- 无标题文档
查看论文信息

论文中文题名:

 车辆电磁混合悬架主动容错控制研究    

姓名:

 武江浩    

学号:

 19205016022    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080204    

学科名称:

 工学 - 机械工程 - 车辆工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 机械工程学院    

专业:

 机械工程    

研究方向:

 机械系统动力学与控制    

第一导师姓名:

 寇发荣    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-27    

论文答辩日期:

 2022-06-02    

论文外文题名:

 Research on Active Fault tolerant Control for Vehicle Electromagnetic Hybrid Suspension    

论文中文关键词:

 主动悬架 ; 未知输入观测器 ; 状态估计 ; 故障诊断 ; 容错控制    

论文外文关键词:

 Active suspension ; Unknown Input Observer ; State estimation ; Fault diagnosis ; Fault-tolerant control    

论文中文摘要:

车辆主动悬架系统可以大幅提升车辆的行驶性能,但当主动悬架发生故障时,车辆的动态特性和安全性会恶化。为了改善悬架在正常状态和故障状态的动态特性,提升车辆的安全性,本文设计了一种电磁混合主动悬架系统及其主动容错控制策略,并从各个角度展开研究。

在分析电磁混合主动悬架结构组成和工作原理基础上,分别建立二自由度悬架模型、七自由度悬架模型、直线电机模型、电磁阀减振器模型、路面不平度模型以及悬架作动器故障模型。设计未知输入观测器对悬架状态变量进行实时观测,根据获取的簧载质量加速度及其残差等状态观测值,设计了故障诊断与容错控制方法。悬架正常无故障时,根据未知输入观测器获取的簧载质量加速度,判断悬架工作在哪一模式;悬架发生故障后,如果簧载质量加速度残差连续多次超过所设定的残差阈值,则判定当前模式发生故障,需要切换至下一模式,利用其余完好部件进行控制力补偿,实现容错控制。并利用Matlab软件进行建模仿真,仿真分析未知输入观测器性能、故障诊断效果、控制力补偿效果和容错控制效果。最后试制电磁混合主动悬架物理样机并开展台架试验,以验证电磁混合悬架容错控制的有效性。

仿真结果表明:在电磁混合主动悬架容错控制下,与正常无故障时相比,簧载质量加速度、悬架动挠度、轮胎动载荷的容错效果分别为32.33%、30.19%、36.74%,并且与正常状态的动态特性数值接近,容错效果明显。台架试验结果表明:在正常状态下,簧载质量加速度的试验结果与仿真结果相对误差为3.68%,试验结果与仿真结果基本一致。发生故障时,簧载质量加速度均方根值为1.203m·s-2,经过容错控制补偿后,簧载质量加速度均方根值为0.883m·s-2。相比故障状态,容错控制下的簧载质量加速度均方根值降低了26.60%。表明了所设计容错控制策略的合理性。

论文外文摘要:

The vehicle active suspension system can greatly improve the driving performance of the vehicle, but when the active suspension fails, the dynamic characteristics and safety of the vehicle will deteriorate. In order to improve the dynamic characteristics of suspension in normal state and fault state, and enhance the safety of vehicles, this paper designs an electromagnetic hybrid active suspension system and its active fault-tolerant control strategy, and studies it from various angles.

Based on the analysis of the structural composition and working principle of electromagnetic hybrid active suspension, two degree of freedom suspension model, seven degree of freedom suspension model, linear motor model, solenoid valve damper model, road roughness model and suspension actuator fault model are established respectively. An unknown input observer is designed to observe the suspension state variables in real time. According to the obtained state observation values such as sprung mass acceleration and its residual, a fault diagnosis and fault-tolerant control method is designed. The first mock exam is based on the unknown mass spring acceleration of the input observer, and the suspension mode is determined. If the first mock exam is repeated several times beyond the set threshold, the failure of the current mode is determined. The failure mode is switched to the next mode, and the other parts are used to compensate the control force to achieve fault tolerant control. The performance of unknown input observer, fault diagnosis effect,control force compensation effect and fault-tolerant control effect are simulated and analyzed by using Matlab software. Finally, the physical prototype of electromagnetic hybrid active suspension is trial produced and bench test is carried out to verify the effectiveness of fault-tolerant control of electromagnetic hybrid suspension.

Under the fault-tolerant control of electromagnetic hybrid active suspension, compared with normal fault-free, the fault-tolerant effects of sprung mass acceleration, suspension working space and dynamic tire load are 32.33%, 30.19% and 36.74% respectively, which are close to the dynamic characteristics of normal state, and the fault-tolerant effect is obvious. The bench test results show that under normal conditions, the relative error between the test results of sprung mass acceleration and the simulation results is 3.68%, and the test results are basically consistent with the simulation results. In case of fault, the root mean square value of sprung mass acceleration is 1.203m·s-2. After fault-tolerant control compensation, the root mean square value of sprung mass acceleration is 0.883m·s-2. Compared with the fault state, the root mean square value of sprung mass acceleration under fault-tolerant control is reduced by 26.60%. The rationality of the designed fault-tolerant control strategy is shown.

中图分类号:

 U463.33    

开放日期:

 2022-06-27    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式