- 无标题文档
查看论文信息

论文中文题名:

 富油煤热解孔隙结构演化规律及机制    

姓名:

 寇丙洋    

学号:

 20209226111    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质工程    

研究方向:

 富油煤地质与开发    

第一导师姓名:

 师庆民    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-18    

论文答辩日期:

 2023-06-04    

论文外文题名:

 Evolution and mechanism of tar-rich coal pore structure during pyrolysis    

论文中文关键词:

 富油煤 ; 热解 ; 孔隙结构 ; 封闭孔 ; 孔隙演化机制    

论文外文关键词:

 Tar-rich coal ; pyrolysis ; pore structure ; closed pore ; mechanisms of pore evolution    

论文中文摘要:

富油煤经中低温热解可以获得焦油和煤气,是一种集煤、油、气属性于一体的矿产资源,对减缓我国油气资源对外依存度具有重要意义。富油煤热解流体运移析出依赖于煤体孔隙结构在加热过程中的演变。开展富油煤热解过程中孔隙结构演化规律研究有助于深化热解流体运移和析出行为的认识。本研究以鄂尔多斯盆地延安组富油煤为研究对象,利用管式马弗炉在氮气气氛下进行热解实验,得到不同温度热处理残煤样品。通过体视、光学和扫描电子显微镜、低场核磁共振、低温氮气吸附等测试方法对热解过程中煤样孔隙结构(开放孔隙和封闭孔隙)的表面形貌以及演化特征进行了深入研究,结合热重分析、X射线衍射、红外光谱和13C核磁共振手段揭示了孔隙演化的微观机制。

研究发现:(1)煤体孔隙热演化呈现3个阶段:30-300℃时微孔占据主体地位,此阶段煤样不同组分由于热膨胀差异性产生水平及垂直裂隙;300-500℃时大量热解产物生成及逸出导致中大孔占比逐步升高,煤基质的流变性增强,且孔隙之间出现合并现象;>500℃时孔径整体增大,此阶段煤基质的收缩性明显增强,还出现大孔中发育小孔的现象。此外孔隙分形维数在热解过程中先降低后增加,分别对应热解孔隙生长合并和孔隙嵌套演化两个过程。(2)不同手段测得的封闭孔隙与开放孔隙的协同演化不一致。低温氮气吸附法测得2-50nm孔隙得出封闭孔随温度的演化规律与开放孔一致,表现为随着温度的升高均逐渐降低,500℃时达到最低,700℃时急剧增加。低场核磁共振法测得<450nm孔隙发现该孔径范围内封闭孔随温度的升高逐渐增多,而开放孔则是先减小后增大。(3)煤样在热解过程中孔隙结构的演化受控于大分子结构,剧烈热分解阶段孔隙结构的演化受控于脂肪结构,含氧结构次之。随着脂肪结构和含氧结构的减小,微孔占比减小,大孔占比增大。而热缩聚阶段孔隙的演化则与芳香结构密不可分。随着芳香环之间的不断缩合,芳香层片堆叠度和延展度增大,导致微孔占比升高,大孔占比降低。

论文外文摘要:

Tar-rich coal can gain tar and gas through medium and low temperature pyrolysis, which is a special mineral resource combining coal, oil and gas properties, and has great significance for reducing China's external dependence on oil and gas resources. The pyrolysis fluids produced by the pyrolysis of tar-rich coals transport and precipitate through channels such as pores. Therefore, the evolution of the pore structure largely influences the transport and precipitation behaviour of the pyrolysis fluids. Moreover, it may even enhance the secondary reaction of the pyrolysis fluid in the temperature field, affecting the yield of the pyrolysis fluid. Therefore, the study of the pore structure evolution during the tar-rich coal pyrolysis process can help to deepen the understanding of the transport and precipitation characteristics of the pyrolysis fluid during the tar-rich coal pyrolysis process.

In this study, using the tar-rich coal of the Yan'an Formation in the Ordos Basin as the research object, and pyrolysis experiments were carried out using a tube muffle furnace under an N2 atmosphere to obtain thermal treatment coal samples at different temperatures. The surface morphology and evolutionary characteristics of the pore structure (open and closed pores) of the coal samples during pyrolysis were investigated in depth using body vision microscopy, optical microscopy and scanning electron microscopy, low-field NMR, low-temperature nitrogen adsorption, thermogravimetric analysis, X-ray diffraction, Fourier transform infrared spectroscopy and 13C-NMR, revealing the microscopic mechanisms of pore evolution.

The main conclusions include: (1) the thermal evolution of the pores in the coal matrix exhibited three stages: 30-300°C, the micropores occupied the dominant position, and at this stage the different components of the coal sample produced horizontal and vertical fractures due to the difference in thermal expansion. 300-500°C, a large number of pyrolysis products were generated and escaped leading to the gradual increase the ratio of mesopores and macropores, the rheology of the coal matrix was enhanced, and the coalescence between pores appeared. >500°C, where the pore size increased overall. The shrinkage of the coal matrix enhanced significantly at this stage, and the development of small pores within large pores occurred. In addition, the pore fractal dimension decreased and then increased during the pyrolysis process, corresponding to the two processes of pyrolysis pore growth and coalescence and pore nesting evolution, respectively. (2) The synergistic evolution of closed and open pores was not consistent based on the different methods measured. Pore size of 2-50 nm pores measured by low-temperature nitrogen adsorption showed that the evolution of closed pores with temperature was consistent with that of open pores, showing a gradual decrease in closed pores with increasing temperature, reaching a minimum at 500°C and a sharp increase at 700°C. The pore size of <450 nm pores measured by low-field NMR showed a gradual increase in closed pores with increasing temperature, open pores were consistent with the evolution of the pore structure measured by low-temperature nitrogen adsorption. (3) The evolution of the coal pore structure during pyrolysis was controlled by the macromolecular structure. During the violent thermal decomposition stages, the evolution of the pore structure was controlled by aliphatic structure, followed by the oxygenated structure. As the aliphatic and oxygenated structures decreased, the ratio of micropores decreased and the ratio of macropores increased. During the thermal polycondensation stage, the evolution of the pore structure was closely linked to the aromatic structure. As the aromatic rings continue to condense with each other, the aromatic lamellae increased in stacking and ductility, resulting in a higher ratio of micropores and a lower ratio of macropores.

参考文献:

[1] 田倩茹. 我国能源对外依存度现状分析及对策研究[J]. 行政事业资产与财务, 2020, 15(12): 33-34.

[2] 王陆新, 王越, 娄钰. 我国能源资源供应安全风险研究[J]. 中国能源, 2021, 43(3): 59-63+82.

[3] 张一鸣. 中国油气对外依存度首次下降[N]. 中国经济时报, 2023-02-06(2).

[4] 严晓辉, 杨芊, 高丹, 等. 我国煤炭清洁高效转化发展研究[J]. 中国工程科学, 2022, 24(6): 19-25.

[5] 王双明, 师庆民, 王生全, 等. 富油煤的油气资源属性与绿色低碳开发[J]. 煤炭学报, 2021, 46(5): 1365-1377.

[6] 张宁, 许云, 乔军伟, 等. 陕北侏罗纪富油煤有机地球化学特征[J]. 煤田地质与勘探, 2021, 49(3): 42-49.

[7] Xie J, Xin L, Hu X, et al. Technical application of safety and cleaner production technology by underground coal gasification in China[J]. Journal of Cleaner Production, 2020, 250: 119487.

[8] Chen Z, Wu Y, Huang S, et al. Coking behavior and mechanism of direct coal liquefaction residue in coking of coal blending[J]. Fuel, 2020, 280: 118488.

[9] Yan J, Bai Z, Bai J, et al. Effects of organic solvent treatment on the chemical structure and pyrolysis reactivity of brown coal[J]. Fuel, 2014, 128: 39-45.

[10] Solomon P R, Fletcher T H, Pugmire R J. Progress in coal pyrolysis[J]. Fuel, 1993, 72(5): 587-597.

[11] Tian B, Qiao Y, Tian Y, et al. Investigation on the effect of particle size and heating rate on pyrolysis characteristics of a bituminous coal by TG–FTIR[J]. Journal of Analytical and Applied Pyrolysis, 2016, 121: 376-386.

[12] 宋强. 富油煤热解与赤铁矿石还原协同处理基础研究[D]. 北京: 中国矿业大学, 2019.

[13] 王琦. 低阶褐煤热解过程的原位红外及拉曼光谱研究[D]. 大连: 大连理工大学, 2016.

[14] Chen Y, Wang X, He R. Modeling changes of fractal pore structures in coal pyrolysis[J]. Fuel, 2011, 90(2): 499-504.

[15] Wang Z, Liang D, Li Y, et al. Influence of scale and atmosphere on the pyrolysis properties of large-scale bituminous coal[J]. Journal of Analytical and Applied Pyrolysis, 2021, 158: 105060.

[16] Simons G A. Role of pore structure in coal pyrolysis and gasification[J]. Prog. Energy Combust. Sci.;(United Kingdom), 1983, 9(4): 269-290.

[17] Bliek A, Van Poelje W M, Van Swaaij W P M, et al. Effects of intraparticle heat and mass transfer during devolatilization of a single coal particle[J]. AIChE journal, 1985, 31(10): 1666-1681.

[18] Chen Y, He R. Fragmentation and diffusion model for coal pyrolysis[J]. Journal of analytical and applied Pyrolysis, 2011, 90(1): 72-79.

[19] Chen Y, Zhang S, He R. Development of improved lattice fragmentation and diffusion model for coal pyrolysis, Part 2: Effect of intra-porous diffusion on the volatile yields[J]. Combustion Science and Technology, 2014, 186(6): 766-784.

[20] Nie B, Liu X, Yang L, et al. Pore structure characterization of different rank coals using gas adsorption and scanning electron microscopy[J]. Fuel, 2015, 158: 908-917.

[21] Alexeev A D, Vasilenko T A, Ulyanova E V. Closed porosity in fossil coals[J]. Fuel, 1999, 78(6): 635-638.

[22] 王锐, 夏玉成, 马丽. 榆神矿区富油煤赋存特征及其沉积环境研究[J]. 煤炭科学技术, 2020, 48(12): 192-197.

[23] 师庆民, 王双明, 王生全, 等. 神府南部延安组富油煤多源判识规律[J]. 煤炭学报, 2022, 47(5): 2057-2066.

[24] 杨甫, 段中会, 马丽, 等. 陕西省富油煤分布及受控地质因素[J]. 煤炭科学技术, 2023, 51(3): 171-181.

[25] 许婷, 李宁, 姚征, 等. 陕北榆神矿区富油煤分布规律及形成控制因素[J]. 煤炭科学技术, 2022, 50(3): 161-168.

[26] 谢青, 李宁, 姚征, 等. 黄陵矿区富油煤焦油产率特征及主控地质因素分析[J]. 中国煤炭, 2020, 46(11): 83-90.

[27] 姚征, 罗乾周, 李宁, 等. 陕北石炭–二叠纪富油煤赋存特征及影响因素[J]. 煤田地质与勘探, 2021, 49(3): 50-61+68.

[28] Shi Q, Li C, Wang S, et al. Variation of molecular structures affecting tar yield: A comprehensive analysis on coal ranks and depositional environments[J]. Fuel, 2023, 335: 127050.

[29] 王毅, 赵阳升, 冯增朝. 长焰煤热解过程中孔隙结构演化特征研究[J]. 岩石力学与工程学报, 2010, 29(09): 1859-1866.

[30] Maria M L, Gary L G, Paul H E. Use of controlled oxidation to increase the surface area of coal: application to a bituminous and a semi-anthracite coal[J]. Fuel, 1983, 62(12): 1393-1396.

[31] Xu S, Zhou Z, Yu G, et al. Effects of pyrolysis on the pore structure of four Chinese coals[J]. Energy & fuels, 2010, 24(2): 1114-1123.

[32] Yangsheng Z, Fang Q, Zhijun W, et al. Experimental investigation on correlation between permeability variation and pore structure during coal pyrolysis[J]. Transport in porous media, 2010, 82: 401-412.

[33] Wo J, Ge D, Huang Z, et al. Morphological characteristics of chars obtained from low-temperature pyrolysis of pulverized lignite[J]. Journal of Energy Engineering, 2018, 144(3): 04018016.

[34] Jiang L, Chen Z, Ali S M F. Thermal-hydro-chemical-mechanical alteration of coal pores in underground coal gasification[J]. Fuel, 2020, 262: 116543.

[35] 丘纪华. 煤粉在热分解过程中比表面积和孔隙结构的变化[J]. 燃料化学学报, 1994, 22(3): 316-320.

[36] Li T. The dynamic change of pore structure for the low-rank coal with various pretreatment temperatures: a case study from Southwestern Ordos Basin[J]. Geofluids, 2020, 2020: 1-13.

[37] Liu W, Niu S, Tang H, et al. Pore structure evolution during lignite pyrolysis based on nuclear magnetic resonance[J]. Case Studies in Thermal Engineering, 2021, 26: 101125.

[38] 周军, 张海, 吕俊复, 等. 高温下热解温度对煤焦孔隙结构的影响[J]. 燃料化学学报, 2007, 35(2): 155-159.

[39] Guinier A, Fournet G, Yudowitch K L. Small-angle scattering of X-rays[J]. General Theory, 1955, 14: 51-78.

[40] Mitropoulos A C, Stefanopoulos K L, Kanellopoulos N K. Coal studies by small angle X-ray scattering[J]. Microporous and mesoporous materials, 1998, 24(1-3): 29-39.

[41] Zaccai G, Jacrot B. Small angle neutron scattering[J]. Annual review of biophysics and bioengineering, 1983, 12(1): 139-157.

[42] He L, Melnichenko Y B, Mastalerz M, et al. Pore accessibility by methane and carbon dioxide in coal as determined by neutron scattering[J]. Energy & Fuels, 2012, 26(3): 1975-1983.

[43] Cai Y D, Liu D M, Pan Z J, et al. Pore structure of selected Chinese coals with heating and pressurization treatments[J]. Science China Earth Sciences, 2014, 57: 1567-1582.

[44] Niu Q, Pan J, Cao L, et al. The evolution and formation mechanisms of closed pores in coal[J]. Fuel, 2017, 200: 555-563.

[45] Pan J, Niu Q, Wang K, et al. The closed pores of tectonically deformed coal studied by small-angle X-ray scattering and liquid nitrogen adsorption[J]. Microporous and Mesoporous Materials, 2016, 224: 245-252.

[46] Shikina E V, Khabibulina E R, Mikhaylova E S, et al. Assessing the closed-pore content in coal at different metamorphic stages[J]. Coke and Chemistry, 2017, 60: 348-355.

[47] Si L, Li Z, Kizil M, et al. The influence of closed pores on the gas transport and its application in coal mine gas extraction[J]. Fuel, 2019, 254: 115605.

[48] Chen Y, Qin Y, Wei C, et al. Porosity changes in progressively pulverized anthracite subsamples: Implications for the study of closed pore distribution in coals[J]. Fuel, 2018, 225: 612-622.

[49] Rudnick L R, Tueting D. Investigation of free radicals produced during coal liquefaction using ESR[J]. Fuel, 1984, 63(2): 153-157.

[50] Tromp P J J, Moulijn J. Slow and rapid pyrolysis of coal[J]. New trends in coal science, 1988: 305-338.

[51] 刘振宇. 煤化学的前沿与挑战:结构与反应[J]. 中国科学: 化学, 2014, 44(9): 1431-1439.

[52] Goldberg I B, McKinney T M, Chung K E, et al. Radical formation during vacuum drying of Wyoming subbituminous and Morwell brown coals[J]. Fuel, 1986, 65(2): 241-247.

[53] Seehra M S, Ghosh B, Mullins S E. Evidence for different temperature stages in coal pyrolysis from in situ esr spectroscopy[J]. Fuel, 1986, 65(9): 1315-1316.

[54] Zhang S, Yan J, Hu Q, et al. Integrated NMR and FE-SEM methods for pore structure characterization of Shahejie shale from the Dongying Depression, Bohai Bay Basin[J]. Marine and Petroleum Geology, 2019, 100: 85-94.

[55] Sun Y, Zhai C, Xu J, et al. A method for accurate characterisation of the pore structure of a coal mass based on two-dimensional nuclear magnetic resonance T1-T2[J]. Fuel, 2020, 262: 116574.

[56] Liu Z, Liu D, Cai Y, et al. Application of nuclear magnetic resonance (NMR) in coalbed methane and shale reservoirs: A review[J]. International Journal of Coal Geology, 2020, 218: 103261.

[57] Qin L, Li S, Zhai C, et al. Changes in the pore structure of lignite after repeated cycles of liquid nitrogen freezing as determined by nitrogen adsorption and mercury intrusion[J]. Fuel, 2020, 267: 117214.

[58] Mehmood M A, Ahmad M S, Liu Q, et al. Helianthus tuberosus as a promising feedstock for bioenergy and chemicals appraised through pyrolysis, kinetics, and TG-FTIR-MS based study[J]. Energy Conversion and Management, 2019, 194: 37-45.

[59] Li H, Lin B, Yang W, et al. Experimental study on the petrophysical variation of different rank coals with microwave treatment[J]. International Journal of Coal Geology, 2016, 154: 82-91.

[60] Yao Y, Liu D, Che Y, et al. Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR)[J]. Fuel, 2010, 89(7): 1371-1380.

[61] Zhao Y, Lin B, Liu T, et al. Multifractal analysis of coal pore structure based on NMR experiment: A new method for predicting T2 cutoff value[J]. Fuel, 2021, 283: 119338.

[62] Thommes M, Kaneko K, Neimark A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure and applied chemistry, 2015, 87(9-10): 1051-1069.

[63] Ni G, Li S, Rahman S, et al. Effect of nitric acid on the pore structure and fractal characteristics of coal based on the low-temperature nitrogen adsorption method[J]. Powder Technology, 2020, 367: 506-516.

[64] Li T, Wu J, Wang X, et al. Particle size effect and temperature effect on the pore structure of low-rank coal[J]. ACS omega, 2021, 6(8): 5865-5877.

[65] Qi L, Tang X, Wang Z, et al. Pore characterization of different types of coal from coal and gas outburst disaster sites using low temperature nitrogen adsorption approach[J]. International Journal of Mining Science and Technology, 2017, 27(2): 371-377.

[66] Wang G, Wang K, Ren T. Improved analytic methods for coal surface area and pore size distribution determination using 77 K nitrogen adsorption experiment[J]. International Journal of Mining Science and Technology, 2014, 24(3): 329-334.

[67] Gan Q, Xu J, Peng S, et al. Effects of heating temperature on pore structure evolution of briquette coals[J]. Fuel, 2021, 296: 120651.

[68] Han F, Meng A, Li Q, et al. Thermal decomposition and evolved gas analysis (TG-MS) of lignite coals from Southwest China[J]. Journal of the Energy Institute, 2016, 89(1): 94-100.

[69] Qin L, Zhai C, Liu S, et al. Fractal dimensions of low rank coal subjected to liquid nitrogen freeze-thaw based on nuclear magnetic resonance applied for coalbed methane recovery[J]. Powder Technology, 2018, 325: 11-20.

[70] Liu C J, Wang G X, Sang S X, et al. Fractal analysis in pore structure of coal under conditions of CO2 sequestration process[J]. Fuel, 2015, 139: 125-132.

[71] Mahamud M, López Ó, Pis J J, et al. Textural characterization of coals using fractal analysis[J]. Fuel Processing Technology, 2003, 81(2): 127-142.

[72] Song Y, Zou Q, Su E, et al. Changes in the microstructure of low-rank coal after supercritical CO2 and water treatment[J]. Fuel, 2020, 279: 118493.

[73] Ouyang Z, Liu D, Cai Y, et al. Fractal analysis on heterogeneity of pore–fractures in middle–high rank coals with NMR[J]. Energy & Fuels, 2016, 30(7): 5449-5458.

[74] 翟成, 孙勇, 范宜仁, 等. 低场核磁共振技术在煤孔隙结构精准表征中的应用与展望[J]. 煤炭学报, 2022, 47(2): 828-848.

[75] Qin L, Zhai C, Liu S, et al. Changes in the petrophysical properties of coal subjected to liquid nitrogen freeze-thaw–a nuclear magnetic resonance investigation[J]. Fuel, 2017, 194: 102-114.

[76] 姚艳斌, 刘大锰. 基于核磁共振弛豫谱技术的页岩储层物性与流体特征研究[J]. 煤炭学报, 2018, 43(1): 181-189.

[77] Fleury M, Romero-Sarmiento M. Characterization of shales using T1–T2 NMR maps[J]. Journal of Petroleum Science and Engineering, 2016, 137: 55-62.

[78] 师庆民, 米奕臣, 王双明, 等. 富油煤热解流体滞留特征及其机制[J]. 煤炭学报, 2022, 47(3): 1329-1337.

[79] Sun Y, Zhai C, Xu J, et al. A method for accurate characterisation of the pore structure of a coal mass based on two-dimensional nuclear magnetic resonance T1-T2[J]. Fuel, 2020, 262: 116574.

[80] Zhen K, Zheng C, Li C, et al. Wettability and flotation modification of long flame coal with low-temperature pyrolysis[J]. Fuel, 2018, 227: 135-140.

[81] Mraw S C, Naas-O'Rourke D F. Water in coal pores: Low-temperature heat capacity behavior of the moisture in Wyodak coal[J]. Science, 1979, 205(4409): 901-902.

[82] Tian B, Qiao Y, Bai L, et al. Pyrolysis behavior and kinetics of the trapped small molecular phase in a lignite[J]. Energy Conversion and Management, 2017, 140: 109-120.

[83] 刘源, 贺新福, 杨伏生, 等. 热解温度及气氛变化对神府煤热解产物分布的影响[J]. 煤炭学报, 2015, 40(S2): 497-504.

[84] Gong X, Wang Z, Deng S, et al. Impact of the temperature, pressure, and particle size on tar composition from pyrolysis of three ranks of Chinese coals[J]. Energy & Fuels, 2014, 28(8): 4942-4948.

[85] Al Hinai A, Rezaee R, Esteban L, et al. Comparisons of pore size distribution: a case from the Western Australian gas shale formations[J]. Journal of Unconventional Oil and Gas Resources, 2014, 8: 1-13.

[86] Liu J G, Liu D M, Yao Y B, et al. Application of Low-Field Nuclear Magnetic Resonance (LFNMR) in Characterizing Coal Pores and Permeability[C]//Advanced Materials Research. Trans Tech Publications Ltd, 2013, 718: 1012-1017.

[87] Li S, Tang D, Pan Z, et al. Evaluation of coalbed methane potential of different reservoirs in western Guizhou and eastern Yunnan, China[J]. Fuel, 2015, 139: 257-267.

[88] Yang F, Ma D, Duan Z, et al. Microscopic Pore Structure Characteristics and Methane Adsorption of Vitrain and Durain[J]. Geofluids, 2020, 2020: 1-18.

[89] Si L, Li Z, Yang Y, et al. Experimental investigation for pore structure and CH4 release characteristics of coal during pulverization process[J]. Energy & Fuels, 2017, 31(12): 14357-14366.

[90] Zhang K, Li Y, He Y, et al. Volatile gas release characteristics of three typical Chinese coals under various pyrolysis conditions[J]. Journal of the Energy Institute, 2018, 91(6): 1045-1056.

[91] Shi L, Liu Q, Guo X, et al. Pyrolysis of coal in TGA: Extent of volatile condensation in crucible[J]. Fuel processing technology, 2014, 121: 91-95.

[92] Zhao Y, Wei Y, Wang Q, et al. The behavior of free radicals during the carbonization of anthracite briquette[J]. Fuel, 2021, 284: 118856.

[93] Shi L, Liu Q, Guo X, et al. Pyrolysis behavior and bonding information of coal—A TGA study[J]. Fuel Processing Technology, 2013, 108: 125-132.

[94] Scaccia S. TG–FTIR and kinetics of devolatilization of Sulcis coal[J]. Journal of Analytical and Applied Pyrolysis, 2013, 104: 95-102.

[95] Jayaraman K, Kok M V, Gokalp I. Thermogravimetric and mass spectrometric (TG-MS) analysis and kinetics of coal-biomass blends[J]. Renewable Energy, 2017, 101: 293-300.

[96] Lin Y, Li Q, Li X, et al. Pyrolysates distribution and kinetics of Shenmu long flame coal[J]. Energy conversion and management, 2014, 86: 428-434.

[97] Huang X, Cao J P, Zhao X Y, et al. Pyrolysis kinetics of soybean straw using thermogravimetric analysis[J]. Fuel, 2016, 169: 93-98.

[98] Xu M, Xin L, Liu W, et al. Study on the physical properties of coal pyrolysis in underground coal gasification channel[J]. Powder Technology, 2020, 376: 573-592.

[99] Han L, Zhou Z, Bollas G M. Heterogeneous modeling of chemical-looping combustion. Part 2: Particle model[J]. Chemical Engineering Science, 2014, 113: 116-128.

[100] Serio M A, Hamblen D G, Markham J R, et al. Kinetics of volatile product evolution in coal pyrolysis: experiment and theory[J]. Energy & Fuels, 1987, 1(2): 138-152.

[101] 杨瑞. 煤系石墨微观结构特征研究[D]. 邯郸: 河北工程大学, 2021.

[102] 李振涛. 煤储层孔裂隙演化及对煤层气微观流动的影响[D]. 北京: 中国地质大学, 2018.

[103] 刘通. 煤纳米孔隙及其吸附解吸演化规律的小角X射线散射研究[D]. 北京: 中国矿业大学, 2021.

[104] 周贺, 潘结南, 李猛, 等. 不同变质变形煤微晶结构的XRD试验研究[J]. 河南理工大学学报(自然科学版), 2019, 38(1): 26-35.

[105] Song H, Liu G, Zhang J, et al. Pyrolysis characteristics and kinetics of low rank coals by TG-FTIR method[J]. Fuel Processing Technology, 2017, 156: 454-460.

[106] 石磊. 煤共价键结构在热解过程中的阶段解离研究[D]. 北京: 北京化工大学, 2014.

[107] Liu J, Jiang X, Shen J, et al. Pyrolysis of superfine pulverized coal. Part 1. Mechanisms of methane formation[J]. Energy conversion and management, 2014, 87: 1027-1038.

[108] Liu J, Jiang X, Shen J, et al. Pyrolysis of superfine pulverized coal. Part 2. Mechanisms of carbon monoxide formation[J]. Energy conversion and management, 2014, 87: 1039-1049.

[109] Yu J, Lucas J A, Wall T F. Formation of the structure of chars during devolatilization of pulverized coal and its thermoproperties: A review[J]. Progress in energy and combustion science, 2007, 33(2): 135-170.

[110] Murakami K, Shirato H, Nishiyama Y. In situ infrared spectroscopic study of the effects of exchanged cations on thermal decomposition of a brown coal[J]. Fuel, 1997, 76(7): 655-661.

[111] 钮志远. 典型煤的官能团热解机理、动力学分析及影响因素研究[D]. 合肥: 中国科学技术大学, 2017.

[112] Ibarra J V, Munoz E, Moliner R. FTIR study of the evolution of coal structure during the coalification process[J]. Organic Geochemistry, 1996, 24(6-7): 725-735.

[113] Gupta R. Advanced coal characterization: a review[J]. Energy & Fuels, 2007, 21(2): 451-460.

[114] Yan J, Lei Z, Li Z, et al. Molecular structure characterization of low-medium rank coals via XRD, solid state 13C NMR and FTIR spectroscopy[J]. Fuel, 2020, 268: 117038.

[115] 秦红璐. 韩城矿区煤岩显微组分的大分子结构研究[D]. 太原: 太原理工大学, 2019.

[116] 张锐,夏阳超, 谭金龙, 等. 低阶煤分子碳结构的分析与研究[J]. 中国煤炭, 2018, 44(12): 88-94+116.

[117] Meng F, Yu J, Tahmasebi A, et al. Characteristics of chars from low-temperature pyrolysis of lignite[J]. Energy & Fuels, 2014, 28(1): 275-284.

[118] Gao Z, Zheng M, Zhang D, et al. Low temperature pyrolysis properties and kinetics of non-coking coal in Chinese western coals[J]. Journal of the Energy Institute, 2016, 89(4): 544-559.

[119] 宋昱, 朱炎铭, 李伍. 东胜长焰煤热解含氧官能团结构演化的13C-NMR和FT-IR分析[J]. 燃料化学学报, 2015, 43(5): 519-529.

[120] Wang Q, Hou Y, Wu W, et al. A study on the structure of Yilan oil shale kerogen based on its alkali-oxygen oxidation yields of benzene carboxylic acids, 13C NMR and XPS[J]. Fuel Processing Technology, 2017, 166: 30-40.

[121] 刘宇. 煤镜质组结构演化对甲烷吸附的分子级作用机理[D]. 徐州: 中国矿业大学, 2019.

中图分类号:

 TQ530.2    

开放日期:

 2023-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式