- 无标题文档
查看论文信息

论文中文题名:

 护盾式掘进机器人系统纠偏控制研究    

姓名:

 周创    

学号:

 18305201004    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085201    

学科名称:

 工学 - 工程 - 机械工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 机械工程学院    

专业:

 机械工程    

研究方向:

 智能检测与控制    

第一导师姓名:

 张旭辉    

第一导师单位:

  西安科技大学    

第二导师姓名:

 赵友军    

论文提交日期:

 2021-06-23    

论文答辩日期:

 2021-06-01    

论文外文题名:

 Research on Rectification Control of Shield Type Tunneling Robot System    

论文中文关键词:

 巷道掘进 ; 护盾式掘进机器人 ; 位姿测量 ; 纠偏控制    

论文外文关键词:

 Roadway excavation ; shield type excavation robot ; pose measurement ; deviation correction control    

论文中文摘要:

根据国家“加快煤矿智能化发展”的战略部署,构建安全、绿色、高效、智能的掘进机器人系统,提升我国掘进装备的智能化水平成为了现阶段的重要目标。目前,国内外研究者对巷道定向掘进技术进行了大量研究,由于井下复杂环境、围岩压力不均、掘进装备定位不准所导致的掘进偏航问题仍然存在,因此对掘进装备精确定位与纠偏控制研究可以推动巷道定向掘进技术的发展,对于巷道掘进质量和效率的提升具有重要意义。

论文针对护盾式掘进机器人系统掘进方向控制难题,通过对比现阶段国内外掘进装备纠偏控制方法,提出了一种基于系统位姿与油缸行程负反馈的纠偏控制方案,该方案采用“全站仪+惯导”的组合定位方法测量系统位姿,结合拉绳传感器测量油缸行程,构建巷道掘进纠偏控制系统,对护盾式掘进机器人系统的位姿进行动态调整,以实现护盾式掘进机器人系统的纠偏控制。

针对煤矿井下掘进装备位姿调整过程中存在的精确定位难题,研究了一种“全站仪+惯导”的组合定位方法,采用全站仪测量技术,研究单棱镜定位原理,建立系统位姿解算模型,利用向量夹角的姿态解算算法计算出全站仪坐标系下系统位姿,结合惯导测量的系统位姿,经过数据融合提高位姿测量数据可靠性,根据系统位姿解算模型,进行坐标转换,得到巷道坐标系下系统位姿,从而实现护盾式掘进机器人系统的精确定位。

针对护盾式掘进机器人系统纠偏调整控制难题,研究了一种油缸行程精确控制方法,分析了系统纠偏控制机理与控制策略,得到纠偏控制的实质是对伸缩油缸行程的精确控制,建立系统位姿纠偏控制模型,推导出系统纠偏量与伸缩油缸行程控制量间的数学公式,根据位姿偏差进行纠偏轨迹规划,采用PID控制算法对伸缩油缸行程进行精确控制,利用油缸行程差实现护盾式掘进机器人系统的纠偏调整。

最后,搭建护盾式掘进机器人系统位姿测量实验平台,进行位姿测量精度验证;搭建护盾式掘进机器人系统纠偏控制实验平台,对纠偏性能进行验证。实验结果表明:“全站仪+惯导”的组合定位方法的定位精度达到了设计要求,在位姿测量的基础上,根据偏差大小对油缸行程进行精确控制,实现了护盾式掘进机器人系统纠偏控制功能,满足巷道定向掘进的要求。

论文外文摘要:

According to the national strategic deployment of "accelerating the development of coal mine intelligence", building a safe, green, efficient, and intelligent tunneling robot system and improving the intelligence level of my country's tunneling equipment has become an important goal at this stage. At present, domestic and foreign researchers have conducted a lot of research on the technology of directional tunneling. Due to the complex underground environment, uneven surrounding rock pressure, and the inaccurate positioning of the tunneling equipment, the tunneling yaw problem still exists. Therefore, the tunneling equipment is accurately positioned and corrected. Control research can promote the development of roadway directional excavation technology, and is of great significance to the improvement of roadway excavation quality and efficiency.

Aiming at the problem of shield type tunneling robot system's tunneling direction control problem, by comparing the current correction control methods of tunneling equipment at home and abroad, this paper proposes a correction control scheme based on the negative feedback of system pose and cylinder stroke. This scheme adopts "total station + inertia". The combined positioning method of "guide" measures the system's pose, combined with the cable sensor to measure the cylinder stroke, constructs a roadway excavation correction control system, and dynamically adjusts the pose of the shield type tunneling robot system to realize the correction control of the intelligent tunneling robot system.

Aiming at the problem of precise positioning in the process of adjusting the position and attitude of underground excavation equipment in coal mines, a combined positioning method of "total station + inertial navigation" is studied. The total station measurement technology is used to analyze and study the single prism positioning principle and establish the system position. The pose calculation model uses the pose calculation algorithm of the vector included angle to calculate the system pose in the total station coordinate system, combined with the system pose measured by the inertial navigation, and improves the reliability of the pose data through data fusion. According to the system pose solution Calculate the model and perform coordinate conversion to obtain the system pose under the roadway coordinate system, so as to realize the precise positioning of the shield type tunneling robot system.

Aiming at the problem of correcting and adjusting the intelligent tunneling robot system, a precise control method of cylinder stroke is studied, and the system's correcting control mechanism and control strategy are analyzed. The essence of correcting control is to accurately control the stroke of the telescopic cylinder, and establish the system's posture correction control. Model, derive the mathematical formula between the system correction amount and the telescopic cylinder stroke control amount, plan the correction trajectory according to the posture deviation, use the PID control algorithm to accurately control the telescopic cylinder stroke, and use the cylinder stroke difference to realize the correction of the intelligent tunneling robot system Adjustment.

Finally, build an shield type tunneling robot system pose measurement platform to verify the accuracy of the pose measurement; build an shield type tunneling robot system correction control experimental platform to verify the correction performance. The experimental results show that the positioning accuracy of the "total station + inertial navigation" combined positioning method meets the design requirements. Based on the position and attitude measurement, the cylinder stroke is accurately controlled according to the deviation, and the shield type tunneling robot system rectification control is realized. Function to meet the requirements of directional excavation of roadways.

参考文献:

[1] 王国法,杜毅博.智慧煤矿与智能化开采技术的发展方向[J].煤炭科学技术.2019,47(01):1-10.

[2] 王显政.我国煤矿安全生产50年回顾与展望[J].煤矿安全,2020,51(10):1-4.

[3] 马宏伟,王鹏,张旭辉,等.煤矿巷道护盾式掘进机器人系统关键技术研究[J].西安科技大学学报,2020,40(05):751-759.

[4] 胡炳南,张鹏,张风达.我国煤矿安全高效生产实践与发展对策[J].煤炭经济研究,2019,39(04):4-9.

[5] 王步康.煤矿巷道掘进技术与装备的现状及趋势分析[J].煤炭科学技术,2020,48(11):1-11.

[6] 郝建生.煤矿巷道掘进装备关键技术现状和展望[J].煤炭科学技术,2014,42(08):69-74.

[7] 杨健健,张强,吴淼,等.巷道智能化掘进的自主感知及调控技术研究进展[J].煤炭学报,2020,45(06):2045-2055.

[8] 项杰,杨尚武.悬臂式掘进机导航技术现状及其发展[J].科技创新与应用,2019(14):160-161.

[9] 国家安全监管总局关于开展“机械化换人、自动化减人”科技强安专项行动的通知[J].国家安全生产监督管理总局国家煤矿安全监察局公告,2015(07):13-18.

[10] 王国法,刘峰,孟祥军,等.煤矿智能化(初级阶段)研究与实践[J].煤炭科学技术,2019,47(08):1-36.

[11] 王国法,任怀伟,庞义辉,等.煤矿智能化(初级阶段)技术体系研究与工程进展[J].煤炭科学技术,2020,48(07):1-27.

[12] 郑伟雄,沈阳,马浚清,等.基于捷联惯导的悬臂式掘进机位姿解算算法研究[J].煤炭工程,2020,52(09):170-176.

[13] Shen Y, Fu S, Wang P, et al. A Scheme of MEMS-SINS Initial Alignment Aided by Laser Spot Perception System for the Boom-Type Roadheader[J]. Mathematical Problems in Engineering, 2020.

[14] 冯大龙. 捷联式惯导系统在无人掘进机中的应用[D].重庆大学,2007.

[15] 田原.基于零速修正的掘进机惯性导航定位方法[J].工矿自动化,2019,45(08):70-73.

[16] Reid D C, Hainsworth D W, McPhee R J. Lateral guidance of highwall mining machinery using inertial navigation[J]. 1997.

[17] Hlophe K, Du Plessis F. Implementation of an autonomous underground localization system[C]//2013 6th Robotics and Mechatronics Conference (RobMech). IEEE, 2013: 87-92.

[18] Lin J, Gao K, Gao Y, et al. Combined measurement system for double shield tunnel boring machine guidance based on optical and visual methods[J]. JOSA A, 2017, 34(10): 1810-1816.

[19] 陶云飞.掘进机位姿激光自动测量方法及系统研究[D].中国矿业大学(北京),2017.

[20] 朱信平,李睿,高娟,等.基于全站仪的掘进机机身位姿参数测量方法[J].煤炭工程,2011(06):113-115.

[21] 张旭辉,刘博兴,张超,等.掘进机全站仪与捷联惯导组合定位方法[J].工矿自动化,2020,46(09):1-7.

[22] 张旭辉,张超,周创,等.一种基于单棱镜旋转装置的掘进机位姿测量方法及系统[P].陕西省:CN112344937A,2021-02-09.

[23] 张旭辉,刘博兴,张超,等.基于模糊PID的护盾式掘进机器人系统轨迹纠偏[J].煤矿机械,2021,42(05):194-197.

[24] 田原.悬臂式掘进机导航技术现状及其发展方向[J].工矿自动化,2017,43(08):37-43.

[25] Barrett J M, Gennert M A, Michalson W R, et al. Development of a low-cost, self-contained, combined vision and inertial navigation system[C]//2013 IEEE Conference on Technologies for Practical Robot Applications (TePRA). IEEE, 2013: 1-6.

[26] 毛清华,张旭辉,马宏伟.多传感器信息的悬臂式掘进机空间位姿监测系统研究[J].煤炭科学技术,2018,46(12):41-47.

[27] 杨文娟,张旭辉,马宏伟,等.悬臂式掘进机机身及截割头位姿视觉测量系统研究[J].煤炭科学技术.2019,47(06):50-57.

[28] 曾庆化,王敬贤,孟骞.基于UWB优化配置的室内行人导航方法[J].中国惯性技术学报,2017,25(02):186-191.

[29] Zhang Y, Tan X, Zhao C. UWB/INS integrated pedestrian positioning for robust indoor environments[J]. IEEE Sensors Journal, 2020, 20(23): 14401-14409.

[30] 黄东,杨凌辉,罗文,等.基于视觉/惯导的掘进机实时位姿测量方法研究[J].激光技术,2017,41(01):19-23.

[31] 项杰,杨尚武.悬臂式掘进机导航技术现状及其发展[J].科技创新与应用,2019(14):160-161.

[32] 耿兆瑞.国外新型悬臂式掘进机技术发展述评[J].煤矿机电,1987(03):3-11+34+64.

[33] 李森方.国外部分断面掘进机的近期动态[J].煤矿机械,1990(Z1):9-11.

[34] 梅宁.艾柯夫ET480隧道掘进机[J].建井技术,2008,29(03):42.

[35] Heyduk Adam,Joostberens Jaroslaw. Automatic control of roadheader cutting head speed and load torque[J]. IOP Conference Series: Earth and Environmental Science,2020,609(1).

[36] 阳廷军.悬臂式掘进机远程可视化控制系统研究[J].煤矿机械,2017,38(07):29-31.

[37] 高旭彬.综掘工作面远程可视化控制关键技术研究[J].煤炭科学技术,2019,47(06):17-22.

[38] 张敏骏,臧富雨,吉晓冬,等.掘进机远程监控系统设计与位姿检测精度验证[J].煤炭科学技术,2018,46(12):48-53.

[39] 瞿圆媛,宋林珂,吉晓冬,等.井下掘进机行进纠偏调度规划与控制研究[J].矿业科学学报,2020,5(02):194-202.

[40] 马宏伟,王世斌,毛清华,等.煤矿巷道智能掘进关键共性技术[J].煤炭学报,2021,46(01):310-320.

[41] 张旭辉,赵建勋,杨文娟.悬臂式掘进机视觉导航与定向掘进控制技术研究[J/OL].煤炭学报:1-11[2021-04-12].

[42] 张旭辉,周创,张超.基于视觉测量的快速掘进机器人纠偏控制研究[J].工矿自动化,2020,46(09):21-26.

[43] Mao S, Shen X, Lu M. Virtual laser target board for alignment control and machine guidance in tunnel-boring operations[J]. Journal of Intelligent & Robotic Systems, 2015, 79(3): 385-400.

[44] 张冰.全断面硬岩掘进机姿态调整控制系统研究[D]:辽宁工程技术大学,2018.

[45] 宋立业,卢新.全断面硬岩掘进机的推进速度自适应控制[J].测控技术.2017,36(10):53-58.

[46] 段小明.盾构掘进过程中的自动轨迹跟踪控制技术研究[D]:浙江大学,2012.

[47] 周奇才,陈俊儒,何自强.盾构智能化姿态控制器的设计[J].同济大学学报(自然科学版),2008(01):76-80.

[48] 李惠平,夏明耀.盾构姿态的模糊控制方法[J].同济大学学报(自然科学版),2003(07):824-827.

[49] 龚国芳,洪开荣,周天宇,等.基于模糊PID方法的盾构掘进姿态控制研究[J].隧道建设,2014,34(07):608-613.

[50] 张云龙.全断面硬岩快速掘进机智能位姿控制系统研究[D].辽宁工程技术大学,2018.

[51] 宋立业,万应才.基于RBF神经网络的隧道掘进机推进自适应PID控制[J].中国机械工程,2017,28(14):1676-1682.

[52] 毛清华,陈磊,闫昱州,等.煤矿悬臂式掘进机截割头位置精确控制方法[J].煤炭学报,2017,42(S2):562-567.

中图分类号:

 TP242.2    

开放日期:

 2021-06-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式