- 无标题文档
查看论文信息

论文中文题名:

 基于时间反演的地埋目标成像算法研究    

姓名:

 汪振宇    

学号:

 21207223083    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085400    

学科名称:

 工学 - 电子信息    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 电子与通信工程    

研究方向:

 电磁成像    

第一导师姓名:

 毛昕蓉    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-12    

论文答辩日期:

 2024-06-01    

论文外文题名:

 Research on imaging algorithm for buried targets based on time inversion    

论文中文关键词:

 时间反演 ; 电磁成像 ; 成像算法 ; 多信号分类法    

论文外文关键词:

 Time inversion ; Electromagnetic imaging ; Imaging algorithm ; Multi signal classification method    

论文中文摘要:

在地下目标成像中,由于介质非均匀性和边界效应等问题,传统的成像方法往往存在局限性,影响了成像效果和目标检测的可靠性。相比于传统的成像方法,时间反演技术能够实现目标的精确定位并具有较高的成像分辨率,因此有着极大的研究价值。

时间反演由于其良好的自适应空时聚焦能力而被引入到电磁探测领域并应用于探地雷达目标成像,针对现有的电磁时间反演算子分解法(Diagonal Reassignment Optimal Reduced Technique,DORT)成像在复杂环境下分辨率较低而时间反演多信号分类法(Time Reversal-MUltiple SIgnal Classification,TR-MUSIC)受噪声干扰的缺点,对传统多重信号分类(TR-MUSIC)算法的优化。利用时间反演技术对电磁场数据进行空间平滑处理,实现对介质非均匀性的校正和成像模糊的补偿;采用构建加权矩阵方法,提高非理想环境中对目标信号估计的稳定性;通过两次空间平滑算法的叠加增强了数据预处理对原始信号数据的利用率,提高了波达方向估计的准确性。本文改进后的IWSS(Improve Weighted Spatial Smoothing,IWSS)算法相较其他文献中的算法在相同快照数、信噪比条件下,在保证波达方向估计精度的同时能利用更少的阵元个数完成更多的入射信号的波达方向估计,产生的峰值点与真实峰值点之间的误差不超过0.5°,对相干信号的均方根误差对比其他改进算法,在小快拍数和低信噪比的条件下分别提高了15.5%和41.7%,低信噪比情况下分辨率提高了0.27m,结合时间反演技术后的TR-IWSS算法具有较高的成像分辨率和更好的抗干扰能力,可以适应高噪声环境下的成像需求。

本文进行对基于时间反演的目标成像算法的改进,所研究的TR-IWSS算法通过对不同的环境参数进行仿真成像,对比其他文献算法,表明本文算法的优势,可以为地埋目标成像等相关研究提供一定的参考。

论文外文摘要:

In underground target imaging, traditional imaging methods often have limitations due to media non-uniformity and boundary effects, which affect the imaging effect and reliability of target detection. Compared to traditional imaging methods, time inversion technology can achieve precise target localization and has higher imaging resolution, thus having great research value.

Time inversion has been introduced into the field of electromagnetic detection and applied to ground penetrating radar target imaging due to its excellent adaptive spatiotemporal focusing ability. In response to the low resolution of the existing Diagonal Reassignment Optimal Reduced Technique (DORT) imaging in complex environments, while Time Reversal Multiple Signal Classification (TR-MUSIC) is affected by noise interference, this thesis optimizes the traditional TR-MUSIC algorithm. Using time inversion technology to perform spatial smoothing on electromagnetic field data, achieving correction of medium non-uniformity and compensation for imaging blur; Using the method of constructing weighted matrices to improve the stability of target signal estimation in non ideal environments; The superposition of two spatial smoothing algorithms enhances the utilization of raw signal data in data preprocessing and improves the accuracy of direction of arrival estimation. The improved IWSS (Improved Weighted Spatial Smoothing, IWSS) algorithm in this article, compared to other improved algorithms in the same number of snapshots and signal-to-noise ratio conditions, can ensure the accuracy of direction of arrival estimation while using fewer array elements to complete more direction of arrival estimation of the incident signal. The error between the generated peak point and the true peak point does not exceed 0.5 °. Compared with other improved algorithms, the root mean square error of coherent signals is increased by 15.5% and 41.7% respectively under small snapshot numbers and low signal-to-noise ratio conditions, and the resolution is improved by 0.27m under low signal-to-noise ratio conditions. The TR-IWSS algorithm combined with time inversion technology has... Higher imaging resolution and better anti-interference ability can meet the imaging needs in high noise environments.

This article improves the target imaging algorithm based on time inversion. The TR-IWSS algorithm studied simulates imaging of different environmental parameters and compares it with other literature algorithms, indicating the advantages of this algorithm. It can provide a certain reference for related research such as buried target imaging.

参考文献:

[1]安腾远,丁霄. 基于角谱域和时间反演的任意均匀场的生成方法[J]. 物理学报,2023,72(18):2-14.

[2]吴志勇,饶伟,贾凤勤. 针对相干信号DOA估计的改进MUSIC算法[J]. 电讯技术,2023,63(9):1355-1360.

[3]朱华刚. 基于高阶谱估计的反辐射导弹抗有源诱饵研究[J]. 舰船电子工程,2023,43(9):78-82.

[4]尹大雨,章飞,姬传堂. 基于MIMO雷达降维酉求根MUSIC算法角度估计[J]. 计算机与数字工程,2023,51(7):1457-1461,1634.

[5]陈恬田,杨晓庆,田姗,等. 基于时间反演的无损检测成像初探[J]. 传感器世界,2023,29(5):25-30.

[6]孔明昊,肖龙,吴雨,等. 面向电磁场赋形的时间反演实现方法与设计[J]. 舰船电子工程,2023,43(3):202-208,218.

[7]陈鹏年,温宗周,李丽敏,等. DOA估计经典MUSIC算法性能分析[J]. 微处理机,2019,40(6):40-43.

[8]Amirthalingam Malarkodi,Ganesan Latha,Srinivasan Srinivasan. An Experimental Study of Passive Time Reversal Process for Underwater Acoustic Communication in Shallow Waters of the Bay of Bengal[J]. Journal of Coastal Research,2020,89(sp1).

[9]张倩倩,尹成友,李安琪. 基于时间反演的室内精确单站定位技术研究[J]. 微波学报,2022,38(4):18-25.

[10]陆希成,邱扬,江凌,等. TRC路径特征及其对时间反演信噪比的影响[J]. 强激光与粒子束,2021,33(12):47-54.

[11]陆希成,田锦,林荣刚,等. 初始信号对时间反演性能的影响分析[J]. 现代应用物理,2023,14(3):183-188.

[12]Zhao Anbang,Zeng Caigao,Hui Juan,Wang Keren,Tang Kaiyu. Study on Time Reversal Maximum Ratio Combining in Underwater Acoustic Communications[J]. Applied Sciences,2021,11(4).

[13]张齐林,李方伟,王明月. 基于时间反演的到达时间定位[J]. 计算机应用,2021,41(3):820-824.

[14]李鑫,赵德双. 基于时间反演的近场无线功率传输效率研究[J]. 电子科技大学学报,2023,52(6):835-840.

[15]李宏亮,张大智,朱传明,等. 基于空间平滑多重信号分类算法的低角目标探测[J]. 现代导航,2023,14(6):461-465.

[16]Xiong Chao,Fan Chongyi,Huang Xiaotao. Multipath Exploitation with Time Reversal Waveform Covariance Matrix for SNR Maximization[J]. Remote Sensing,2020,12(21).

[17]王雨豪,张贞凯. 一种双层协方差矩阵重构的稳健波束形成算法[J]. 电讯技术,2023,63(10):1560-1566.

[18]张蓝方,韦峻峰,廖灿杰,等. 基于改进野狗优化算法的二维MUSIC声源定位研究[J]. 现代计算机,2023,29(13):45-49,64.

[19]Hongcheng Zhou,Bing-zhong Wang,Yu Wang,Weirong Chen,Zhongming Yan. Research on Temporal Cloaked Signal Transmission Based on Time Reversal Technique[J]. Frequenz,2019,73(1-2).

[20]李旭东,杨晓庆,田姗. 基于电磁时间反演算法的复合材料无损检测成像[J]. 信息技术与信息化,2023(11):69-72.

[21]张知原,李冰,刘仕奇,等. 基于时间反演的局域空间多目标均匀恒定长时无线输能[J]. 物理学报,2022,71(1):83-93.

[22]田航. MUSIC算法性能研究综述[J]. 科技资讯,2019,17(27):5-6.

[23]Yang Zhouming,Zhao Deshuang,Bao Jinlong,Ma Xin,Hu Lin,Cao Weiping,Wang Bing Zhong. Asynchronous Focusing Time Reversal Wireless Power Transfer for Multi-Users With Equal Received Power Assignment[J]. IEEE ACCESS,2021,9.

[24]郑超,杨志强. 空间平滑MUSIC算法的相干信源DOA[J]. 火控雷达技术,2021,50(3):21-24.

[25]代超蓝,李方伟,王明月. 基于时间反演的目标信号稀疏检测方案[J]. 信号处理,2021,37(11):2171-2177.

[26]史策,陈善学,李方伟. 时间反演UWB通信系统的窄带干扰抑制[J]. 系统工程与电子技术,2020,42(4):948-953.

[27]王敏,张骄. 基于频率不变性的改进MUSIC算法的DOA估计[J]. 山西大学学报(自然科学版),2022,45(4):1030-1035.

[28]苏延川,崔炳喆,郭玉霞. MUSIC算法高分辨测角性能影响因素分析[J]. 电子质量,2022(4):16-21.

[29]Zhou Yiyu,Zhao Jiapeng,Braverman Boris,Pang Kai,Zhang Runzhou,Willner Alan E.,Shi Zhimin,Boyd Robert W. Multiprobe Time Reversal for High-Fidelity Vortex-Mode-Division Multiplexing Over a Turbulent Free-Space Link[J]. PHYSICAL REVIEW APPLIED,2021,15(3).

[30]张齐林,李方伟,王明月. 时间反演联合TOA测距的室内指纹定位技术[J]. 信号处理,2021,37(5):862-869.

[31]安康,李长侑,丁君. 基于微波时间反演算法的复合材料内部损伤检测[J]. 无损检测,2023,45(9):43-48,80.

[32]李方伟,代超蓝,王明月. MIMO雷达中基于时间反演的移动目标检测方案[J]. 信号处理,2021,37(4):588-595.

[33]闫轶著,丁帅,韩旭,等. 基于信道处理的时间反演幅度可调控多目标聚焦方法[J]. 物理学报,2023,72(16):94-102.

[34]Du Fei,Xu Chao,Zhang Jie. A bolt preload monitoring method based on the refocusing capability of virtual time reversal[J]. Structural Control and Health Monitoring,2019,26(8).

[35]安腾远,丁霄,王秉中. 基于时间反演技术的复杂天线罩辐射波束畸变纠正[J]. 物理学报,2023,72(3):17-25.

[36]姚志成,许佳诺,杨剑,等. 一种改进的干涉仪-MUSIC联合测向算法[J]. 兵器装备工程学报,2023,44(11):240-247.

[37]Jin Tong Wang,Aaron X. Kan,J. D. Fan. The origin of the spooky behavior of quantum particles: Time reversal[J]. Modern Physics Letters A,2019,34(25).

[38]樊宏宝. 多径环境下基于时间反演的雷达目标参数估计[D]. 陕西:西安电子科技大学,2020.

[39]梁义鲁,司伟建,曲明超. 混合阵列误差校正与快速极化MUSIC算法[J]. 电波科学学报,2023,38(3):510-519.

[40]李丹宁,石和平,曹继华,等. 基于四阶累积量的MUSIC算法性能仿真分析[J]. 天津职业技术师范大学学报,2022,32(3):53-57.

[41]张明洋,查淞元,刘雨东. 基于特征值聚类的MUSIC算法[J]. 西北工业大学学报,2023,41(3):574-578.

[42]Zhang Zhichen,Wang Haiyan,Yao Haiyang. Time Reversal and Fractional Fourier Transform-Based Method for LFM Signal Detection in Underwater Multi-Path Channel[J]. Applied Sciences,2021,11(2).

[43]高伟航. 基于时间反演和压电陶瓷的混凝土损伤成像方法研究[D]. 辽宁:大连理工大学,2020.

[44]屠亚杰,方遒,李艳玲. 基于协方差矩阵重构的改进型MUSIC算法[J]. 淮阴工学院学报,2023,32(3):36-41.

[45]Chen Zhengwei,Liang Feng,Zhang Qiaoli,Li Bing,Ge Guangding,Zhao Deshuang. Synthesis Method for 1-D Uniform Microwave Field Generation Based on Fourier Transform and Time Reversal[J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION,2021,69(10).

[46]苏龙,王苏卫. 阵列的MUSIC算法仿真分析[J]. 湖南工业职业技术学院学报,2018,18(4):11-13,18.

[47]陆希成,邱扬,田锦,等. 基于多径信道模型研究时间反演腔的反演特性[J]. 物理学报,2022,71(2):100-105.

[48]王秉中,王任. 时间反演电磁学研究进展[J]. 微波学报,2023,39(5):37-43.

[49]钟选明,李军野,廖成. 基于空频分解信号子空间向量的时间反演成像[J]. 电子与信息学报,2017,39(2):494-498.

[50]黎昕婷,钟舜聪,钟剑锋. 基于改进MUSIC算法的宽带信号DOA估计[J]. 计算机工程,2022,48(11):201-206.

中图分类号:

 TN957.52    

开放日期:

 2024-06-12    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式