论文中文题名: |
管道内金属丝网对甲烷-氢气 预混爆炸火焰阻抑特性研究
|
姓名: |
葛天姣
|
学号: |
19220214058
|
保密级别: |
保密(1年后开放)
|
论文语种: |
chi
|
学科代码: |
085224
|
学科名称: |
工学 - 工程 - 安全工程
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2022
|
培养单位: |
西安科技大学
|
院系: |
安全科学与工程学院
|
专业: |
安全工程
|
研究方向: |
气体与粉尘燃爆控制
|
第一导师姓名: |
程方明
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2022-06-10
|
论文答辩日期: |
2022-05-30
|
论文外文题名: |
Study on the flame-resistance characteristics of the metal wire mesh in the pipeline to the methane-hydrogen premixed flame
|
论文中文关键词: |
掺氢甲烷爆炸 ; 金属丝网 ; 火焰淬熄 ; 火焰前锋速度 ; 压力衰减
|
论文外文关键词: |
Hydrogen-doped methane explosion ; Wire mesh ; Flame quenching ; Flame front velocity ; Pressure decay
|
论文中文摘要: |
︿
氢气因其能量利用率高、燃烧产物清洁和生产途径广泛等优点近年来备受青睐,目前较为成熟的运输氢气方法是利用现有的天然气管网,将氢气与天然气掺混进行运输。然而由于人为操作失误和管道腐蚀等因素易引起气体泄漏继而发生燃烧和爆炸,导致严重的人员伤亡和财产损失。因此,开展甲烷-氢气预混气体燃爆抑制技术的研究,对于氢能燃爆防治和氢能产业保障具有重要意义。
本文对比研究了无金属丝网及内置金属丝网管道中甲烷-氢气预混爆炸火焰的火焰传播形态、火焰锋面及超压等特征参数的变化规律,明确了金属丝网和氢气体积分数对甲烷-氢气预混爆炸火焰传播特性及淬熄规律的影响。结果表明,无金属丝网和未淬熄火焰的金属丝网管道中预混爆炸火焰的火焰前锋速度和压力随氢气体积分数增大而增大,且火焰传播普遍经历指尖型、斜坡型、平面型和郁金香型四个阶段;然而火焰被淬熄时仅出现指尖型和斜坡型两种结构变化。当单层金属丝未成功淬熄火焰时,火焰传播时间、临界平面时间和火焰前锋速度峰值随丝网目数增大而增大,压力峰值则恰好相反;当多层金属丝网未成功淬熄火焰时,火焰前锋速度峰值与压力峰值和氢气体积分数呈正相关,和丝网层数呈负相关。对比无金属丝网管道中火焰速度峰值可知,单层金属丝网位于管道前段时抑制火焰传播,而位于管道中段时则促进了火焰传播,而多层金属丝网无论位于管道前段或中段均能有效抑制火焰传播。临界金属丝网层数位于管道前段和中段时火焰前锋速度峰值分别衰减了47.883%和31.357%。此外,随着氢气体积分数和金属丝网与点火源间距离的增大,淬熄火焰所需的金属丝网目数和层数随之增大。金属丝网淬熄火焰的主要原因在于丝网对火焰的吸热和切分作用,导致火焰团失去热平衡,从而阻止了预混爆炸火焰的传播。
综上所述,可燃气体特性、金属丝网几何参数和其距离点火源位置对预混爆炸火焰的传播特性均有着显著影响。预混气体中氢气含量越高,火焰越难淬熄;金属丝网放置位置距离点火源越近,丝网的体积越大,其阻火效果越好。本文的研究结果对预防与控制甲烷-氢气预混气体燃爆事故具有一定的指导意义。
﹀
|
论文外文摘要: |
︿
Hydrogen has been favored in recent years due to its high energy utilization, clean combustion products, and wide production routes, at present, the more mature method is to use the existing natural gas pipeline network to mix hydrogen and natural gas for transportation. However, due to human errors and pipeline corrosion, it is easy to cause gas leakage and then combustion, resulting in serious casualties and property losses. Therefore, it is of great significance to carry out research on methane-hydrogen premixed gas explosion suppression technology for the prevention and control of hydrogen energy explosion and the guarantee of hydrogen energy industry.
In this paper, the variation laws of characteristic parameters such as flame propagation pattern, flame front and overpressure of methane-hydrogen premixed flames in pipelines without wire mesh and built-in wire mesh are comparatively studied. The effects of wire mesh and hydrogen volume fraction on the flame propagation characteristics and quenching laws of methane-hydrogen premixed explosions were clarified. Research indicates, the flame front velocity and pressure of the premixed flame in the wire-free pipelines and wire mesh pipes that failed to quench the flame increased with the hydrogen volume fraction. And the flame propagation in these two pipelines generally goes through four stages: finger type, slope type, plane type and tulip type, however, when the wire mesh quenches the flame, only two structural changes occur: fingertip type and slope type. When the single-layer wire is failed to quench the flame, the flame propagation time, the critical plane time and the peak flame front velocity increase with the increase of the mesh number, while the peak pressure is just the opposite. When the multi-layer metal wire is failed to quench the flame, the peak flame front velocity was positively correlated with the pressure peak and hydrogen volume fraction, and negatively correlated with the number of wire mesh layers. By comparing it with the peak flame velocity in the wire-free pipelines, the single-layer wire mesh inhibits flame propagation when placed in the front section of the pipelines, and promotes flame propagation when placed in the middle of the pipelines. The multi-layer wire mesh can greatly attenuate the peak velocity of the premixed flame front regardless of whether it is located in the front or middle section of the pipeline, effectively suppressing the flame propagation. The critical wire mesh layers are located in the front and middle sections of the pipeline, which are attenuated by 47.883% and 31.357% respectively, compared with the peak flame front velocity in the wire-free pipelines. In addition, with the increase of the hydrogen volume fraction and the distance between the wire mesh and the ignition source, the number of meshes and layers of the wire mesh required to quench the flame increases. The main reason for the quenching of the flame by the wire mesh is the endothermic and slicing effect of the wire mesh on the flame, which causes the flame mass to lose thermal balance, thereby effectively preventing the spread of the premixed flame.
To sum up, the characteristics of the combustible gas, the geometrical parameters of the wire mesh and its distance from the ignition source have a significant effect on the propagation characteristics of the premixed flame. The higher the hydrogen content in the premixed gas, the more difficult the flame will be quenched; the closer the wire mesh is placed to the ignition source, the larger the volume of the wire mesh, and the better the flame resistance effect. The research results in this paper have certain guiding significance for the prevention and control of methane-hydrogen premixed gas explosion accidents.
﹀
|
参考文献: |
︿
[1]宋鹏飞,单彤文,李又武,等.氢气与二氧化碳甲烷化在现代能源体系中的新应用[J].现代化工,2020,40(10):4-9. [2]Choi B C, Chung S H. Autoignited laminar lifted flames of methane/hydrogen mixtures in heated coflow air[J]. Combustion and Flame, 2012, 159(4): 1481-1488. [3]Gondal I A, Sahir M H. Prospects of natural gas pipeline infrastructure in hydrogen transportation [J]. International Journal of Energy Research, 2012, 36(15): 1338-1345. [4]Dorofeev S B. Flame acceleration and explosion safety applications[J]. Proceedings of the Combustion Institute, 2011,33(2): 2161-2175. [5]Li G, Du Y, Wang S, et al. Large eddy simulation and experimental study on vented gasoline-air mixture explosions in a semi-confined obstructed pipe[J]. Journal of Hazardous Materials, 2017,339: 131-142. [6]Wang Z R, Pan M Y, Jiang J C. Experimental investigation of gas explosion in single vessel and connected vessels[J]. Journal of Loss Prevention in the Process Industries, 2013,26(6): 1094-1099. [7]Bs A, Zlab C, Tao W D, et al. Chemical kinetic behaviors at the chain initiation stage of CH4/H2/air mixture[J]. Journal of Hazardous Materials, 2020,403. [8]Su B, Luo Z, Wang T, et al. Coupling analysis of the flame emission spectra and explosion characteristics of CH4/C2H6/air mixtures [J]. Energy & Fuels, 2020, 34(1): 920-928. [9]Luo Z, Hao Q, WANG T, et al. Experimental study on the deflagration characteristics of methane-ethane mixtures in a closed duct [J]. Fuel, 2020, 259: 116295. [10]Su B, Luo Z, Wang T, et al. Experimental and principal component analysis studies on minimum oxygen concentration of methane explosion[J]. International Journal of Hydrogen Energy, 2020,45(21):12225-12235. [11]Luo Z, Li D, Su B, et al. On the time coupling analysis of explosion pressure and intermediate generation for multiple flammable gases[J]. Energy, 2020,198: 117329. [12]Okafor E C, Hayakawa A, Nagano Y, et al. Effects of Hydrogen concentration on hydrogen-methane-air lean laminar flames: KSME-JSME 8th Thermal and Fluid Engineering Conference[C], 2012. [13]Shen X, Wang Q, Xiao H, et al. Experimental study on the characteristic stages of premixed hydrogen-air flame propagation in a horizontal rectangular closed duct[J]. International Journal of Hydrogen Energy, 2012,37(16): 12028-12038. [14]Yu M, Zheng K, Zheng L, et al. Effects of hydrogen addition on propagation characteristics of premixed methane/air flames [J]. Journal of Loss Prevention in the Process Industries, 2015, 34(1-9). [15]路长,于子凯,刘洋,等.氢气对预混甲烷/空气燃爆过程的影响[J].安全与环境学报,2017,17(06):2240-2245. [16]Zhang M, Wang J, Xie Y, et al. Flame front structure and burning velocity of turbulent premixed CH4/H2/air flames [J]. International Journal of Hydrogen Energy, 2013, 38(26): 11421-11428. [17]Rudy W, Zbikowski M, Teodorczyk A. Detonations in hydrogen-methane-air mixtures in semi confined flat channels [J]. Energy, 2016, 116(1479-1483). [18]Halter F, Chauveau C, G Kalp I. Characterization of the effects of hydrogen addition in premixed methane/air flames[J]. International Journal of Hydrogen Energy, 2007,32(13): 2585-2592. [19]Shen X, Xiu G, Wu S. Experimental study on the explosion characteristics of methane/air mixtures with hydrogen addition[J]. Applied Thermal Engineering, 2017,120: 741-747. [20]尚融雪,杨悦,高俊豪,等.掺氢天然气层流火焰传播速度试验研究[J].中国安全科学学报,2019,29(11):103-108. [21]戴鎏,王凯峰,徐朴方,等.CH4/H2混合气在O2/CO2气氛下层流火焰传播速度的实验研究[J].冶金能源,2020,39(03):29-32. [22]Ma Q, Zhang Q, Pang L, et al. Effects of hydrogen addition on the confined and vented explosion behavior of methane in air[J]. Journal of Loss Prevention in the Process Industries, 2014,27: 65-73. [23]Ma Q, Zhang Q, Chen J, et al. Effects of hydrogen on combustion characteristics of methane in air [J]. International Journal of Hydrogen Energy, 2014, 39(21): 11291-11298. [24]郑立刚,苏洋,李刚,等.点火位置对氢气/甲烷/空气预混气体爆燃特性的影响[J].化工学报,2017,68(12):8. [25]余明高,袁晨樵,郑凯.管道内障碍物对加氢甲烷爆炸特性的影响[J].化工学报, 2016,67(12):9. [26]Li D, Chen X, Zhang Y, et al. Premixed CH4-Air Flame Structure Characteristic and Flow Behavior Induced by Obstacle in an Open Duct [J]. Advances in Mechanical Engineering, 2014, 7(1): 248279. [27]Yu L X, Sun W C, Wu C K. Flame acceleration and overpressure development in a semiopen tube with repeated obstacles [J]. Proceedings of the Combustion Institute, 2002, 29(1): 321-327. [28]Park D J, Green A R, Lee Y S, et al. Experimental studies on interactions between a freely propagating flame and single obstacles in a rectangular confinement [J]. Combustion and Flame, 2007, 150(1): 27-39. [29]Hall R, Masri A R, Yaroshchyk P, et al. Effects of position and frequency of obstacles on turbulent premixed propagating flames [J]. Combustion and Flame, 2009, 156(2): 439-446. [30]Qin Y, Chen X. Flame propagation of premixed hydrogen-air explosion in a closed duct with obstacles [J]. International Journal of Hydrogen Energy, 2021, 46(2): 2684-2701. [31]Wang L Q, Ma H H, Shen Z W, et al. Experimental study of DDT in hydrogen-methane-air mixtures in a tube filled with square orifice plates [J]. Process Safety and Environmental Protection, 2018, 116(228-234). [32]Porowski R, Teodorczyk A. Experimental study on DDT for hydrogen–methane–air mixtures in tube with obstacles [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(2): 374-379. [33]Grune J, Sempert K, Kuznetsov M, et al. Experimental investigation of fast flame propagation in stratified hydrogen–air mixtures in semi-confined flat layers [J]. Journal of Loss Prevention in the Process Industries, 2013, 26(6): 1442-1451. [34]贾宝山,温海燕,梁运涛,等.受限空间瓦斯爆炸与氢气促进机理研究[J].中国安全科学学报,2012,22(02):81-87. [35]Li R, Luo Z, Wang T, et al. Effect of initial temperature and H2 addition on explosion characteristics of H2-poor/CH4/air mixtures [J]. Energy, 2020, 213(118979). [36]Hu E, Huang Z, He J, et al. Experimental and numerical study on laminar burning characteristics of premixed methane–hydrogen–air flames [J]. International Journal of Hydrogen Energy, 2009, 34(11): 4876-4888. [37]Day M S, Gao X, Bell J B. Properties of lean turbulent methane-air flames with significant hydrogen addition[J]. Proceedings of the Combustion Institute, 2011,33(1): 1601-1608. [38]Sarli V D, Benedetto A D, Long E J, et al. Time-Resolved Particle Image Velocimetry of dynamic interactions between hydrogen-enriched methane/air premixed flames and toroidal vortex structures[J]. International Journal of Hydrogen Energy, 2012,37(21): 16201-16213. [39]Zhang Y, Jiao F, Huang Q, et al. Experimental and numerical studies on the closed and vented explosion behaviors of premixed methane-hydrogen/air mixtures[J]. Applied Thermal Engineering, 2019,159: 113907. [40]Jin K, Duan Q, Chen J, et al. Experimental study on the influence of multi-layer wire mesh on dynamics of premixed hydrogen-air flame propagation in a closed duct[J]. International Journal of Hydrogen Energy, 2017,42(21): 14809-14820. [41]Jin K, Wang Q, Duan Q, et al. Effect of metal wire mesh on premixed H2/air flame quenching behaviors in a closed tube [J]. Process Safety and Environmental Protection, 2021, 146(770-778). [42]Cui Y Y, Wang Z R, Zhou K B, et al. Effect of wire mesh on double-suppression of CH4/air mixture explosions in a spherical vessel connected to pipelines[J]. Journal of Loss Prevention in the Process Industries, 2016,45: 69-77. [43]张巨峰,王晖,武元,等.管道内多层金属丝网对预混可燃气体爆炸火焰传播的影响[J].湖南科技大学学报(自然科学版),2012,27(02):18-21. [44]程方明,常助川,史合,等.金属丝网对甲烷/空气预混爆炸火焰管道内传播的影响[J].中国安全生产科学技术,2020,16(01):135-140. [45]Cheng F, Chang Z, Luo Z, et al. Large eddy simulation and experimental study on the effect of wire mesh on flame behaviours of methane/air explosions in a semi-confined pipe[J]. Journal of Loss Prevention in the Process Industries, 2020,68: 104258. [46]孙玮康,陈先锋,冯梦梦,等.金属丝网对甲烷/空气爆燃火焰传播特性的影响[J].高压物理学报,2020,34(05):164-173. [47]陈鹏,杨永波,郭实龙,等.金属丝网对甲烷/空气预混爆炸火焰传播影响的研究[J].中国安全科学学报,2014,24(7):4. [48]Ju X, Matsuoka T, Yamazaki T, et al. Effect of single-layer metal wire mesh insertion on the burning behavior of laminar coflow propane/air diffusion flames [J]. Combustion and Flame, 2021, 234(111612). [49]喻健良,孟伟,王雅杰.多层丝网结构抑制管内气体爆炸的试验[J].天然气工业,2005(06):116-118. [50]喻健良,孟伟,王雅杰.评价多层丝网结构阻火性能的试验研究[J].含能材料, 2005,13(6):5. [51]喻健良,蔡涛,李岳,等.丝网结构对爆炸气体淬熄的试验研究[J].燃烧科学与技术,2008(02):97-100. [52]严清华,宋占兵,甘咏.金属丝网结构对开敞空间爆燃波抑制作用的实验研究[J].石油与天然气化工,2006(02):151. [53] Pang L, Wang C, Han M, et al. A study on the characteristics of the deflagration of hydrogen-air mixture under the effect of a mesh aluminum alloy[J]. Journal of Hazardous Materials,2015,299(2015):174-180 [54]Song X, Zuo X, Yang Z, et al. The explosion-suppression performance of mesh aluminum alloys and spherical nonmetallic materials on hydrogen-air mixtures[J]. International Journal of Hydrogen Energy,2020,45(2020):32686-32701. [55]Yang Z, Zhao K, Song X, et al. Effects of mesh aluminium alloys and propane addition on the explosion-suppression characteristics of hydrogen-air mixture[J]. International Journal of Hydrogen Energy, 2021,46(70): 34998-35013. [56]Lv P, Pang L, Jin J, et al. Effects of hydrogen addition on the deflagration characteristics of hydrocarbon fuel/air mixture under a mesh aluminium alloy [J]. International Journal of Hydrogen Energy, 2016, 41(18): 7511-7517. [57]周凯元,李宗芬.波纹板阻火器对爆燃火焰淬熄作用的实验研究[J].中国科学技术大学学报,1997,27(4):6. [58]周凯元,李宗芬.丙烷-空气爆燃火焰通过平行板狭缝时的淬熄研究[J].爆炸与冲击,1997,17(2):8. [59]周凯元.气体爆燃火焰在狭缝中的淬熄[J].火灾科学,1999(01):24-35. [60]崔晋恺.波纹型阻火器结构单元内预混爆炸火焰淬熄特性的数值研究[D].上海:华东理工大学,2020. [61]陆明飞,丛立新,周军伟.瓦斯爆燃火焰在波纹阻火器内淬熄特性分析[J/OL].煤炭学报:1-10[2022-04-18].http://kns.cnki.net/kcms/detail/11.2190.TD.20211009.1414.002.html [62]喻健良,李通征,闫兴清,等.贫燃条件下氢气比例对CH4-H2预混气火焰传播的影响[J/OL].安全与环境学报:1-9[2022-04-18].DOI:10.13637/j.issn.1009-6094.2021.0788. [63]Bivol G Y, Golovastov S V, Golub V V. Detonation suppression in hydrogen–air mixtures using porous coatings on the walls [J]. Shock Waves, 2018, 28(5): 1011-1018. [64]Bivol G Y, Golovastov S V. Suppression of hydrogen–air detonation using porous materials in the channels of different cross section[J]. International Journal of Hydrogen Energy, 2021,46(24): 13471-13483. [65]Xie Q, Wen H, Ren Z, et al. Effects of silicone rubber and aerogel blanket-walled tubes on H2/Air gaseous detonation[J]. Journal of Loss Prevention in the Process Industries, 2017,49: 753-761. [66]聂百胜,何学秋,张金锋,等.泡沫陶瓷对瓦斯爆炸火焰传播的影响[J].北京理工大学学报,2008(07):573-576. [67]张巨峰,武元,梁建军,等.不同孔隙泡沫陶瓷的导热性抑制瓦斯爆炸的实验研究[J].矿业工程研究,2012,27(02):44-48. [68] Joo H I, Duncan K, Ciccarelli G. FLAME-QUENCHING PERFORMANCE OF CERAMIC FOAM [J]. Combustion Science and Technology, 2006, 178(10-11): 1755-1769. [69] NIE B, HE X, ZHANG R, et al. The roles of foam ceramics in suppression of gas explosion overpressure and quenching of flame propagation[J]. Journal of Hazardous Materials, 2011,192(2): 741-747. [70] 党逸峰.热管复合泡沫金属抑制爆炸的数值研究[D].西安:西安科技大学,2018. [71] 张如明.泡沫陶瓷隔爆棚抑制瓦斯爆炸的机理及数值模拟研究[D].北京:中国矿业大学,2012. [72]Wen X, Su T, Liu Z, et al. Numerical Investigation on Porous Media Quenching Behaviors of Premixed Deflagrating Flame using RANS/LES Model [J]. Journal of Thermal Science, 2019, 28(4): 780-788. [73]Wen X, Tengfei S U, Liu Z, et al. Numerical Investigation on Porous Media Quenching Behaviors of Premixed Deflagrating Flame using RANS/LES Model[J]. Journal of Thermal Science, 2019(4). [74]纪晨润.阻隔煤矿瓦斯摆闸传播的新技术研究[J].煤炭技术,2010,29(3):110-113. [75]Sun J, Yi Z, Wei C, et al. The Comparative Experimental Study of the Porous Materials Suppressing the Gas Explosion[J]. Procedia Engineering, 2011,26(1): 954-960. [76]魏春荣,徐敏强,王树桐,等.多孔材料抑制瓦斯爆炸火焰波的实验研究[J].中国矿业大学学报,2013,42(02):206-213. [77] Agrawal D K. Anti-inflammatory properties of desloratadine[J]. Clinical & Experimental Allergy, 2010,34(9): 1342-1348. [78]Bychkov V, Akkerman V Y, Fru G, et al. Flame acceleration in the early stages of burning in tubes[J]. Combustion & Flame, 2007,150(4): 263-276. [79]Arntzen B J. Modelling of turbulence and combustion for simulation of gas explosions in complex geometries[J]. Norges teknisk-naturvitenskap e ligeuniversitet, 1998. [80]金凯强.密闭管道内预混爆炸火焰传播动力学及抑制方法实验研究[D].合肥:中国科学技术大学,2019. [81]Bychkov V V, Liberman M A. Dynamics and stability of premixed flames[J]. Physics Reports, 2000,325(4-5): 115-237. [82]Clanet C, Searby G. On the “tulip flame” phenomenon [J]. Combustion and Flame, 1996, 105(1): 225-238. [83]Leyer J C, Manson N. Development of vibratory flame propagation in short closed tubes and vessels[J]. Symposium on Combustion, 1971,13(1): 551-558. [84]肖华华.管道中氢-空气预混爆炸火焰传播动力学实验与数值模拟研究[D].合肥:中国科学技术大学,2013. [85]Ji W, Yu J, Yu X, et al. Experimental investigation into the vented hybrid mixture explosions of lycopodium dust and methane[J]. Journal of Loss Prevention in the Process Industries, 2017,51.
﹀
|
中图分类号: |
X932
|
开放日期: |
2023-06-20
|