- 无标题文档
查看论文信息

题名:

 富油煤氧化动力学特征及关键活性基团演变规律研究    

作者:

 周妤婕    

学号:

 21220089029    

保密级别:

 保密(2年后开放)    

语种:

 chi    

学科代码:

 083700    

学科:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位:

 工学硕士    

学位年度:

 2024    

学校:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 煤火灾害防控    

导师姓名:

 翟小伟    

导师单位:

 西安科技大学    

提交日期:

 2024-06-18    

答辩日期:

 2024-06-01    

外文题名:

 Study on the kinetic characteristics of tar-rich coal oxidation and the evolution of key reactive groups    

关键词:

 煤自燃 ; 富油煤 ; 热效应 ; 氧化动力学 ; 关键活性基团    

外文关键词:

 Coal spontaneous combustion ; Tar-rich coal ; Thermal effect ; Oxidation kinetics ; Key active groups    

摘要:

富油煤是集煤、油、气属性于一体的特殊煤基油气资源,其安全高效开发和利用对保障我国油气自给能力、减缓油气对外依存度具有重要意义。富油煤的煤质结构导致其开采过程中容易发生自燃灾害。为明确富油煤自燃机理,本文选取陕西省典型矿区的4种富油煤和2种含油煤为研究对象,围绕富油煤氧化动力学特征及关键活性基团变化规律展开研究,主要结论如下:

富油煤的水分、挥发分和C元素含量较高,分别在4~8%、34~40%和75~78%之间,矿物含量较低,灰分含量与焦油产率呈负相关,随着焦油产率增大,煤的芳香化程度降低,富油煤微晶结构单元体积较小,煤大分子结构单元的芳构化和缩合程度较弱,桥键、侧链和含氧官能团等不稳定结构增多,氧化性增强。

富油煤初始放热温度低于含油煤,放热量随焦油产率的升高而增大,富油煤放热量为16267.19~18552.87J/g。随着焦油产率升高,煤氧化失重量增大,受热分解和燃烧阶段的持续时长减少,煤样的临界、干裂和燃尽温度点降低,增速、受热分解、着火和最大失重速率温度的变化呈先降低后升高趋势。表观活化能在吸氧增重和受热分解阶段随温度上升而增加,在燃烧阶段逐渐降低,富油煤在燃烧阶段的平均活化能低于含油煤。

富油煤氧化特性与活性基团之间存在显著的相关关系,其中热效应为主要表征因素。在吸氧增重阶段,含油煤中醚键和C=O的消耗对氧化放热起关键的促进作用,随着焦油产率升高,富油煤中C=O和芳烃-CH键的含量变化促进了氧化放热。在受热分解阶段,富油煤的脂肪族-CH弯曲振动结构和芳烃-CH键的生成对氧化放热具有关键的促进作用。在燃烧阶段,脂肪族-CH伸缩振动结构、羟基、C=O等结构是富油煤的关键活性基团,芳烃-CH结构的生成对热效应有抑制作用,其它基团的消耗均促进了氧化放热。

外文摘要:

Tar-rich coal is a special coal-based tar and gas resource that combines the properties of coal, tar and gas, and its safe and efficient development and utilisation is of great significance to safeguard China's tar and gas self-sufficiency and slow down its tar and gas dependence on foreign countries. The coal structure of tar-rich coal leads to spontaneous combustion disaster during the mining process. In order to clarify the mechanism of spontaneous combustion of tar-rich coal, this paper selects four kinds of tar-rich coal and two kinds of tar-containing coal in typical mining areas of Shaanxi Province as the research object, and focuses on the characteristics of oxidation dynamics of tar-rich coal and the change rule of the key reactive groups to carry out the research, and the main conclusions are as follows:

The moisture, volatile matter and C element contents of tar-rich coal are higher, between 4~8%, 34~40% and 75~78% respectively, and the mineral content is lower, the ash content is negatively correlated with the tar yield, and the degree of coal aromatisation decreases with the increase of tar yield, the volume of the microcrystalline structural unit of the tarl-rich coal is smaller, the degree of aromatisation and condensation of the coal macromolecular structural unit is weaker, and unstable structures, such as the bridge bond, the side chain, and the oxygen-containing functional group, increase. The unstable structures such as bridge bonds, side chains and oxygen-containing functional groups increase, and the oxidative property increases.

With the increase of tar yield, the weight loss of coal oxidation increased, the duration of thermal decomposition and combustion stage decreased, the critical, dry cracking and combustion temperature points of coal samples decreased, and the changes of the temperature of growth rate, thermal decomposition, ignition and maximum weight loss rate showed a tendency of decreasing and then increasing. The initial exothermic temperature of tar-rich coal was lower than that of tar-containing coal, and the exothermic amount increased with the increase of tar yield, and the exothermic amount of tar-rich coal ranged from 16,267.19 to 18,552.87 J/g. The apparent activation energy increased with the increase of temperature in the stage of oxygen uptake, weight gain, and thermal decomposition, and decreased gradually in the stage of combustion, and the average activation energy of tar-rich coal was lower than that of tar-containing coal in the stage of combustion.

The higher the tar yield, the higher the correlation between the internal transformations of the groups in the coal structure. There is a significant correlation between the oxidation characteristics of tar-rich coals and the reactive groups, in which the thermal effect is the main characterisation factor. In the oxygen uptake and weight gain stage, the consumption of ether bonds and C=O in the tar-rich coal played a key role in promoting the oxidative exotherm, which was facilitated by the change in the content of C=O and aromatic-CH bonds in the tar-rich coal with the increase in tar yield. In the thermal decomposition stage, the aliphatic-CH bending vibrational structure and the generation of aromatic-CH bonds in the tar-rich coal play a key role in promoting the oxidative exotherm. In the combustion stage, the aliphatic-CH stretching vibrational structure, hydroxyl group, C=O and other structures are the key reactive groups of the tar-rich coal, the generation of aromatic-CH structure has an inhibitory effect on the thermal effect, and the depletion of all the other groups promotes the oxidative exotherm.

参考文献:

[1] 王双明, 王虹, 任世华, 等. 西部地区富油煤开发利用潜力分析和技术体系构想[J]. 中国工程科学, 2022, 24(03): 49-57.

[2] 中国国家统计局. 中华人民共和国2022年国民经济和社会发展统计公报[EB/OL]. 中国国家统计局, [2023-04-01].

[3] 张晔, 赵亮富. 中/低温煤焦油催化加氢制备清洁燃料油研究[J]. 煤炭转化, 2009, 32(03): 48-51.

[4] 吴昊, 卫宏远. 煤炭分级利用过程中清洁油品的生产技术[J]. 煤炭转化, 2017, 40(05): 20-24.

[5] 许婷, 李宁, 姚征, 等. 陕北榆神矿区富油煤分布规律及形成控制因素[J]. 煤炭科学技术, 2022, 50(03): 161-168.

[6] 师庆民, 米奕臣, 王双明, 等. 富油煤热解流体滞留特征及其机制[J]. 煤炭学报, 2022, 47(03): 1329-1337.

[7] 马丽, 拓宝生. 陕西富油煤资源量居全国之首 榆林可“再造一个大庆油田”[J]. 陕西煤炭, 2020, 39(01): 220-222.

[8] 马丽, 王双明, 段中会, 等.陕西省富油煤资源潜力及开发建议[J]. 煤田地质与勘探, 2022, 50(2): 1−8.

[9] 张嬿妮. 煤氧化自燃微观特征及其宏观表征研究[D]. 西安: 西安科技大学, 2012.

[10] Li H. The problems and suggestions about resource utilization of coal gangue[J]. Coal Engineering, 2011, 89-90

[11] Zhang B, Luo Z, Zhao Y, et al. Effect of a high-density coarse-particle layer on the stability of a gas–solid fluidized bed for dry coal beneficiation[J]. International Journal of Mineral Processing, 2014, 132: 8-16.

[12] Li D, Wu D, Xu F, et al. Literature overview of Chinese research in the field of better coal utilization[J]. Journal of Cleaner Production, 2018, 185: 959-980.

[13] Song Z, Kuenzer C. Coal fires in China over the last decade: A comprehensive review[J]. International Journal of Coal Geology, 2014, 133: 72-99.

[14] Li J, Liu C. Spatio-temporal distribution and gas conductivity of overburden fissures in the mining of shallow thick coal seams[J]. European Journal of Environmental and Civil Engineering, 2019, 23(8): 1019-1033.

[15] 申艳军, 王旭, 赵春虎, 等. 榆神府矿区富油煤多尺度孔隙结构特征[J]. 煤田地质与勘探, 2021, 49(03): 33-41.

[16] Deng J, Yang Y, Zhang YN, et al. Inhibiting effects of three commercial inhibitors in spontaneous coal combustion[J]. Energy, 2018, 160: 1174-1185.

[17] Zou L, Yang W, Zhao Q, et al. Research on Self-Ignition Characteristics and Prediction Indices of Pulverized Low-Rank Coal Under Different Oxygen Concentrations[J]. Natural Resources Research, 2022, 31(2): 897-911.

[18] Zhai X, Song B, Wang B, et al. Study on the effect and mechanism of water immersion on the characteristic temperature during coal low-temperature oxidation[J]. Natural Resources Research, 2021, 30(3): 2333-2345.

[19] Shao Z, Tan B, Guo Y, et al. Visualization and analysis of mapping knowledge domains for coal pores studies[J]. Fuel, 2022, 320: 123761.

[20] Pattanaik D, Behera P, Singh B. Spontaneous combustibility characterisation of the chirimiri coals, Koriya district, Chhatisgarh, India[J]. International Journal of Geosciences, 2011, 2(03): 336.

[21] Nimaje D, Tripathy D. Characterization of some Indian coals to assess their liability to spontaneous combustion[J]. Fuel, 2016, 163: 139-147.

[22] 吕凤荣. 煤岩组成对超临界CO2抽提煤吸附性影响及机理[D]. 徐州: 中国矿业大学, 2023.

[23] 姚征, 罗乾周, 李宁, 等. 陕北石炭-二叠纪富油煤赋存特征及影响因素[J]. 煤田地质与勘探, 2021, 49(03): 50-61+68.

[24] 张蕾, 韩智坤, 舒浩, 等. 陕北富油煤低温热解提油基础特性[J]. 煤炭工程, 2022, 54(09): 124-128.

[25] Kong B, Li Z, Yang Y, et al. A review on the mechanism, risk evaluation, and prevention of coal spontaneous combustion in China[J]. Environmental Science and Pollution Research, 2017, 24: 23453-23470.

[26] Onifade M, Genc B. A review of research on spontaneous combustion of coal[J]. International Journal of Mining Science and Technology, 2020, 30(3): 303-311.

[27] Misz-Kennan M, Fabiańska M. Application of organic petrology and geochemistry to coal waste studies[J]. International Journal of Coal Geology, 2011, 88(1): 1-23.

[28] Brierley C. Microbiological mining[J]. Scientific American, 1982, 247(2): 44-53.

[29] 秦波涛, 仲晓星, 王德明, 等. 煤自燃过程特性及防治技术研究进展[J]. 煤炭科学技术, 2021, 49(01): 66-99.

[30] Küçük A, Kadıoğlu Y, Gülaboğlu M. A study of spontaneous combustion characteristics of a Turkish lignite: particle size, moisture of coal, humidity of air[J]. Combustion and Flame, 2003, 133(3): 255-261.

[31] TeVrucht M, Griffiths P. Activation energy of air-oxidized bituminous coals[J]. Energy & fuels, 1989, 3(4): 522-527.

[32] Singh R, Shonhardt J, Terezopoulos N. A new dimension to studies of spontaneous combustion of coal[J]. Mineral Resources Engineering, 2002, 11(02): 147-163.

[33] 王省身, 张国枢. 高等学校教学用书, 矿井火灾防治[M]. 徐州: 中国矿业大学出版社, 1990.

[34] Ozdeniz H, Sivrikaya O, Sensogut C. Investigation of Spontaneous Combustion of Coal in Underground Coal Mining [M]. Mine Planning and Equipment Selection. Springer International publishing, 2014: 637-644.

[35] 李增华. 煤炭自燃的自由基反应机理[J]. 中国矿业大学学报, 1996, 25(3): 111-114.

[36] Wang H, Dlugogorski B, Kennedy E. Theoratical analysis of reaction regimes in low-temperature oxidation of coal[J]. Fuel, 1999, 78(9): 1073-1081.

[37] Lopez D, Sanada Y, Mondragon F. Effect of low-temperature oxidation of coal on hydrogen-transfer capability[J]. Fuel, 1998, 77(14): 1623-1628.

[38] Rhoads C, Senftle J, Coleman M, et al. Further studies of coal oxidation[J]. Fuel, 1983, 62(12): 1387-1392.

[39] 陆伟, 胡千庭, 仲晓星, 等. 煤自燃逐步自活化反应理论[J]. 中国矿业大学学报, 2007(01): 111-115.

[40] 李林, Beaimsh B, 姜德义. 煤自然活化反应理论[J]. 煤炭学报, 2009, 34(04): 505-508.

[41] 王继仁, 邓存宝. 煤微观结构与组分量质差异自燃理论[J]. 煤炭学报, 2007(12): 1291-1296.

[42] 邓军, 侯爽, 李会荣, 等. 煤分子中-HCOH-初期氧化反应机理研究[J].煤炭转化, 2006, 29(3): 1-4.

[43] Shi T, Wang X, Deng J, et al. The mechanism at the initial stage of the room-temperature oxidation of coal[J]. Combustion and Flame, 2005, 140(4): 332-345.

[44] Wang D., Xin, H. Qi, X., et al. Reaction pathway of coal oxidation at low temperatures: a model of cyclic chain reactions and kinetic characteristics[J]. Combustion and Flame, 2016, 163, 447–460.

[45] 刘伟, 秦跃平, 杨小彬, 等. 挥发分对煤自燃特性影响的实验研究[J]. 煤炭学报, 2014, 39(05): 891-896.

[46] 李林, 陈军朝, 姜德义. 灰分对煤自燃特性影响的实验研究[J]. 重庆大学学报, 2017, 40(4): 85-92.

[47] 司卫彬, 王德明. 硫对长焰煤自燃过程影响的试验研究[J]. 煤炭科学技术, 2020, 48(05): 103-107.

[48] 杨永良, 李增华, 季淮君, 等. 可溶有机质对煤低温氧化的影响[J]. 煤炭学报, 2013, 38(10): 1806-1811.

[49] 朱红青, 王海燕, 宋泽阳, 等. 煤绝热氧化动力学特征参数与变质程度的关系[J]. 煤炭学报, 2014, 39(03): 498-503.

[50] 田鹏, 辛广顺. 煤岩显微组分对煤自燃的影响[J]. 能源与节能, 2012(11): 19-21.

[51] 邓军, 李亚清, 张玉涛, 等. 羟基(-OH)对煤自燃侧链活性基团氧化反应特性的影响[J]. 煤炭学报, 2020,45(01): 232-240.

[52] Clemens A, Matheson T, Rogers D. Low temperature oxidation studies of dried New Zealand coals[J]. Fuel, 1991, 70(2): 215-221.

[53] 秦跃平, 宋宜猛, 杨小彬, 等. 粒度对采空区遗煤氧化速度影响的实验研究[J]. 煤炭学报, 2010, 35(S1): 132-135.

[54] 许凯航. 氧浓度对淮南煤自燃特性的影响实验研究[D].西安:西安科技大学, 2018.

[55] 文虎, 陆彦博, 刘文永. 利用热重法研究不同氧浓度对煤自燃特性的影响[J]. 矿业安全与环保, 2021, 48(01): 1-5+10.

[56] 张玉涛, 杨杰, 李亚清, 等. 氧气浓度和升温速率对煤自燃特性影响[J]. 安全与环境学报, 2022, 1-7.

[57] 郝宏德. 空气湿度对煤自燃特性影响及热效应研究[D].太原: 太原理工大学, 2021.

[58] 刘晓源. 同位素示踪法研究水分作用于煤自燃反应过程[D]. 太原: 太原理工大学, 2021.

[59] 谢振华, 金龙哲,宋存义. 程序升温条件下煤炭自燃特性[J]. 北京科技大学学报, 2003(01): 12-14.

[60] 仲晓星, 王德明, 尹晓丹. 基于程序升温的煤自燃临界温度测试方法[J]. 煤炭学报, 2010, 35(S1): 128-131.

[61] 徐永亮, 王兰云, 宋志鹏, 等. 基于交叉点法的煤自燃低温氧化阶段特性和关键参数[J]. 煤炭学报, 2017, 42(04): 935-941.

[62] 邓军, 赵婧昱, 张嬿妮, 等. 不同变质程度煤二次氧化自燃的微观特性试验[J]. 煤炭学报, 2016, 41(05): 1164-1172.

[63] Cai J, Yang S, Hu X, et al. Forecast of coal spontaneous combustion based on the variations of functional groups and microcrystalline structure during low-temperature oxidation[J]. Fuel, 2019, 253: 339-348.

[64] Zhou C, Zhang Y, Wang J, et al. Study on the relationship between microscopic functional group and coal mass changes during low-temperature oxidation of coal[J]. International Journal of Coal Geology, 2017, 171: 212-222.

[65] Zhang Y, Wu B, Liu SH, et al. Thermal kinetics of nitrogen inhibiting spontaneous combustion of secondary oxidation coal and extinguishing effects[J]. Fuel, 2020, 278: 118223.

[66] Zhang Y, Li Y, Huang Y, et al. Characteristics of mass, heat and gaseous products during coal spontaneous combustion using TG/DSC–FTIR technology[J]. Journal of thermal analysis and calorimetry, 2018, 131(3): 2963-2974.

[67] 孙晔伟, 唐跃刚, 李正越, 等. 中国特高挥发分特高油产率煤的分布及其特征[J]. 煤田地质与勘探, 2017, 45(05): 6-12.

[68] 杨甫, 段中会, 马丽, 等. 陕西省富油煤分布及受控地质因素[J]. 煤炭科学技术:1-14.

[69] 黄鹏程, 王力圆, 王贝, 等. 宁夏红墩子矿区富油煤赋存特征及其沉积环境研究[J]. 中国煤炭地质, 2021, 33(10): 65-70.

[70] 李华兵, 李宁, 姚征, 等. 陕北三叠纪煤田子长矿区瓦窑堡组特高焦油产率煤富集规律分析[J]. 中国煤炭地质, 2021, 33(01): 22-25+79.

[71] 马丽, 段中会, 贺丹, 等. 陕北三叠纪煤田中—特高油产率煤分布规律及成因机理[J]. 中国煤炭地质, 2022, 34(01): 32-36.

[72] 许婷, 李宁, 姚征. 榆横矿区3~#煤层富油煤的煤岩煤质及成煤环境[J]. 煤炭技术, 2022, 41(07): 82-85.

[73] 王锐, 夏玉成, 马丽. 榆神矿区富油煤赋存特征及其沉积环境研究[J]. 煤炭科学技术, 2020, 48(12): 192-197.

[74] 高文博, 冯烁, 田继军, 等. 三塘湖煤田汉水泉矿区富油煤赋存特征及沉积环境分析[J]. 煤炭工程, 2022, 54(10): 136-140.

[75] 李焕同, 朱志蓉, 张战波, 等. 柠条塔煤矿富油煤赋存特征及其成煤环境控制[J]. 煤炭技术, 2022, 41(04): 63-66.

[76] 付德亮, 段中会, 杨甫, 等. 富油煤钻井式地下原位热解提取煤基油气资源的几个关键问题[J]. 煤炭学报, 2022, 1-14.

[77] 毛崎森, 王长安, 侯育杰, 等. 富油煤原位热解对流加热过程传热规律数值模拟研究[J]. 洁净煤技术, 2022, 1-13.

[78] 毛崎森, 刘嘉晔, 王长安, 等. 不同布井模式下富油煤原位热解传热规律数值模拟[J]. 煤炭转化, 2022, 45(06): 7-19.

[79] 薛香玉, 王长安, 邓磊, 等. 基于全生命周期的富油煤原位热解碳排放研究[J]. 煤炭学报, 2022, 1-11.

[80] 田华, 张晴, 谢祖锋, 等. 富油煤热解产物在粉砂介质中的吸附行为研究[J]. 环境科学学报, 2022, 42(09): 133-140.

[81] 王旭. 榆神府矿区富油煤组构特性及破碎强度试验研究[D]. 西安:西安科技大学, 2021.

[82] 黄笑乐, 杨甫, 韩磊, 等. 富油煤(长焰煤)孔隙结构三维表征及渗流模拟[J]. 化工学报, 2022, 1-15.

[83] 翁成敏, 潘治贵. 峰峰煤田煤的X射线衍射分析[J]. 地球科学, 1981, (01): 214-221.

[84] 李增学. 煤地质学[M]. 地质出版社, 2009.

[85] Shi Q, Li C, Wang S, et al. Effect of the depositional environment on the formation of tar-rich coal: A case study in the northeastern Ordos Basin, China[J]. Journal of Petroleum Science and Engineering, 2022, 216: 110828.

[86] Gao J, Zhang Y, Meng D, et al. Effect of ash and dolomite on the migration of sulfur from coal pyrolysis volatiles[J]. Journal of Analytical and Applied Pyrolysis, 2019, 140: 349-354.

[87] Hirsch P. X-ray scattering from coals[J]. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1954,226(1165): 143-169.

[88] 安文博, 王来贵. 表面活性剂作用下煤体力学特性及改性规律[J]. 煤炭学报, 2020, 45(12): 4074-4086.

[89] Mathews J, Krishnamoorthy V, Louw E, et al. A review of the correlations of coal properties with elemental composition[J]. Fuel processing technology, 2014, 121: 104-113.

[90] 周刚, 薛娇, 程卫民, 等. 基于X射线衍射实验的堆垛结构对煤尘润湿性的影响[J]. 工程科学学报, 2015, 37(12): 1535-1541.

[91] 李娜, 刘全生, 甄明等.不同变质程度煤燃烧反应性及FTIR分析其热解过程结构变化[J]. 光谱学与光谱分析, 2016, 36(09): 2760-2765.

[92] Yu Z, Guo W, Yang P, et al. In-situ infrared and kinetic characteristics analysis on pyrolysis of tar-rich coal and macerals[J]. Fuel, 2023, 348: 128601.

[93] Cooke N, Fuller O, Gaikwad R. FT-ir spectroscopic analysis of coals and coal extracts[J]. Fuel, 1986, 65(9): 1254-1260.

[94] Painter P, Snyder R, Starsinic M, et al. Concerning the application of FT-IR to the study of coal: a critical assessment of band assignments and the application of spectral analysis programs[J]. Applied Spectroscopy, 1981, 35(5): 475-485.

[95] Geng W, Nakajima T, Takanashi H, et al. Analysis of carboxyl group in coal and coal aromaticity by Fourier transform infrared (FT-IR) spectrometry[J]. Fuel, 2009, 88(1): 139-144.

[96] Mu R, Malhotra V. A new approach to elucidate coal-water interactions by an insitu transmission FT-IR technique[J]. Fuel;(United Kingdom), 1991, 70(10).

[97] Murakami K, Hiroyuki S, Yoshiyuki N. In situ infrared spectroscopic study of the effects of exchanged cations on thermal decomposition of a brown coal [J].Fuel,1997,76:655-661.

[98] Zhang Y, Zhang Y, Li Y, et al. Determination and dynamic variations on correlation mechanism between key groups and thermal effect of coal spontaneous combustion[J]. Fuel, 2022, 310: 122454.

[99] Zhou B, Yang S, Jiang X, et al. The reaction of free radicals and functional groups during coal oxidation at low temperature under different oxygen concentrations[J]. Process Safety and Environmental Protection, 2021, 150: 148-156.

[100]Wang G, Zhou A. Time evolution of coal structure during low temperature air oxidation[J]. International Journal of Mining Science and Technology, 2012, 22(4): 517-521.

中图分类号:

 TD752.2    

开放日期:

 2026-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式