- 无标题文档
查看论文信息

论文中文题名:

 应用卤素同位素标记-质谱技术测定复杂基质中氨基酸及胺类物质的研究    

姓名:

 杨倩倩    

学号:

 18213069015    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081704    

学科名称:

 工学 - 化学工程与技术 - 应用化学    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 化学与化工学院    

专业:

 应用化学    

研究方向:

 有机化学    

第一导师姓名:

 陈福欣    

第一导师单位:

  西安科技大学    

论文提交日期:

 2021-06-16    

论文答辩日期:

 2021-06-02    

论文外文题名:

 Study on the determination of amino acids and amines in complex matrix by halogen isotope labeling mass spectrometry    

论文中文关键词:

 卤素同位素 ; 衍生化技术 ; UPLC-TOF-MS ; Python    

论文外文关键词:

 Halogen isotope ; Derivatization technique ; UPLC-TOF-MS ; Python    

论文中文摘要:

有关氨基酸、胺类物质的分析多使用衍生化技术,以改变分析物的性质。但现阶段已报道的衍生化试剂,由于数据精确度不高、价格昂贵、衍生产物质谱信号易受复杂基质干扰、数据处理困难等原因,应用范围受到了限制。本文针对这一问题,筛选了4种新型的衍生化试剂,对其衍生产物的卤素同位素峰和抗基质干扰能力进行了研究,并使用Python改善了数据处理过程。

首先,对含有卤素同位素Cl的衍生化试剂(4-氯苯磺酰氯)与甘氨酸的衍生反应为模型进行了反应条件探究。通过对反应物投料比、反应物投料的顺序、衍生反应时间、衍生反应温度、碱性环境、终止剂的添加进行对比,确定了最佳的衍生条件。由此得到的衍生产物稳定,无需经过纯化处理。最重要的是,在衍生产物的色谱图及质谱图中可以明显的看到卤素Cl的同位素峰,这便于对复杂基质中没有荧光吸收或紫外吸收的特定目标化合物进行快速的定性分析。

其次,由于实际样本的数据基质复杂、处理过程耗时等,使数据处理部分不易完成。在此基础上提出了基于Python脚本对UPLC-Q-TOF数据进行分析的方法,在4种新型卤素同位素衍生化试剂(4-氯苯磺酰氯、3,5-二氯苯磺酰氯、4-溴苯磺酰氯、4-溴-2-氯苯磺酰氯)衍生产物的质谱图中找出了含有一个Cl元素、两个Cl元素、一个Br元素、一个Cl元素和一个Br元素衍生产物的同位素峰。此方法大大提高了获取数据的效率,节约了时间成本,实验结果证明了筛选数据的有效性和优越性,为分析实际样本的质谱数据打下了坚实的基础。

最后,由于健康人体尿液、牛奶样本的实际样本中的复杂基质干扰了氨基酸及胺类物质的检测分析,因此,本文建立了一种卤素同位素标记-质谱技术测定复杂基质中氨基酸及胺类物质的研究。发现健康人体尿液使用水、甲醇和乙腈萃取时,乙腈效果最好,衍生化处理之后在尿液样本中发现了尿素、酪氨酸、尿酸;市售牛奶首先使用甲醇(溶剂与牛奶的比例为3:1)沉淀蛋白质,再经DCM去除脂质,经衍生化和数据处理之后并未出现同位素峰,可据此推断该种牛奶样品没有添加非蛋白氮,但在人为添加三聚氰胺的牛奶样品中检测到了衍生物的同位素峰。

论文外文摘要:

The analysis of amino acids and amines mostly uses derivatization techniques to change the properties of the analytes. However, the derivatization reagents that have been reported at this stage are limited in their application scope due to low data accuracy, high price, susceptibility to complex matrix interference of derivative product mass spectrometry signals, and difficulty in data processing. In response to this problem, this paper screened 4 new derivatization reagents, studied the halogen isotope peaks and anti-matrix interference capabilities of their derivatives, and used Python to improve the data processing process.

Firstly, the derivatization reaction of the derivatization reagent (4-chlorobenzenesulfonyl chloride) containing the halogen isotope Cl (4-chlorobenzenesulfonyl chloride) with glycine was used as a model to explore the reaction conditions. The optimal derivatization conditions were determined by comparing the reactant feed ratio, the order of reactant feed, the derivatization reaction time, the derivatization temperature, the alkaline environment, and the addition of terminator. The derived product thus obtained is stable and does not need to be purified. The most important thing is that the isotope peaks of halogen Cl can be clearly seen in the chromatogram and mass spectrum of the derivative product, which facilitates rapid qualitative analysis of specific target compounds without fluorescence or ultraviolet absorption in complex matrices.

Secondly, the data processing part is not easy to complete due to the complex data matrix of the actual sample and the time-consuming processing process. On this basis, a method for analyzing UPLC-Q-TOF data based on Python scripts was proposed. Four new halogen isotope derivatization reagents (4-chlorobenzenesulfonyl chloride, 3,5-dichlorobenzenesulfonyl chloride, 4-Bromobenzenesulfonyl chloride, 4-bromo-2-chlorobenzenesulfonyl chloride) derivative products of the mass spectrum found the isotopes containing one Cl element, two Cl elements, one Br element, one Cl element and one Br element derivative products peak. This method greatly improves the efficiency of data acquisition and saves time and cost. The experimental results prove the effectiveness and superiority of screening data, and lay a solid foundation for the analysis of mass spectrometry data of actual samples.

Finally, because the complex matrix in the actual samples of healthy human urine and milk samples interferes with the detection and analysis of amino acids and amines, this paper establishes a halogen isotope labeling-mass spectrometry technique for the determination of amino acids and amines in complex matrices Research. It was found that when healthy human urine was extracted with water, methanol and acetonitrile, acetonitrile had the best effect. After derivatization, urea, tyrosine, and uric acid were found in urine samples. Commercial milk first uses methanol (the ratio of solvent to milk is 3:1) to precipitate proteins, and then removes lipids by DCM. After derivatization and data processing, there is no isotope peak. It can be inferred that this kind of milk sample is not added Non-protein nitrogen, but the isotope peak of the derivative was detected in the milk sample artificially added with melamine.

参考文献:

[1] Kaufman S. A model of human phenylalanine metabolism in normal subjects and in phenylketonuric patients[J]. Proceedings of the National Academy of ences of the United States of America, 1999, 96(6):3160-3164.

[2] Francis D, Kirby D M, Thompson G N. Maternal tyrosinaemia II:Management and successful outcome[J]. European Journal of Pediatrics, 1992, 151(3):196-199.

[3] Cheon K C, Lee B H, Ko J M, et al. Novel mutation in SLC6A19 causing late-onset seizures in Hartnup disorder[J]. Pediatric Neurology, 2010, 42(5):369-371.

[4] Wilcken B, Yu J S, Brown D A. Natural history of Hartnup disease[J]. Archives of Disease in Childhood, 1977, 52(1):38-40.

[5] Haijes H A, Prinsen H, Monique G M de Sain-van der Velden, et al. Accurate discrimination of Hartnup disorder from other aminoacidurias using a diagnostic ratio[J]. Molecular Genetics and Metabolism Reports, 2019, 22:100551-100557.

[6] Kim M I, Park T J, Heo N S, et al. Cell-Based Method Utilizing Fluorescent Escherichia coli Auxotrophs for Quantification of Multiple Amino Acids[J]. Analytical Chemistry, 2014, 86(5):2489-2496.

[7] Dénes J, Szabó E, Robinette S L, et al. Metabonomics of newborn screening dried blood spot samples: a novel approach in the screening and diagnostics of inborn errors of metabolism.[J]. Analytical Chemistry, 2012, 84(22):10113-10120.

[8] 张建伟.亮氨酸对Ⅱ型糖尿病的影响[D].苏州大学,2015.

[9] Piasta A M, Jastrzębska A, Krzemiński M P, et al. New procedure of selected biogenic amines determination in wine samples by HPLC[J]. Analytica Chimica Acta, 2014, 834:58-66.

[10] Mayr C M, Schieberle P. Development of stable isotope dilution assays for the simultaneous quantitation of biogenic amines and polyamines in foods by LC-MS/MS[J]. Journal of Agricultural & Food Chemistry, 2012, 60(12):3026-3032.

[11] Gómez-Alonso S, Hermosín-Gutiérrez I, García-Romero E. Simultaneous HPLC analysis of biogenic amines, amino acids, and ammonium ion as aminoenone derivatives in wine and beer samples[J]. J Agric Food Chem, 2007, 55(3):608-613.

[12] Roberto, Romero-González, María, et al. Simultaneous Determination of Four Biogenic and Three Volatile Amines in Anchovy by Ultra-High-Performance Liquid Chromatography Coupled to Tandem Mass Spectrometry[J]. Journal of Agricultural and Food Chemistry, 2012, 60(21):5324-5329.

[13] Sagratini G, Fernández-Franzón M, Berardinis F D, et al. Simultaneous determination of eight underivatised biogenic amines in fish by solid phase extraction and liquid chromatography–tandem mass spectrometry[J]. Food Chemistry, 2012, 132(1):537-543.

[14] Redruello B, Ladero V, Cuesta I, et al. A fast, reliable, ultra high performance liquid chromatography method for the simultaneous determination of amino acids, biogenic amines and ammonium ions in cheese, using diethyl ethoxymethylenemalonate as a derivatising agent[J]. Food Chemistry, 2013, 139(1-4):1029-1035.

[15] Jia S, Kang Y P, Park J H, et al. Simultaneous determination of 23 amino acids and 7 biogenic amines in fermented food samples by liquid chromatography/quadrupole time-of-flight mass spectrometry[J]. Journal of Chromatography A, 2011, 1218(51):9174-9182.

[16] Mey E D, Drabik-Markiewicz G, Maere H D, et al. Dabsyl derivatisation as an alternative for dansylation in the detection of biogenic amines in fermented meat products by reversed phase high performance liquid chromatography[J]. Food Chemistry, 2012, 130(4):1017–1023.

[17] Nal A. A review: Current analytical methods for the determination of biogenic amines in foods – Science Direct[J]. Food Chemistry, 2007, 103(4):1475-1486.

[18] Mohammed G I. A critical overview on the chemistry, clean-up and recent advances in analysis of biogenic amines in foodstuffs[J]. Trac Trends in Analytical Chemistry, 2016, 47:84-94.

[19] Leuchtenberger W, Huthmacher K, Drauz K. Biotechnological production of amino acids and derivatives: current status and prospects[J]. Applied Microbiology & Biotechnology, 2005, 69(1):1-8.

[20] Bodian, D L, Madhan, et al. Predicting the clinical lethality of osteogenesis imperfecta from collagen glycine mutations[J]. BIOCHEMISTRY-USA, 2008, 47(19):5424-5432.

[21] 孙勇.肝硬化合并肝性脑病患者采取鼻饲支链氨基酸的临床意义研究[J].中国现代药物应用,2020,14(21):167-169.

[22] 王瑞,唐爱国.犬尿氨酸的检测及其临床意义[J].国外医学(临床生物化学与检验学分册),2005(11):835-837+840.

[23] Yasushi N, Qing-Wei Z, Tetsuya S, et al. Network analysis of plasma and tissue amino acids and the generation of an amino index for potential diagnostic use[J]. American Journal of Clinical Nutrition,2001, 123(2):309-314.

[24] Wang T J, Larson M G, Vasan R S, et al. Metabolite profiles and the risk of developing diabetes[J]. Nature Medicine, 2011, 17(4):448-453.

[25] Zhang Q, Takahashi M, Noguchi Y, et al. Plasma amino acid profiles applied for diagnosis of advanced liver fibrosis in patients with chronic hepatitis C infection[J]. Hepatology Research, 2006, 34(3):170-177.

[26] Maeda J, Higashiyama M, Imaizumi A, et al. Possibility of multivariate function composed of plasma amino acid profiles as a novel screening index for non-small cell lung cancer: a case control study[J]. Bmc Cancer, 2010, 10(1):1-8.

[27] Miyagi Y, Higashiyama M, Gochi A, et al. Plasma Free Amino Acid Profiling of Five Types of Cancer Patients and Its Application for Early Detection[J]. Plos One, 2011, 6(9):e24143-e24155.

[28] Naoyuki Okamoto Y M, Akihiko C, Makoto A, et al. Diagnostic modeling with differences inplasma amino acid profiles between non-cachectic colorectal/breast cancer patients and healthy individuals[J]. International Journal of Medicine and Medical Sciences, 2009 ,1(1):001-008.

[29] Cuchiaro H, Laurens L. Total Protein Analysis in Algae via Bulk Amino Acid Detection: Optimization of Amino Acid Derivatization after Hydrolysis with O-Phthalaldehyde 3-Mercaptopropionic Acid (OPA-3MPA)[J]. Journal of Agricultural and Food Chemistry, 2019, 67(19):5672-5679.

[30] Antoine F R, Wei C I, Littell R C, et al. HPLC method for analysis of free amino acids in fish using o-phthaldialdehyde precolumn derivatization[J]. J Agric Food Chem, 1999, 47(12):5100-5107.

[31] 冯梅艳,罗敏,何婷,等.柱前衍生-超高效液相色谱-电化学检测法测定牙膏中氨甲环酸[J].理化检验(化学分册),2020,56(08):883-887.

[32] 睢超霞,李蕊,徐娜,等.高效液相色谱自动衍生荧光法测定鱼酱油中牛磺酸的含量[J].分析试验室,2020,39(08):942-946.

[33] 陈楠,黄常康,陈文芝,等.高效液相色谱法分离检测L-丙氨酸异丙酯盐酸盐的对映异构体杂质[J].中南药学,2020,18(06):994-997.

[34] 白洁,王妲,刘泽平,等.柱前衍生-高效液相色谱法同时测定血清中氨基酸类及单胺类神经递质[J].色谱,2020,38(08):923-928.

[35] Xiong N, Li Q, Dong Y, et al. Development of a Simple and Sensitive Pre-column Derivatization HPLC Method for the Quantitative Analysis of Miglitol Intermediates[J]. Chromatographia, 2021, 84:347-358.

[36] Franke A A, Li X, Lai J F. Analysis of glyphosate, aminomethylphosphonic acid, and glufosinate from human urine by HRAM LC-MS[J]. Analytical and Bioanalytical Chemistry, 2020, 412(30):8313-8324.

[37] Wang C, Wu Y, Liu S, et al. Fmoc N-hydroxysuccinimide ester: A facile and multifunctional role in N-glycan analysis[J]. Analytica Chimica Acta, 2020, 1131:56-57.

[38] Lkhagva A, Shen C C, Leung Y S, et al. Comparative study of five different amine-derivatization methods for metabolite analyses by liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2020, 1610:460536-460544.

[39] Thomas, Themelis, Roberto, et al. Quantitative amino acids profile of monofloral bee pollens by microwave hydrolysis and fluorimetric high performance liquid chromatography - ScienceDirect[J]. Journal of Pharmaceutical & Biomedical Analysis, 2019, 173:144-153.

[40] Duy S V, Munoz G, Dinh Q T, et al. Analysis of the neurotoxin β-N-methylamino-L-alanine (BMAA) and isomers in surface water by FMOC derivatization liquid chromatography high resolution mass spectrometry[J]. PLoS ONE, 2019, 14(8):e0220698- e0220721.

[41] 程聪,王鑫,刘有平,等.柱前衍生化LC-MS/MS法测定大鼠血浆中丁香酚的质量浓度[J].沈阳药科大学学报,2021,38(03):251-257.

[42] 李慧,崔兰冲,章国磊,等.超高效液相色谱-串联质谱法定量分析尿液中色氨酸及其代谢产物[J/OL].色谱,2021,1-8.

[43] Hsiao S W, Ishii C, Furusho A, et al. Determination of phenylalanine enantiomers in the plasma and urine of mammals and D-amino acid oxidase deficient rodents using two-dimensional high-performance liquid chromatography[J]. Biochimica et Biophysica Acta-Proteins and Proteomics, 2021, 1869(1):140540-140547

[44] Furusho A, Akita A, Mita M, et al. Three-dimensional high-performance liquid chromatographic analysis of chiral amino acids in carbonaceous chondrites[J]. Journal of Chromatography A, 2020, 1625:461255-461263.

[45] Natalia V. Mesonzhnik, Roman M. Kuznetsov, Natalia L. Bochkareva, Svetlana A. Appolonova. Application of 6‐aminoquinolyl‐N‐hydroxysuccinimidyl carbamate derivatization for enhanced peptide mapping analysis of non‐biological complex drug glatiramer acetate using liquid chromatography/electrospray ionization collision‐induced dissociation high‐resolution mass spectrometry[J]. Rapid Communications in Mass Spectrometry, 2020, 34(9):8748-8760.

[46] Michel M, Salvador C, Wiedemair V, et al. Method comparison of HPLC-ninhydrin-photometry and UHPLC-PITC-tandem mass spectrometry for serum amino acid analyses in patients with complex congenital heart disease and controls[J]. Metabolomics, 2020, 16(12):128-138.

[47] Chen Z X, Yan Q Q, Zhang Z M, et al. Immunomodulatory Effects of Hydrolyzed Seawater Pearl Tablet (HSPT) on Th1/Th2 Functionality in a Mice Model of Chronic Obstructive Pulmonary Disease (COPD) Induced by Cigarette Smoke[J]. Evidence-based Complementary and Alternative Medicine, 2020, 2020(3):1-17.

[48] Turkoglu G. Novel nitro-substituted formazan derivatives: selective ratiometric and colorimetric chemosensors for fluoride anion sensing detectable by the naked eye[J]. New Journal of Chemistry, 2020, 44(22):9485-9492.

[49] Otter D E. Standardised methods for amino acid analysis of food[J]. British Journal of Nutrition, 2012, 108(S2):S230.

[50] Junichi, Yatabe, Midori, et al. Early detection of colon cancer by amino acid profiling using AminoIndex technology: a case report[J]. Diagnostic Pathology, 2013, 8(1):203-207.

[51] Le A, Ng A, Kwan T, et al. A rapid, sensitive method for quantitative analysis of underivatized amino acids by liquid chromatography-tandem mass spectrometry (LC-MS/MS)[J]. J Chromatogr B Analyt Technol Biomed Life, 2014, 944:166-174.

[52] Jean-Pierre Z, Philippe T, Yves L. Gas-liquid chromatography of the heptafluorobutyrate derivatives of the O-methyl-glycosides on capillary columns: a method for the quantitative determination of the monosaccharide composition of glycoproteins and glycolipids [J]. Glycobiology, 1999(3):255-266.

[53] Pons A, Popa J, Portoukalian J, et al. Single-Step Gas Chromatography–Mass Spectrometry Analysis of Glycolipid Constituents as Heptafluorobutyrate Derivatives with a Special Reference to the Lipid Portion[J]. Analytical Biochemistry, 2000, 284(2):201-216.

[54] Pons A. Gas-chromatography/mass-spectrometry analysis of human skin constituents as heptafluorobutyrate derivatives with special reference to long-chain bases[J]. Journal of Lipid Research, 2002, 43(5):794-804.

[55] Pons A, Richet C, Robbe C, et al. Sequential GC/MS analysis of sialic acids, monosaccharides, and amino acids of glycoproteins on a single sample as heptafluorobutyrate derivatives[J]. Biochemistry, 2003, 42(27):8342-8353.

[56] Santos M. Biogenic amines: their importance in foods[J]. International Journal of Food Microbiology, 1996, 29(2-3):213-231.

[57] Tassoni A, Germanà M A, Bagni N. Free and conjugated polyamine content in Citrus sinensis Osbeck, cultivar Brasiliano N.L. 92, a Navel orange, at different maturation stages[J]. Food Chemistry, 2004, 87(4):537-541.

[58] Kalac P, Krausova P. A review of dietary polyamines: Formation, implications for growth and health and occurrence in foods[J]. Food Chemistry, 2005, 90(1-2):219-230.

[59] Shalaby A R. Significance of biogenic amines to food safety and human health[J]. Food Research International, 2005, 29(7):675-690.

[60] Lange J, Thomas K, Wittmann C. Comparison of a capillary electrophoresis method with high-performance liquid chromatography for the determination of biogenic amines in various food samples[J]. Journal of Chromatography B Analytical Technologies in the Biomedical & Life Sciences, 2002, 779(2):229-239.

[61] Stratton J E, Hutkins R W, Taylor S L. Biogenic Amines in Cheese and other Fermented Foods: A Review[J]. Journal of Food Science, 1991, 54(6):460-470.

[62] Vinci G, Antonelli M L. Biogenic amines: quality index of freshness in red and white meat[J]. Food Control, 2002, 13(8):519-524.

[63] Tailor S, Shulman K I, Walker S E, et al. Hypertensive episode associated with phenelzine and tap beer-a reanalysis of the role of pressor amines in beer[J]. J Clin Psychopharmacol, 1994, 14(1):5-14.

[64] Sandler M, Youdim M, Hanington E. A phenylethylamine oxidising defect in migraine[J]. Nature, 1974, 250(464):335-337.

[65] Bardócz S. Polyamines in food and their consequences for food quality and human health[J]. Trends in Food Science & Technology, 1995, 6(10):341-346.

[66] Hernández-Jover T, Izquierdo-Pulido M, Veciana-Nogués M T, et al. Biogenic Amine and Polyamine Contents in Meat and Meat Products[J]. Journal of Agricultural & Food Chemistry, 1997, 45(6):2098-2102.

[67] Halasz A, Barath A, Simon-Sarkadi L, et al. Biogenic amines and their production by microorganisms in food[J]. Trends in Food Science and Technology, 1994, 5(2):42-49.

[68] Valsamaki K., Michaelidou A., Polychroniadou A. Biogenic amine production in Feta cheese[J]. Food Chemistry, 2000, 71:259-266.

[69] Ji C, Li L. Quantitative Proteome Analysis Using Differential Stable Isotopic Labeling and Microbore LCMALDI MS and MS/MS[J]. Journal of Proteome Research, 2005, 4(3):734-742.

[70] Guo K, Ji C, Li L. Stable-isotope dimethylation labeling combined with LC-ESI MS for quantification of amine-containing metabolites in biological samples[J]. Analytical Chemistry, 2007, 79(22):8631-8638.

[71] Guo K, Li L. Differential 12C-/13C-isotope dansylation labeling and fast liquid chromatography/mass spectrometry for absolute and relative quantification of the metabolome[J]. Analytical Chemistry, 2009, 81(10):3919-3932.

[72] Li G L. High-Performance Isotope Labeling for Profiling Carboxylic Acid-Containing Metabolites in Biofluids by Mass Spectrometry[J]. Analytical Chemistry, 2010, 82(21):8789-8793.

[73] Guo K, Bamforth F, Liang L. Qualitative Metabolome Analysis of Human Cerebrospinal Fluid by 13C-/12C-Isotope Dansylation Labeling Combined with Liquid Chromatography Fourier Transform Ion Cyclotron Resonance Mass Spectrometry[J]. Journal of the American Society for Mass Spectrometry, 2011, 22(2):339-347.

[74] Stanislaus A, Guo K, Li L. Development of an isotope labeling ultra-high performance liquid chromatography mass spectrometric method for quantification of acylglycines in human urine[J]. Analytica Chimica Acta, 2012, 750:161-172.

[75] Hooton, Han, Li L. Comprehensive and Quantitative Profiling of the Human Sweat Submetabolome Using High-Performance Chemical Isotope Labeling LC-MS[J]. Analytical Chemistry, 2016, 88(14):7378-7386.

[76] Xiaoling S, Nan W, Deying C, et al. Dansylation isotope labeling liquid chromatography mass spectrometry for parallel profiling of human urinary and fecal submetabolomes[J]. Analytica Chimica Acta, 2016, 903:100-109.

[77] Achaintre D, Bulete A, Cren-Olivé C, et al. Differential isotope labeling of 38 dietary polyphenols and their quantification in urine by liquid chromatography electrospray ionization tandem mass spectrometry[J]. Analytical Chemistry, 2016, 88(5):2637-2644.

[78] Mung D, Li L. Development of Chemical Isotope Labeling LC-MS for Milk Metabolomics: Comprehensive and Quantitative Profiling of the Amine/Phenol Submetabolome[J]. Analytical Chemistry, 2017, 89(8):4435-4443.

[79] Achaintre D, Gicquiau A, Li L, et al. Quantification of 38 dietary polyphenols in plasma by differential isotope labelling and liquid chromatography electrospray ionization tandem mass spectrometry[J]. Journal of Chromatography A, 2018:50-58.

[80] Mung D, Li L. Chemical isotope labeling liquid chromatography mass spectrometry for investigating acute dietary effects of cow milk consumption on human urine metabolome[J]. Journal of Food and Drug Analysis, 2019, 27(2):565-574.

[81] Rampler E, Criscuolo A, Zeller M, et al. A Novel Lipidomics Workflow for Improved Human Plasma Identification and Quantification Using RPLC-MSn Methods and Isotope Dilution Strategies[J]. Analytical Chemistry, 2018, 90(11):6494-6501.

[82] Toyo’oka T. LC-MS determination of bioactive molecules based upon stable isotope-coded derivatization method[J]. Pharm Biomed Anal, 2012, 69:174-184.

[83] Dai W, Huang Q, Yin P, et al. Comprehensive and highly sensitive urinary steroid hormone profiling method based on stable isotope-labeling liquid chromatography-mass spectrometry[J]. Anal. Chem, 2012, 84(23):10245-10251.

[84] Bruheim P, Kvitvang H, Villas-Boas S G. Stable isotope coded derivatizing reagents as internal standards in metabolite profiling[J]. Journal of Chromatography A, 2013, 1296:196-203.

[85] Hao L, Zhong X, Greer T, et al. Relative quantification of amine-containing metabolites using isobaric N,N-dimethyl leucine (DiLeu) reagents via LC-ESI-MS/MS and CE-ESI-MS/MS[J]. Analyst, 2015, 140(2):467-475.

[86] Lei, Yu, Jun, et al. 4-Phenylaminomethyl-Benzeneboric Acid Modified Tip Extraction for Determination of Brassinosteroids in Plant Tissues by Stable Isotope Labeling-Liquid Chromatography-Mass Spectrometry.[J]. Analytical chemistry, 2016, 88(2):1286-1293.

[87] Higashi T, Ogawa S. Isotope-coded ESI-enhancing derivatization reagents for differential analysis, quantification and profiling of metabolites in biological samples by LC/MS: A review[J]. J Pharm Biomed Anal, 2016:181-193.

[88] Tie C, Hu T, Jia Z X, et al. Derivatization strategy for the comprehensive characterization of endogenous fatty aldehydes using HPLC-multiple reaction monitoring[J]. Anal. Chem., 2016, 88:7762-7768.

[89] Zhao S, Dawe M, Guo K, et al. Development of high-performance chemical isotopelabeling LC-MS for profiling the carbonyl submetabolome[J]. Anal. Chem., 2017, 89 (12):6758-6765.

[90] He Y, Zhao X E, Wang R, et al. Simultaneous Determination of Food-Related Biogenic Amines and Precursor Amino Acids Using in Situ Derivatization Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction by Ultra-High-Performance Liquid Chromatography Tandem Mass Spectrometry[J]. Journal of Agricultural & Food Chemistry, 2016, 64(43):8225-8234.

中图分类号:

 O628.5     

开放日期:

 2021-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式