- 无标题文档
查看论文信息

题名:

 湿热环境下矿工不安全行为认知神经机理及预警模型研究    

作者:

 田辰宁    

学号:

 19120089021    

保密级别:

 保密(4年后开放)    

语种:

 chi    

学科代码:

 083700    

学科:

 工学 - 安全科学与工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2024    

学校:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 应急与安全管理    

导师姓名:

 李红霞    

导师单位:

 西安科技大学    

第二导师姓名:

 姚敏    

提交日期:

 2024-12-23    

答辩日期:

 2024-12-03    

外文题名:

 Study on the neurocognitive mechanism and early warning model of miners' unsafe behavior in humid &hot environment    

关键词:

 不安全行为 ; 温度 ; 湿度 ; 认知神经 ; 警觉性 ; 工作记忆 ; fNIRS    

外文关键词:

 Unsafe behavior ; Temperature ; Humidity ; Neurocognition ; Alertness ; Working memory ; fNIRS    

摘要:

我国是一个煤炭资源丰富但石油和天然气资源相对匮乏的国家,煤炭在我国一次性能源生产和消费中长期占据主导地位。目前我国煤炭资源总量为5.97万亿吨,其中深埋在1000米以下的资源占53%,深部开采已然成为发展的必然趋势。随着煤矿开采深度不断增加,采掘工作面的温度湿度也随之升高。湿热环境不仅影响矿工的生理健康和工作效率,还会加速设备老化,增加安全隐患。研究表明,湿热条件可能导致矿工的认知功能下降,包括注意力、判断力和反应时间的减慢。这些变化会直接影响矿工对安全操作规程的遵循,以及对潜在危险的识别能力。因此研究湿热环境下矿工不安全行为的认知神经机理,对保障煤矿安全生产至关重要。然而目前的研究多侧重于高热环境对矿工生理反应的影响,温度是否也会对矿工的认知神经造成影响,温湿度之间是否具有结合效应尚未明确。因此,论文从认知神经科学视角出发,探讨不同温湿度环境对矿工不安全行为的影响机制,并提出相应的预警模型,以期在实际生产中提升矿工行为安全管理的有效性和针对性。本研究的主要工作及研究成果如下:

本研究基于SOR(Stimulus-Organism-Response)模型,构建了湿热环境下矿工不安全行为的认知神经理论模型。在该模型中,“刺激(S)”代表不同的温湿度条件;“有机体反应(O)”涵盖了这些环境刺激如何影响矿工的认知状态;“响应(R)”部分则聚焦于这些内部状态变化如何影响实际的行为表现,尤其是不安全行为。研究发现,矿工在湿热环境下的行为反应并非孤立的生理或心理事件,而是两者交互作用的结果。通过理论模型,不仅揭示了这些交互过程,还为后续实验的设计和实施提供了理论依据。

为验证湿热环境对矿工行为和认知神经机制的负面影响,设计并实施了警觉性实验和工作记忆实验,系统评估了温度和湿度对矿工认知神经机制和行为的影响。实验结果表明,随着温度和湿度的升高,矿工的反应时间显著延长,失误率增加,工作记忆容量降低,其中温度对矿工认知的影响更甚于湿度。而氧合血红蛋白浓度仅受温湿度结合效应的影响,不受其单独影响,这揭示了湿热环境条件下复杂的生理应激反应。此外,研究发现,湿热环境特别影响矿工的前额叶区域,而辅助运动区的反应没有显示出同等显著性。该结果为后续预警模型的建立提供了数据支持和理论基础。

为实现对采掘工作面湿热环境下矿工不安全行为的检测与预警,利用生成对抗网络(GAN)粒子群优化(PSO)算法对数据集和随机森林模型进行优化,并在此基础上构建了湿热环境中矿工不安全行为分级预警模型。GAN的应用确保在数据受限情况下模型训练的充足性和多样性,而PSO的使用提高了随机森林模型在处理复杂数据时的参数配置效率。优化后的随机森林模型在混合数据上表现出的预测准确率最高可达90%,说明模型能基于环境参数、生理和认知特征,对不安全行为进行有效分类和预警。此外,预警模型在辨识不同级别不安全行为风险方面也表现出了较高的准确性,对于安全管理人员在实时监测和干预中有效决策具有重要意义,有助于管理人员及时采取相应预防措施,有效降低事故发生率。

综上所述,本研究通过理论模型、实验分析和预警模型的构建,系统揭示了湿热环境对矿工不安全行为影响的认知神经机理,并提出切实可行的安全预警方案。研究不仅为科学制定煤矿安全政策、改善矿工工作条件、提升安全管理水平提供理论和技术支持,对推动煤矿行业的安全生产和可持续发展意义重大。

外文摘要:

China has abundant coal resources but is relatively short on oil and gas, making coal the primary energy source. Currently, the total coal resources amount to 597 trillion tons, with 53% buried deeper than 1,000 meters, necessitating deep mining. The humid and hot conditions in coal mines affect miners' health and efficiency, accelerate equipment aging, and increase safety risks. Research indicates that such environments impair cognitive functions like attention, judgment, and reaction time, impacting miners' adherence to safety protocols. However, most current studies focus on the influence of high thermal environment on miners' physiological response. It is not clear whether temperature will also affect miners' cognitive nerves, and whether there is a combination effect between temperature and humidity. This paper examines how hot and humid environments influence miners' unsafe behavior from a cognitive neuroscience perspective and proposes an early warning model to enhance safety management in mining operations. The main findings of this study are as follows:

Based on SOR (Stimulus-Organism Response) model, this study constructed a cognitive neural theory model of miners' unsafe behavior in hot and humid environment. In this model, "stimulus (S)" represents different temperature and humidity conditions; "Organic Response (O)" covers how these environmental stimuli affect the cognitive state of miners; The "Response (R)" section focuses on how these internal state changes affect actual behavior, especially unsafe behavior. It is found that the behavior of miners in hot and humid environment is not an isolated physiological or psychological event, but the result of the interaction of the two. The theoretical model not only reveals these interaction processes, but also provides a theoretical basis for the design and implementation of subsequent experiments.

In order to verify the negative effects of hot and humid environment on miners' behavior and cognitive neural mechanism, alertness experiment and working memory experiment were designed and implemented, and the effects of temperature and humidity on miners' cognitive neural mechanism and behavior were systematically evaluated. The experimental results show that with the increase of temperature and humidity, the reaction time of miners is significantly extended, the error rate is increased, and the working memory capacity is decreased. The oxygenated hemoglobin concentration was only affected by combination effect of temperature and humidity, and was not affected by it alone, which revealed the complex physiological stress response under the condition of hot and humid environment. In addition, the study found that the hot and humid environment particularly affected the miners' prefrontal regions, while the response in the auxiliary motor area did not show the same significance. The results provide data support and theoretical basis for the establishment of subsequent early warning models.

In order to realize the detection and early warning of miners' unsafe behavior in wet and hot environment of mining face, the data set and random forest model were optimized by PSO algorithm based on GAN, and the hierarchical early warning model of miners' unsafe behavior in wet and hot environment was constructed. The application of GAN ensures the adequacy and diversity of model training under data constraints, while the use of PSO improves the parameter configuration efficiency of random forest models when processing complex data. The optimized random forest model showed a prediction accuracy of up to 90% on mixed data, indicating that the model can effectively classify and warn unsafe behaviors based on environmental parameters, physiological and cognitive characteristics. In addition, the early warning model also shows high accuracy in identifying different levels of unsafe behavior risks, which is of great significance for safety managers in real-time monitoring and intervention decision-making, and helps managers to take appropriate preventive measures in time to effectively reduce the accident rate.

In summary, this study systematically revealed the cognitive neural mechanism of the influence of humid and hot environment on miners' unsafe behavior, and proposed a feasible safety early warning scheme. The research not only provides theoretical and technical support for scientific formulation of coal mine safety policies, improvement of miners' working conditions, and enhancement of safety management level, but also has great significance for promoting safe production and sustainable development of the coal mine industry.

参考文献:

[1] 郭奇峰, 蔡美峰, 吴星辉, 等. 面向2035年的金属矿深部多场智能开采发展战略[J]. 工程科学学报, 2022, 44(04): 476-486.

[2] 王金华, 谢和平, 刘见中, 等. 煤炭近零生态环境影响开发利用理论和技术构想[J]. 煤炭学报, 2018, 43(05): 1198-1209.

[3] 王连聪, 梁运涛, 罗海珠. 我国矿井热动力灾害理论研究进展与展望[J]. 煤炭科学技术, 2018, 46(07): 1-9.

[4] Song X, Xie Z. Research on Mine cooling measures for Zhang shuang lou coal mine[J]. International Symposium on Mine Safety Science and Engineering, 2013, 26: 1391-1397.

[5] Zhongpeng X. Distribution Law of High Temperature Mine’s Thermal Environment Parameters and Study of Heat Damage’s Causes[J]. Procedia Engineering, 2012, 43: 588-593.

[6] Li Z, Xu Y. Impact of the water evaporation on the heat and moisture transfer in a high-temperature underground roadway[J]. Case Studies in Thermal Engineering, 2021, 28: 101551.

[7] Xie H P. Research framework and anticipated results of deep rock mechanics and mining theory[J]. Advanced Engineering Sciences, 2017, 49(2): 1-16.

[8] He M chao. Application of HEMS cooling technology in deep mine heat hazard control[J]. Mining Science and Technology (China), 2009, 19(3): 269-275.

[9] 王经伟, 王建国. 矿井湿热环境下风速对人体生理应激的影响研究[D]. 西安科技大学, 2021.

[10] 苏昭桂, 董文庚, 程卫民. 高温矿井热舒适性及评价指标的研究[J]. 矿业安全与环保, 2008(3): 27-29+91.

[11] He M chao, Xie H ping, Peng S ping, et al. Study on rock mechanics in deep mining engineering[J]. Chin. J. Rock Mech. Eng., 2005, 24(16): 2803-2813.

[12] 何学秋. 安全工程学[M]. 中国矿业大学出版社, 2000.

[13] Xiaojie Y, Qiaoyun H, Jiewen P, et al. Progress of heat-hazard treatment in deep mines[J]. Mining Science and Technology (China), 2011, 21(2): 295-299.

[14] 应急管理部. 煤矿安全规程[EB/OL]. (2022-11-06). http://www.gov.cn/zhengce/2022-11/15/content_5712798.htm.

[15] He Manchao, Guo Pingye. Thermodynamic effects of deep rock masses and temperature control countermeasures[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(012): 2377-2393.

[16] 周刚, 程卫民, 诸葛福民, 等. 人因失误与人不安全行为相关原理的分析与探讨[J]. 中国安全科学学报, 2008(3): 10-14+176.

[17] Mitropoulos P, Cupido G, Namboodiri M. Cognitive Approach to Construction Safety: Task Demand-Capability Model[J]. Journal of Construction Engineering and Management, 2009, 135(9): 881-889.

[18] 曹庆仁. 基于安全行为的煤矿安全管理系统模型[J]. 煤矿安全, 2014, 45(4): 219-222.

[19] Li H, Lu M, Hsu S C, et al. Proactive behavior-based safety management for construction safety improvement[J]. Safety Science, 2015, 75: 107-117.

[20] Choi B, Lee S. An Empirically Based Agent-Based Model of the Sociocognitive Process of Construction Workers’ Safety Behavior[J]. Journal of Construction Engineering and Management, 2018, 144(2): 04017102.

[21] Shakerian M, Jahangiri M, Alimohammadlou M, et al. Individual cognitive factors affecting unsafe acts among Iranian industrial workers: An integrative meta-synthesis interpretive structural modeling (ISM) approach[J]. Safety Science, 2019, 120: 89-98.

[22] Mohandes S R, Sadeghi H, Fazeli A, et al. Causal analysis of accidents on construction sites: A hybrid fuzzy Delphi and DEMA℡ approach[J]. Safety science, 2022, 151: 105730.

[23] Haslam R A, Hide S A, Gibb A G F, et al. Contributing factors in construction accidents[J]. Applied Ergonomics, 2005, 36(4): 401-415.

[24] 叶贵, 李学征, 向卿婷, 等. 认知视角下建筑工人不安全行为文献计量研究[J]. 建设管理研究, 2021(1): 124-138.

[25] Ryan A. Heat stress management in underground mines[J]. International Journal of Mining Science and Technology, 2017, 27(4): 651-655.

[26] Shi X, Zhu N, Zheng G. The combined effect of temperature, relative humidity and work intensity on human strain in hot and humid environments[J]. Building and Environment, 2013, 69(11): 72-80.

[27] Zhao J, Zhu N, Lu S. Productivity model in hot and humid environment based on heat tolerance time analysis[J]. Building and environment, 2009, 44(11): 2202-2207.

[28] Brake D J, Bates G P. Deep body core temperatures in industrial workers under thermal stress[J]. Journal of occupational and environmental medicine, 2002: 125-135.

[29] Su Z G, Jiang Z A, Sun Z Q. Study on the heat hazard of deep exploitation in high-temperature mines and its evaluation index[J]. Procedia Earth and Planetary Science, 2009, 1(1): 414-419.

[30] Hong R, Liu H, Xiang C, et al. Visualization and analysis of mapping knowledge domain of oxidation studies of sulfide ores[J]. Environmental Science and Pollution Research, 2020, 27: 5809-5824.

[31] Dey N, Nath S, Sharma G, et al. An inventory approach to humanizing work and work environment in Indian underground coal mines[J]. Research Updates in Medical Sciences (Rumes), 2015, 3(3): 10-18.

[32] Michael Donoghue A. Heat illness in the US mining industry[J]. American journal of industrial medicine, 2004, 45(4): 351-356.

[33] Donoghue A M, Sinclair M J, Bates G P. Heat exhaustion in a deep underground metalliferous mine[J]. Occupational and environmental medicine, 2000, 57(3): 165-174.

[34] Shearer S. Dehydration and serum electrolyte changes in South African gold miners with heat disorders[J]. American Journal of Industrial Medicine, 2010, 17(2): 225-239.

[35] Saha R, Dey N C, Samanta A, et al. A comparison of cardiac strain among drillers of two different age groups in underground manual coal mines in India[J]. Journal of Occupational Health, 2008, 50(6): 512-520.

[36] Dey N, Pal S. A look into miners’ health in prevailing ambience of underground coal mine environment[J]. Journal of The Institution of Engineers (India): Series D, 2012, 93: 37-42.

[37] Lind A, Hellon R, Weiner J, et al. Tolerance of men to work in hot, saturated environments with reference to mines rescue operations[J]. British Journal of Industrial Medicine, 1955, 12(4): 296.

[38] Notley S R, Mitchell D, Taylor N A. A century of exercise physiology: concepts that ignited the study of human thermoregulation. Part 2: physiological measurements[J]. European Journal of Applied Physiology, 2023, 123(12): 2587-2685.

[39] Nybo L, Nielsen B. Hyperthermia and central fatigue during prolonged exercise in humans[J]. Journal of applied physiology, 2001, 91(3): 1055-1060.

[40] González-Alonso J, Teller C, Andersen S L, et al. Influence of body temperature on the development of fatigue during prolonged exercise in the heat[J]. Journal of applied physiology, 1999, 86(3): 1032-1039.

[41] Nybo L. Hyperthermia and fatigue[J]. Journal of Applied Physiology, 2008, 104(3): 871-878.

[42] Ross E Z, Cotter J D, Wilson L, et al. Cerebrovascular and corticomotor function during progressive passive hyperthermia in humans[J]. Journal of Applied Physiology, 2012, 112(5): 748-758.

[43] Vecellio D J, Kong Q, Kenney W L, et al. Greatly enhanced risk to humans as a consequence of empirically determined lower moist heat stress tolerance[J]. Proceedings of the National Academy of Sciences, 2023, 120(42): e2305427120.

[44] 黄林晟, 朱辉. 湿热环境暴露下人体认知表现衰减规律与评价[D]. 南华大学, 2022.

[45] Gaoua N, Racinais S, Grantham J, et al. Alterations in cognitive performance during passive hyperthermia are task dependent[J]. International Journal of Hyperthermia, 2011, 27(1): 1-9.

[46] Kiyatkin E A. Brain hyperthermia as physiological and pathological phenomena[J]. Brain research reviews, 2005, 50(1): 27-56.

[47] Racinais S, Gaoua N, Grantham J. Hyperthermia impairs short-term memory and peripheral motor drive transmission[J]. The Journal of physiology, 2008, 586(19): 4751-4762.

[48] Varghese B M, Hansen A, Bi P, et al. Are workers at risk of occupational injuries due to heat exposure? A comprehensive literature review[J]. Safety science, 2018, 110: 380-392.

[49] Pilcher J J, Nadler E, Busch C. Effects of hot and cold temperature exposure on performance: a meta-analytic review[J]. Ergonomics, 2002, 45(10): 682-698.

[50] Hancock P A, Ross J M, Szalma J L. A meta-analysis of performance response under thermal stressors[J]. Human factors, 2007, 49(5): 851-877.

[51] Zhang F, Haddad S, Nakisa B, et al. The effects of higher temperature setpoints during summer on office workers’ cognitive load and thermal comfort[J]. Building and environment, 2017, 123: 176-188.

[52] Zhang F, de Dear R. University students’ cognitive performance under temperature cycles induced by direct load control events[J]. Indoor air, 2017, 27(1): 78-93.

[53] Robin N, Coudevylle G R, Hue O. Attentional processes and performance in hot humid or dry environments: review, applied recommendation and new research directions[J]. Movement & Sport Sciences-Science & Motricité, 2021(112): 41-51.

[54] Behrens M, Gube M, Chaabene H, et al. Fatigue and human performance: an updated framework[J]. Sports medicine, 2023, 53(1): 7-31.

[55] Tian X, Fang Z, Liu W. Decreased humidity improves cognitive performance at extreme high indoor temperature[J]. Indoor air, 2021, 31(3): 608-627.

[56] Faerevik H, Eidsmo Reinertsen R. Effects of wearing aircrew protective clothing on physiological and cognitive responses under various ambient conditions[J]. Ergonomics, 2003, 46(8): 780-799.

[57] Gaoua N, Grantham J, Racinais S, et al. Sensory displeasure reduces complex cognitive performance in the heat[J]. Journal of environmental psychology, 2012, 32(2): 158-163.

[58] Qian S, Li M, Li G, et al. Environmental heat stress enhances mental fatigue during sustained attention task performing: evidence from an ASL perfusion study[J]. Behavioural brain research, 2015, 280: 6-15.

[59] Lan L, Lian Z, Pan L, et al. Neurobehavioral approach for evaluation of office workers’ productivity: The effects of room temperature[J]. Building and Environment, 2009, 44(8): 1578-1588.

[60] Zhang F, de Dear R, Hancock P. Effects of moderate thermal environments on cognitive performance: A multidisciplinary review[J]. Applied energy, 2019, 236: 760-777.

[61] Park R J, Behrer A P, Goodman J. Learning is inhibited by heat exposure, both internationally and within the United States[J]. Nature human behaviour, 2021, 5(1): 19-27.

[62] Parsons K. Human Thermal Environments: The Effects of Hot, Moderate, and Cold Environments on Human Health, Comfort, and Performance[M]. CRC Press, Inc., 2014.

[63] Hancock P A. The effect of skill on performance under an environmental stressor[J]. Aviation, space, and environmental medicine, 1986, 57(1): 59-64.

[64] Roghanchi P. Managing and controlling the thermal environment in underground metal mines[D]. University of Nevada, Reno, 2017.

[65] Racinais S, Gaoua N, Grantham J. Hyperthermia impairs short-term memory and peripheral motor drive transmission[J]. The Journal of physiology, 2008, 586(19): 4751-4762.

[66] Todd G, Butler J E, Taylor J L, et al. Hyperthermia: a failure of the motor cortex and the muscle[J]. The Journal of physiology, 2005, 563(2): 621-631.

[67] Niendam T A, Laird A R, Ray K L, et al. Meta-analytic evidence for a super ordinate cognitive control network subserving diverse executive functions[J]. Cognitive, Affective, & Behavioral Neuroscience, 2012, 12: 241-268.

[68] Martinez K, Solana A B, Burgaleta M, et al. Changes in resting-state functionally connected parietofrontal networks after videogame practice[J]. Human Brain Mapping, 2013, 34(12): 3143-3157.

[69] Phipps-Nelson J, Redman J R, Dijk D J, et al. Daytime exposure to bright light, as compared to dim light, decreases sleepiness and improves psychomotor vigilance performance[J]. Sleep, 2003, 26(6): 695-700.

[70] Grier R A, Warm J S, Dember W N, et al. The vigilance decrement reflects limitations in effortful attention, not mindlessness[J]. Human factors, 2003, 45(3): 349-359.

[71] Freund D M, Wylie C D, Woodle C. The driver fatigue and alertness study: a plan for research[M]//Fatigue and Driving. Routledge, 2019: 33-39.

[72] Peppard P E, Young T, Palta M, et al. Prospective study of the association between sleep-disordered breathing and hypertension[J]. New England Journal of Medicine, 2000, 342(19): 1378-1384.

[73] Neigel A R, Claypoole V L, Smith S L, et al. Engaging the human operator: a review of the theoretical support for the vigilance decrement and a discussion of practical applications[J]. Theoretical issues in ergonomics science, 2020, 21(2): 239-258.

[74] Esterman M, Rothlein D. Models of sustained attention[J]. Current opinion in psychology, 2019, 29: 174-180.

[75] Pattyn N, Neyt X, Henderickx D, et al. Psychophysiological investigation of vigilance decrement: boredom or cognitive fatigue?[J]. Physiology & behavior, 2008, 93(1-2): 369-378.

[76] Thiffault P, Bergeron J. Fatigue and individual differences in monotonous simulated driving[J]. Personality and individual differences, 2003, 34(1): 159-176.

[77] Luque-Casado A, Perales J C, Cárdenas D, et al. Heart rate variability and cognitive processing: The autonomic response to task demands[J]. Biological psychology, 2016, 113: 83-90.

[78] Karthikeyan R, Mehta R K. Towards a closed-loop neurostimulation platform for augmenting operator vigilance[J]. 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2020: 3976-3983.

[79] Körber M, Cingel A, Zimmermann M, et al. Vigilance decrement and passive fatigue caused by monotony in automated driving[J]. Procedia Manufacturing, 2015, 3: 2403-2409.

[80] Bogler C, Mehnert J, Steinbrink J, et al. Decoding vigilance with NIRS[J]. PloS one, 2014, 9(7): e101729.

[81] 张楠. 基于深度学习的连续警觉度预测[D]. 上海交通大学, 2017.

[82] 石立臣. 基于脑电信号的警觉度估计研究[D]. 上海交通大学, 2012.

[83] 顾靖楠. 基于脑电信号的警觉度估计算法与实时监测研究[D]. 上海交通大学, 2013.

[84] 傅佳伟, 石立臣, 吕宝粮. 基于 EEG 的警觉度分析与估计研究综述[J]. 中国生物医学工程学报, 2009, 28(004): 589-596.

[85] 蔡浩宇. 基于前额眼电信号的警觉度估计模型研究[D]. 上海交通大学, 2013.

[86] 吴天翔. 基于视频人脸图像的警觉度估计研究[D]. 上海交通大学, 2013.

[87] 杨妍. 矿工疲劳与不安全行为的实验研究[D]. 西安科技大学, 2013.

[88] 郭孜政, 潘毅润, 吴志敏, 等. 疲劳对高铁司机持续性注意影响机制的 ERP 试验研究[J]. 中国安全科学学报, 2015, 25(8): 81-86.

[89] 冯慧平. 基于行为测量的煤矿安全生产激励机制研究[D]. 太原理工大学, 2013.

[90] Bonnefond A, Doignon-Camus N, Touzalin-Chretien P, et al. Vigilance and intrinsic maintenance of alert state: An ERP study[J]. Behavioural brain research, 2010, 211(2): 185-190.

[91] Doyle T, Treffner P, Barrett R, et al. Perceptual and biomechanical constraints on safe driving: Theoretical issues and experimental approach[J]. Road Safety Research, Policing and Education Conference, 2000: 17-22.

[92] Verster J C, Roth T. Vigilance decrement during the on-the-road driving tests: The importance of time-on-task in psychopharmacological research[J]. Accident Analysis & Prevention, 2013, 58: 244-248.

[93] Shimshoni Y, Farah H, Lotan T, et al. Effects of parental vigilant care and feedback on novice driver risk[J]. Journal of adolescence, 2015, 38: 69-80.

[94] Lee B G, Lee B L, Chung W Y. Wristband-type driver vigilance monitoring system using smartwatch[J]. IEEE Sensors Journal, 2015, 15(10): 5624-5633.

[95] Wickens C D, Hollands J G. Engineering Psychology and Human Performance. (2000)[M]. Engineering Psychology and Human Performance, 2000.

[96] 张世娟, 卢洁, 王晓怡, 等. 正常老年人数字记忆功能的磁共振成像[J]. 中国老年学杂志, 2011, 31(3): 384-386.

[97] 赵鑫, 周仁来. 工作记忆: 人类高级认知活动的核心[J]. 北京师范大学学报: 社会科学版, 2010(5): 38-44.

[98] Weiss H M, Cropanzano R. Affective events theory[J]. Research in organizational behavior, 1996, 18(1): 1-74.

[99] 陶爱华, 厉行, 潘发达. 知觉负荷与负性情绪对工作记忆的影响: 一项 ERP 的研究[J]. 心理学探新, 2016, 36(3): 227-233.

[100] 杨婷, 赵鑫, 李恺岳. 策略的使用对工作记忆训练迁移效应的影响[J]. 心理科学, 2023, 46(04): 841-847.

[101] 曾宁宁, 李新宇. 急性酒精摄入对视觉工作记忆中运动客体存储的影响[D]. 浙江师范大学, 2020.

[102] 马海林, 党鹏, 苏瑞, 等. 高海拔暴露时间对工作记忆的影响——一项追踪研究[J]. 高原科学研究, 2022, 6(02): 42-50.

[103] 周灿灿, 游旭群. 工作记忆和风险取向对经验决策的影响[D]. 陕西师范大学, 2018.

[104] Ross V, Jongen E, Wang W, et al. Does Working Memory Capacity Offer Protection to Driving Performance When Working Memory Load Increases?[J]. TRB 92th Annual Meeting, 2013, 13: 4639.

[105] Van de Weijer-Bergsma E, Kroesbergen E H, Van Luit J E. Verbal and visual-spatial working memory and mathematical ability in different domains throughout primary school[J]. Memory & cognition, 2015, 43: 367-378.

[106] 袁晓芳, 曹玉静, 孙林辉, 等. 煤矿调度室操作员不同情绪状态下工作记忆表现及脑电特征[J]. 中国安全生产科学技术, 2023, 19(05): 101-108.

[107] 朱荣娟, 游旭群. 任务负荷和工作记忆对航空听觉警报失聪的影响机制[D]. 陕西师范大学, 2021.

[108] Wijeakumar S, Huppert T J, Magnotta V A, et al. Validating an image-based fNIRS approach with fMRI and a working memory task[J]. NeuroImage, 2017, 147: 204-218.

[109] Takeuchi H, Magistro D, Kotozaki Y, et al. Effects of simultaneously performed dual-task training with aerobic exercise and working memory training on cognitive functions and neural systems in the elderly[J]. Neural Plasticity, 2020, 2020: 1-17.

[110] 江文涛, 杨硕. 脑疲劳对不同工作记忆负荷下脑网络的影响[D]. 河北工业大学, 2023.

[111] Kazemi R, Haidarimoghadam R, Motamedzadeh M, et al. Effects of shift work on cognitive performance, sleep quality, and sleepiness among petrochemical control room operators[J]. Journal of circadian rhythms, 2016, 14.

[112] Rouch I, Wild P, Ansiau D, et al. Shiftwork experience, age and cognitive performance[J]. Ergonomics, 2005, 48(10): 1282-1293.

[113] Liu T, Pelowski M, Pang C, et al. Near-infrared spectroscopy as a tool for driving research[J]. Ergonomics, 2016, 59(3): 368-379.

[114] Liu T. Positive correlation between drowsiness and prefrontal activation during a simulated speed-control driving task[J]. Neuroreport, 2014, 25(16): 1316-1319.

[115] Anderson D E, Bader J P, Boes E A, et al. Glaucomatous visual fields and neurocognitive function are independently associated with poor lane maintenance during driving simulation[J]. BMC ophthalmology, 2020, 20(1): 1-10.

[116] Rupp G, Berka C, Meghdadi A H, et al. EEG-based neurocognitive metrics may predict simulated and on-road driving performance in older drivers[J]. Frontiers in human neuroscience, 2019, 12: 532.

[117] Qiao W, Liu Q, Li X, et al. Using data mining techniques to analyze the influencing factor of unsafe behaviors in Chinese underground coal mines[J]. Resources Policy, 2018, 59: 210-216.

[118] Liu R, Cheng W, Yu Y, et al. Human factors analysis of major coal mine accidents in China based on the HFACS-CM model and AHP method[J]. International journal of industrial ergonomics, 2018, 68: 270-279.

[119] Wang C, Wang J, Wang X, et al. Exploring the impacts of factors contributing to unsafe behavior of coal miners[J]. Safety science, 2019, 115: 339-348.

[120] Harris D, Li W C. Using Neural Networks to predict HFACS unsafe acts from the pre-conditions of unsafe acts[J]. Ergonomics, 2019, 62(2): 181-191.

[121] Szczepanski S M, Knight R T. Insights into human behavior from lesions to the prefrontal cortex[J]. Neuron, 2014, 83(5): 1002-1018.

[122] Carlén M. What constitutes the prefrontal cortex?[J]. Science, 2017, 358(6362): 478-482.

[123] Wang Y, Dai C, Shao Y, et al. Changes in ventromedial prefrontal cortex functional connectivity are correlated with increased risk-taking after total sleep deprivation[J]. Behavioural brain research, 2022, 418: 113674.

[124] Borragán G, Guerrero-Mosquera C, Guillaume C, et al. Decreased prefrontal connectivity parallels cognitive fatigue-related performance decline after sleep deprivation. An optical imaging study[J]. Biological psychology, 2019, 144: 115-124.

[125] Dehais F, Hodgetts H M, Causse M, et al. Momentary lapse of control: A cognitive continuum approach to understanding and mitigating perseveration in human error[J]. Neuroscience & Biobehavioral Reviews, 2019, 100: 252-262.

[126] Curtin A, Ayaz H. The age of neuroergonomics: towards ubiquitous and continuous measurement of brain function with fNIRS[J]. Japanese Psychological Research, 2018, 60(4): 374-386.

[127] Pan Y, Borragán G, Peigneux P. Applications of functional near-infrared spectroscopy in fatigue, sleep deprivation, and social cognition[J]. Brain Topography, 2019, 32: 998-1012.

[128] Tehrani B M, Wang J, Truax D. Assessment of mental fatigue using electroencephalography (EEG) and virtual reality (VR) for construction fall hazard prevention[J]. Engineering, construction and architectural management, 2022, 29(9): 3593-3616.

[129] Qin J, Han S. Neurocognitive mechanisms underlying identification of environmental risks[J]. Neuropsychologia, 2009, 47(2): 397-405.

[130] Hasanzadeh S, Esmaeili B, Dodd M D. Measuring the impacts of safety knowledge on construction workers’ attentional allocation and hazard detection using remote eye-tracking technology[J]. Journal of management in engineering, 2017, 33(5): 04017024.

[131] Fang D, Zhao C, Zhang M. A cognitive model of construction workers’ unsafe behaviors[J]. Journal of Construction Engineering and Management, 2016, 142(9): 04016039.

[132] Wickens C D, Hollands J G. Engineering Psychology and Human Performance (3rd Edition)[M]. Engineering Psychology and Human Performance, 2021.

[133] 张雅, 叶贵. 建筑工人安全行为的惩罚效用实验研究[D]. 重庆大学, 2022.

[134] Fu H, Qiu W, Ma H, et al. Neurocognitive mechanisms underlying deceptive hazard evaluation: an event-related potentials investigation[J]. PLoS One, 2017, 12(8): e0182892.

[135] 曾祥思, 周灿灿, 兰继军. 认知冲突对飞行员复飞决策的影响:航空安全的神经工效学方法[J]. 第十八届全国心理学学术会议, 2015: 2.

[136] Choi B, Jebelli H, Lee S. Feasibility analysis of electrodermal activity (EDA) acquired from wearable sensors to assess construction workers’ perceived risk[J]. Safety science, 2019, 115: 110-120.

[137] Liao P C, Liu M, Su Y S, et al. Estimating the influence of improper workplace environment on human error: Posterior predictive analysis[J]. Advances in civil engineering, 2018, 2018: 5078906.

[138] Liao P C, Ma Z, Chong H Y. Identifying effective management factors across human errors–A case in elevator installation[J]. KSCE Journal of Civil Engineering, 2018, 22(9): 3204-3214.

[139] 亚理斯多德. 诗学.诗艺[M]. 人民文学出版社, 1988.

[140] 达马西奥. 笛卡尔的错误:情绪,推理和人脑[M]. 教育科学出版社, 2007.

[141] 休姆. 人类理解研究.重印第1版[M]. 商务印书馆, 1957.

[142] 康德. 判断力批判.上卷[M]. 三联书店, 2011.

[143] Reason J. Human error[M]. Cambridge university press, 1990.

[144] Wehner R, Michel B, Antonsen P. Visual navigation in insects: coupling of egocentric and geocentric information[J]. Journal of Experimental Biology, 1996, 199(1): 129-140.

[145] Swain A D, Guttmann H E. Handbook of human-reliability analysis with emphasis on nuclear power plant applications. Final report[R]. Sandia National Labs., 1983.

[146] Leplat J, Rasmussen J. Analysis of human errors in industrial incidents and accidents for improvement of work safety[J]. Accident Analysis & Prevention, 1984, 16(2): 77-88.

[147] Lorenzo D K. A manager’s guide to reducing human errors: Improving human performance in the chemical industry[M]. Chemical Manufacturers Association, 1990.

[148] Li P cheng, Chen G hua, Dai L cao, et al. A fuzzy Bayesian network approach to improve the quantification of organizational influences in HRA frameworks[J]. Safety science, 2012, 50(7): 1569-1583.

[149] Heinrich H, Ainsworth C. Industrial accidents and safety[J]. Monthly Labor Review, 1930, 31(5): 72-87.

[150] 陈航. 基于 BBS 的建筑工人不安全行为纠正方法研究[D]. 东南大学, 2019.

[151] 闫文周, 杨翻艳, 杨波涛. 地铁施工班组安全氛围对人因风险传播的SEM研究[J]. 土木工程与管理学报, 2018, 35(02): 39-44.

[152] 李红霞, 田水承, 冯长根. 根据现代企业理论探讨煤炭企业安全管理问题[J]. 中国安全科学学报, 1999, 9(5): 32-36.

[153] 李红霞, 田水承. 煤矿安全经济效益分析与煤矿经营对策[J]. 煤炭经济研究, 1998(03): 37-38.

[154] 傅贵, 李宣东, 李军. 事故的共性原因及其行为科学预防策略[J]. 安全与环境学报, 2005, 5(1): 80-83.

[155] 田水承, 景国勋. 安全管理学[M]. 机械工业出版社, 2009.

[156] Vernon H M. The incidence of industrial accidents upon individuals: With special reference to multiple accidents[M]. HM Stationery Office, 1919.

[157] Heinricli H W. Industrial accident prevention[M]. Monthly Labor Review, 1931.

[158] Newbold E M. A Contribution to the Study of the Human Factor in the Causation of Accidents[M]. HM Stationery Office, 1926.

[159] Surry J. Industrial accident research: a human engineering approach[M]. University of Toronto, Department of Industrial Engineering, 1969.

[160] Lawrence A C. Human error as a cause of accidents in gold mining[J]. Journal of Safety Research, 1974, 6(2): 78-88.

[161] 傅贵. 安全管理学: 事故预防的行为控制方法[M]. 科学出版社, 2013.

[162] 刘辉, 郑向莞, 孙世梅, 等. 建筑施工高处坠落事故组织行为原因分析研究[J]. 工业安全与环保, 2019, 45(12): 19-22.

[163] Wigglesworth E C. Human factors in level crossing accidents[J]. Accident Analysis & Prevention, 1978, 10(3): 229-240.

[164] 李乃文, 张丽, 牛莉霞. 工作压力, 安全注意力与不安全行为的影响机理模型[J]. 中国安全生产科学技术, 2017, 13(6): 14-19.

[165] Wang X, Zhang C, Deng J, et al. Analysis of factors influencing miners’ unsafe behaviors in intelligent mines using a novel hybrid MCDM model[J]. International journal of environmental research and public health, 2022, 19(12): 7368.

[166] Kines P. Case studies of occupational falls from heights: Cognition and behavior in context[J]. Journal of Safety Research, 2003, 34(3): 263-271.

[167] Powell R, Copping A. Sleep deprivation and its consequences in construction workers[J]. Journal of construction engineering and management, 2010, 136(10): 1086-1092.

[168] 任玉辉, 秦跃平. 行为安全理论在煤矿安全管理中的应用[J]. 煤炭工程, 2012(11): 138-140.

[169] 仇国芳, 鱼馨水. 基于粗糙集的建筑工人安全认知提升策略研究[J]. 工业工程与管理, 2019, 24(04): 120-127.

[170] 曹庆仁, 李爽, 宋学锋. 煤矿员工的 “知-能-行” 不安全行为模式研究[J]. 中国安全科学学报, 2007, 17(12): 19-25.

[171] 刘超. 企业员工不安全行为影响因素分析及控制对策研究[J]. 中国地质大学 (北京), 2010: 1-2.

[172] Furnham A, Eysenck H. Personality at work: individual differences in the workplace[M]. Routledge, 2002.

[173] 张孟春, 方东平. 建筑工人不安全行为产生的认知原因和管理措施[J]. 土木工程学报, 2012, 45(S2): 297-305.

[174] 叶新凤, 李新春, 王智宁. 安全氛围对安全行为的影响:有调节的中介模型[J]. 科学决策, 2014(10): 18-38.

[175] 李红霞, 李思琦. 煤矿工人安全认知与不安全行为关系研究[J]. 煤矿安全, 2017, 48(11): 233-236.

[176] 吴超, 王秉. 行为安全管理元模型研究[J]. 中国安全生产科学技术, 2018, 14(2): 5-11.

[177] Jin Huimin, Pan Wei,, Wu Chao. Research on the mechanism of the implicit safety behavior intervention model[J]. Science & Technology for Development, 2019, 15(10): 1128-1134.

[178] Li Z, Bao X, Sheng Y, et al. Research on unsafe behavior of construction workers under the bidirectional effect of formal rule awareness and conformity mentality[J]. Frontiers in Psychology, 2021, 12: 794394.

[179] 贾红果, 曹庆贵, 王树立, 等. 矿井大数据分析及职工不安全行为预控研究[J]. 山东科技大学学报: 自然科学版, 2015, 34(2): 14-18.

[180] 李红霞, 徐浩冉, 田水承. 基于随机森林的矿工不安全行为预测预警模型[J]. 中国安全科学学报, 2022, 32(12): 10.

[181] 杨涛, 周鲁洁. 煤矿职工不安全行为预警控制系统开发[J]. 煤矿安全, 2019, 50(3): 4-5.

[182] 祁凯, 彭程. 基于OCS-EGM模型的网络集群行为监测及预警体系研究[J]. 情报杂志, 2019, 09(38): 134-141+149.

[183] Qiao W, Liu Q, Li X, et al. Using data mining techniques to analyze the influencing factor of unsafe behaviors in Chinese underground coal mines[J]. Resources Policy, 2018, 59: 210-216.

[184] 贾广社, 何长全, 陈玉婷, 等. 跨层次视角下建筑工人安全行为预警[J]. 同济大学学报 (自然科学版), 2019, 47(4): 568-574.

[185] 周鲁洁, 曹庆贵. 煤矿职工不安全行为仿真与预警控制系统研究[D]. 山东科技大学, 2018.

[186] 方伟立, 丁烈云. 工人不安全行为智能识别与矫正研究[J]. 华中科技大学学报(自然科学版), 2022, 50(08): 131-135.

[187] 李雯静, 刘鑫. 基于深度学习的井下人员不安全行为识别与预警系统研究[J]. 金属矿山, 2023(3): 177-184.

[188] 刘浩, 刘海滨, 孙宇, 等. 煤矿井下员工不安全行为智能识别系统[J]. 煤炭学报, 2021, 46(S2): 1159-1169.

[189] 田水承, 孙璐瑶, 唐艺璇, 等. 矿工不安全状态评价指标体系的构建与分析[J]. 西安科技大学学报, 2021, 41(03): 402-409.

[190] Tong R, Yang X, Li H, et al. Dual process management of coal miners’ unsafe behaviour in the Chinese context: Evidence from a meta-analysis and inspired by the JD-R model[J]. Resources Policy, 2019, 62: 205-217.

[191] Li X, Long Y, Yang C, et al. Research on psychophysiological characteristics of construction workers during consciously unsafe behaviors[J]. Heliyon, 2023, 9(10): e20484-e20484.

[192] 王越, 张驎. 矿工肌肉疲劳状况及事故预防研究[J]. 中国安全科学学报, 2021, 31(03): 191-196.

[193] DuPont E I. Safety Training Observation Program[J]. Wilmington, DE: DuPont Safety Services, 1986.

[194] 国家安全生产监督管理局. 企业职工伤亡事故分类标准[D]. 北京:中国标准出版社, 1986.

[195] Hockey G R J. Compensatory control in the regulation of human performance under stress and high workload: A cognitive-energetical framework[J]. Biological psychology, 1997, 45(1-3): 73-93.

[196] Hautus M J, Macmillan N A, Creelman C D. Detection theory: A user’s guide[M]. Routledge, 2021.

[197] Slovic P. Perception of risk[J]. science, 1987, 236(4799): 280-285.

[198] Ajzen I. The theory of planned behavior[J]. Organizational Behavior & Human Decision Processes, 1991, 50(2): 179-211.

[199] Corbetta M, Shulman G L. Control of goal-directed and stimulus-driven attention in the brain[J]. Nature reviews neuroscience, 2002, 3(3): 201-215.

[200] James W. The principles of psychology: Vol. 1[M]. Cosimo, Inc., 2007.

[201] Sarter M, Givens B, Bruno J P. The cognitive neuroscience of sustained attention: where top-down meets bottom-up[J]. Brain research reviews, 2001, 35(2): 146-160.

[202] Sturm W, Willmes K. On the functional neuroanatomy of intrinsic and phasic alertness[J]. Neuroimage, 2001, 14(1): S76-S84.

[203] Robertson I H, O’Connell R. Vigilant attention[J]. Attention and time, 2010, 79: 88.

[204] Fan J, McCandliss B D, Sommer T, et al. Testing the efficiency and independence of attentional networks[J]. Journal of cognitive neuroscience, 2002, 14(3): 340-347.

[205] 薛然婷. 基于心脑电的大脑警觉度检测技术研究[D]. 天津大学, 2014.

[206] Dorrian J, Rogers N L, Dinges D F. Psychomotor vigilance performance: Neurocognitive assay sensitive to sleep loss[J]. Sleep deprivation, 2004: 39-70.

[207] Lim J, Wu W chau, Wang J, et al. Imaging brain fatigue from sustained mental workload: an ASL perfusion study of the time-on-task effect[J]. Neuroimage, 2010, 49(4): 3426-3435.

[208] Basner M, Hermosillo E, Nasrini J, et al. Repeated administration effects on psychomotor vigilance test performance[J]. Sleep, 2018, 41(1): zsx187.

[209] Glahn D C, Kim J, Cohen M S, et al. Maintenance and manipulation in spatial working memory: dissociations in the prefrontal cortex[J]. Neuroimage, 2002, 17(1): 201-213.

[210] Owen A M, McMillan K M, Laird A R, et al. N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies[J]. Human brain mapping, 2005, 25(1): 46-59.

[211] Baddeley A. Working memory[J]. Science, 1992, 255(5044): 556-559.

[212] Kane M J, Conway A R, Miura T K, et al. Working memory, attention control, and the N-back task: a question of construct validity.[J]. Journal of Experimental psychology: learning, memory, and cognition, 2007, 33(3): 615.

[213] Pashler H. Familiarity and visual change detection[J]. Perception & psychophysics, 1988, 44: 369-378.

[214] Cowan N. The magical number 4 in short-term memory: A reconsideration of mental storage capacity[J]. Behavioral and brain sciences, 2001, 24(1): 87-114.

[215] Vogel E K, McCollough A W, Machizawa M G. Neural measures reveal individual differences in controlling access to working memory[J]. Nature, 2005, 438(7067): 500-503.

[216] Hancock P A. Sustained attention under thermal stress.[J]. Psychological bulletin, 1986, 99(2): 263.

[217] Cheung S S. Interconnections between thermal perception and exercise capacity in the heat[J]. Scandinavian journal of medicine & science in sports, 2010, 20: 53-59.

[218] Gaoua N. Cognitive function in hot environments: a question of methodology[J]. Scandinavian journal of medicine & science in sports, 2010, 20: 60-70.

[219] Zhang F, Haddad S, Nakisa B, et al. The effects of higher temperature setpoints during summer on office workers’ cognitive load and thermal comfort[J]. Building and environment, 2017, 123: 176-188.

[220] Taylor L, Watkins S L, Marshall H, et al. The impact of different environmental conditions on cognitive function: a focused review[J]. Frontiers in physiology, 2016, 6: 372.

[221] Cian C, Barraud P, Melin B, et al. Effects of fluid ingestion on cognitive function after heat stress or exercise-induced dehydration[J]. International Journal of Psychophysiology, 2001, 42(3): 243-251.

[222] Daanen H A, Van De Vliert E, Huang X. Driving performance in cold, warm, and thermoneutral environments[J]. Applied ergonomics, 2003, 34(6): 597-602.

[223] Basagaña X, Escalera-Antezana J P, Dadvand P, et al. High ambient temperatures and risk of motor vehicle crashes in Catalonia, Spain (2000–2011): a time-series analysis[J]. Environmental health perspectives, 2015, 123(12): 1309-1316.

[224] 唐倩, 朱兴林. 高温环境对驾驶行为的影响研究[J]. 人类工效学, 2023, 29(4): 32-38.

[225] Mitagvaria N, Bicher J, Devdariani M, et al. Autoregulation of the brain temperature during whole body hyperthermia[J]. Oncothermia Journal, 2013, 7: 62-68.

[226] 韩培立, 侯立仁, 董建凤, 等. 不同低温对二尖瓣置换病人脑氧代谢的影响[J]. 第一军医大学学报, 2003, 23(10): 1059-1061.

[227] Liu C, Yavar Z, Sun Q. Cardiovascular response to thermoregulatory challenges[J]. American Journal of Physiology-Heart and Circulatory Physiology, 2015, 309(11): H1793-H1812.

[228] Davis R E, McGregor G R, Enfield K B. Humidity: A review and primer on atmospheric moisture and human health[J]. Environmental research, 2016, 144: 106-116.

[229] Nunfam V F, Oosthuizen J, Adusei-Asante K, et al. Perceptions of climate change and occupational heat stress risks and adaptation strategies of mining workers in Ghana[J]. Science of the total environment, 2019, 657: 365-378.

[230] Racinais S, Gaoua N, Grantham J. Hyperthermia impairs short-term memory and peripheral motor drive transmission[J]. The Journal of physiology, 2008, 586(19): 4751-4762.

[231] Tan X R, Stephenson M C, Alhadad S B, et al. Elevated brain temperature under severe heat exposure impairs cortical motor activity and executive function[J]. Journal of Sport and Health Science, 2024, 13(2): 233-244.

[232] Lee W, Moon M, Kim H G, et al. Heat stress-induced memory impairment is associated with neuroinflammation in mice[J]. Journal of neuroinflammation, 2015, 12: 1-13.

[233] Salehinejad M A, Ghanavati E, Rashid M H A, et al. Hot and cold executive functions in the brain: A prefrontal-cingular network[J]. Brain and Neuroscience Advances, 2021, 5: 1-19.

[234] 刘锴, 姜庆军, 李勃, 等. 热应力下视觉注意网络变化的功能MRI研究[J]. 中华放射学杂志, 2013, 47(12): 1092-1097.

[235] 张锟, 娄明武. 视觉刺激药物依赖者脑温度改变的实验性研究[D]. 遵义医学院, 2014.

[236] 谭娟, 王晓明, 罗成, 等. 接触性热痛刺激健康成年人诱发的脑功能磁共振成像初步研究[J]. 中华神经科杂志, 2014, 47(5): 331-335.

[237] Pinti P, Cardone D, Merla A. Simultaneous fNIRS and thermal infrared imaging during cognitive task reveal autonomic correlates of prefrontal cortex activity[J]. Scientific reports, 2015, 5(1): 17471.

[238] Zhang Y, Jia M, Chen T, et al. Time course of cognitive functions and physiological response under heat exposure: Thermal tolerance exposure time based on ECG and fNIRS[J]. Building and Environment, 2024, 265: 111962.

[239] Zhang Y, Jia M, Li M, et al. Operators’ cognitive performance under extreme hot-humid exposure and its physiological-psychological mechanism based on ECG, fNIRS, and Eye Tracking[J]. arXiv preprint arXiv:2403.00020, 2024.

[240] Tian C, Li H, Tian S, et al. The neurocognitive mechanism linking temperature and humidity with miners’ working memory: an fNIRS study[J]. Frontiers in Human Neuroscience, 2024, 18.

[241] Karim H T, Fuhrman S I, Furman J M, et al. Neuroimaging to detect cortical projection of vestibular response to caloric stimulation in young and older adults using functional near-infrared spectroscopy (fNIRS)[J]. Neuroimage, 2013, 76: 1-10.

[242] Racz F S, Mukli P, Nagy Z, et al. Increased prefrontal cortex connectivity during cognitive challenge assessed by fNIRS imaging[J]. Biomedical optics express, 2017, 8(8): 3842-3855.

[243] Broadbent D P, D’Innocenzo G, Ellmers T J, et al. Cognitive load, working memory capacity and driving performance: A preliminary fNIRS and eye tracking study[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2023, 92: 121-132.

[244] Wang Peng. The Impact of Humidity in Underground Workplaces of Coal Mines on Workers’ Physical and Mental Health[J]. Occupational Health, 2018, 34(07): 872-875+883.

[245] Dinges D F, Powell J W. Microcomputer analyses of performance on a portable, simple visual RT task during sustained operations[J]. Behavior research methods, instruments, & computers, 1985, 17(6): 652-655.

[246] Jung C M, Ronda J M, Czeisler C A, et al. Comparison of sustained attention assessed by auditory and visual psychomotor vigilance tasks prior to and during sleep deprivation[J]. Journal of sleep research, 2011, 20(2): 348-355.

[247] Hu M, Shealy T. Application of functional near-infrared spectroscopy to measure engineering decision-making and design cognition: literature review and synthesis of methods[J]. Journal of Computing in Civil Engineering, 2019, 33(6): 04019034.

[248] Zhu Y, Rodriguez-Paras C, Rhee J, et al. Methodological approaches and recommendations for functional near-infrared spectroscopy applications in HF/E research[J]. Human factors, 2020, 62(4): 613-642.

[249] Oostenveld R, Praamstra P. The five percent electrode system for high-resolution EEG and ERP measurements[J]. Clinical neurophysiology, 2001, 112(4): 713-719.

[250] Kutner M H, Nachtsheim C J, Neter J, et al. Applied linear statistical models[M]. McGraw-hill, 2005.

[251] Tukey J W. The problem of multiple comparisons[M]. University of California Press, 1953.

[252] Montgomery D C, Peck E A, Vining G G. Introduction to linear regression analysis[M]. John Wiley & Sons, 2021.

[253] Cope M, Delpy D T. System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination[J]. Medical and Biological Engineering and Computing, 1988, 26: 289-294.

[254] Fishburn F A, Ludlum R S, Vaidya C J, et al. Temporal derivative distribution repair (TDDR): a motion correction method for fNIRS[J]. Neuroimage, 2019, 184: 171-179.

[255] Yücel M A, Lühmann A v, Scholkmann F, et al. Best practices for fNIRS publications[J]. Neurophotonics, 2021, 8(1): 012101-012101.

[256] Sitaram R, Zhang H, Guan C, et al. Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain–computer interface[J]. NeuroImage, 2007, 34(4): 1416-1427.

[257] Strangman G, Franceschini M A, Boas D A. Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters[J]. Neuroimage, 2003, 18(4): 865-879.

[258] Miller E K, Cohen J D. An integrative theory of prefrontal cortex function[J]. Annual review of neuroscience, 2001, 24(1): 167-202.

[259] Fairclough S H, Burns C, Kreplin U. FNIRS activity in the prefrontal cortex and motivational intensity: impact of working memory load, financial reward, and correlation-based signal improvement[J]. Neurophotonics, 2018, 5(3): 035001-035001.

[260] Hocking C, Silberstein R B, Lau W M, et al. Evaluation of cognitive performance in the heat by functional brain imaging and psychometric testing[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2001, 128(4): 719-734.

[261] Rasmussen P, Dawson E A, Nybo L, et al. Capillary-oxygenation-level-dependent near-infrared spectrometry in frontal lobe of humans[J]. Journal of Cerebral Blood Flow & Metabolism, 2007, 27(5): 1082-1093.

[262] Nogueira M G, Silvestrin M, Barreto C S, et al. Differences in brain activity between fast and slow responses on psychomotor vigilance task: an fNIRS study[J]. Brain imaging and behavior, 2022, 16(4): 1563-1574.

[263] Carlisle N B, Arita J T, Pardo D, et al. Attentional templates in visual working memory[J]. Journal of neuroscience, 2011, 31(25): 9315-9322.

[264] Unsworth N, Fukuda K, Awh E, et al. Working memory and fluid intelligence: Capacity, attention control, and secondary memory retrieval[J]. Cognitive psychology, 2014, 71: 1-26.

[265] Foster J J, Sutterer D W, Serences J T, et al. Alpha-band oscillations enable spatially and temporally resolved tracking of covert spatial attention[J]. Psychological science, 2017, 28(7): 929-941.

[266] Brady T F, Störmer V S, Alvarez G A. Working memory is not fixed-capacity: More active storage capacity for real-world objects than for simple stimuli[J]. Proceedings of the National Academy of Sciences, 2016, 113(27): 7459-7464.

[267] Tian C, Li H, Tian S, et al. Risk assessment of safety management audit based on fuzzy TOPSIS method[J]. Mathematical Problems in Engineering, 2020, 2020(1): 1612538.

[268] Chen C T. Extensions of the TOPSIS for group decision-making under fuzzy environment[J]. Fuzzy sets and systems, 2000, 114(1): 1-9.

[269] Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative Adversarial Nets[J]. Communications of the ACM, 2020, 63(11): 139-144.

[270] Markus R. What is principal component analysis[J]. Nat Biotechnol, 2008, 26(3): 303-304.

[271] Van der Maaten L, Hinton G. Visualizing data using t-SNE.[J]. Journal of machine learning research, 2008, 9(11): 2579-2605.

[272] Zhang H, Wang M. Search for the smallest random forest[J]. Statistics and its Interface, 2009, 2(3): 381.

[273] Robnik-Šikonja M. Improving random forests[J]. European conference on machine learning, 2004: 359-370.

[274] Lian H C, Lu B L. An algorithm for pruning redundant modules in min-ma modular network[J]. Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., 2005, 3: 1983-1988.

[275] Shen C, Li H. Boosting through optimization of margin distributions[J]. IEEE Transactions on Neural Networks, 2010, 21(4): 659-666.

[276] Leistner C, Saffari A, Santner J, et al. Semi-supervised random forests[J]. 2009 IEEE 12th international conference on computer vision, 2009: 506-513.

[277] Aeberhard S, Forina M. Wine[DS]. UCI Machine Learning Repository, 1991. DOI:10.24432/C5PC7J.

[278] Fisher R A. Iris[DS]. UCI Machine Learning Repository, 1988. DOI:10.24432/C56C76.

[279] James G, Witten D, Hastie T, et al. An Introduction to Statistical Learning[M]. Springer.

中图分类号:

 X921/TD79    

开放日期:

 2028-12-23    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式