J]. Applied Physics Letters, 2015, 106(3): 032105.

[59] Guo L, Zhang Y, Luan S, et al. Study on a novel vertical enhancement-mode Ga2O3 MOSFET with FINFET structure [J]. Chinese Physics B, 2022, 31(1): 017304.

[60] Vivona M, Giannazzo F, Roccaforte F. Materials and Processes for Schottky Contacts on Silicon Carbide [J]. Materials (Basel), 2021, 15(1): 298.

[61] Deng Y, Yang Z, Xu T, et al. Band alignment and electrical properties of NiO/β-Ga2O3 heterojunctions with different β-Ga2O3 orientations [J]. Applied Surface Science, 2023, 622: 156917.

[62] 郑嘉宸. FinFET器件的自热效应及其建模研究 [D]. 杭州: 杭州电子科技大学, 2017.

[63] 田等怀. 纳米环栅器件自热效应的研究 [D]. 北京: 北方工业大学, 2022.

[64] 贾晓乐. β-Ga2O3器件自热效应研究及其优化 [D]. 西安: 西安电子科技大学, 2020.

中图分类号:

 TN386    

开放日期:

 2023-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式