- 无标题文档
查看论文信息

论文中文题名:

 深埋综放工作面顺槽围岩动力破坏机理及其支护技术    

姓名:

 刘政    

学号:

 20204053026    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 081401    

学科名称:

 工学 - 土木工程 - 岩土工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 土木工程    

研究方向:

 矿山岩体力学与支护    

第一导师姓名:

 任建喜    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-12    

论文答辩日期:

 2023-06-02    

论文外文题名:

 Dynamic failure mechanism and support technology of surrounding rock in deep buried fully mechanized caving face    

论文中文关键词:

 冲击地压 ; 综放面 ; 围岩动力破坏 ; 强支强卸 ; 现场试验    

论文外文关键词:

 rock burst ; fully mechanized caving face ; dynamic failure of surrounding rock ; strong support and strong unloading ; field test    

论文中文摘要:

开展深埋综放工作面顺槽围岩动力破坏机理及其支护技术研究具有重要的工程应用价值。本文以陕西彬长矿区孟村煤矿401102综放面为背景,采用理论分析、室内静载试验和冲击试验、数值模拟及现场试验相结合的方法开研究工作,主要内容与结论是:

(1)研究表明,影响孟村煤矿401102综放工作面顺槽围岩稳定性的因素包括:由开采深度、上覆岩层特性、断层构造和地应力场组成的地质因素;由底煤厚度、煤柱宽度和开采强度组成的开采技术因素;以及采掘扰动、爆破卸压和巷道维修组成的冲击地压诱发因素。

(2)完成了不同围压下完整及裂隙煤岩三轴压缩破坏全过程试验。结果表明,完整煤岩强度、主破裂角与围压呈非线性增长关系,破坏机理由局部剪切破坏向整体剪切破坏转变,声发射振铃计数在弹塑性变形阶段和破坏阶段明显增大;裂隙煤岩的峰值应力、弹性模量与裂隙倾角呈负相关,破坏形式由预制裂隙尖端起裂,沿加载方向延伸至加载面,最终与预制裂隙贯通形成剪切滑移面发生失稳破坏,裂隙煤岩声发射振铃计数大于完整煤岩。

(3)完成了不同倾角的裂隙煤岩霍普金森压杆动力分析试验,结果表明煤岩动态峰值强度、应变与冲击气压呈非线性增长关系;45°的裂隙煤岩动态弹性模量、动态峰值应力、应变均为最小值,60°裂隙煤岩次之,30°裂隙煤岩最大;相比较裂隙煤岩,完整煤岩脆性破坏特征更明显。裂隙倾角30°时为张拉破坏;裂隙倾角45°时,沿裂隙面发生错动滑移;裂隙倾角为60°时,整体破坏类型为剪切-拉伸混合模式。基于波动力学对应力波入射裂隙面引发的波散射现象进行分析,45°裂隙煤岩存在抵抗剪切破坏能力较弱的临界角,此时试样抵抗动态冲击的能力较弱,易于发生剪切破坏。

(4)分析裂隙煤岩霍普金森压杆动力分析试验结果可知,冲击荷载作用下,煤岩内部裂纹萌生和扩展很大程度上受能量的传递和耗散的影响。应变率与入射能、反射能、透射能和吸收能呈正相关,随应变率的提高,岩体内部微裂纹萌生和扩展加深,整体破坏程度增高。以吸能密度表征岩体的损伤变量,发现损伤变量具有明显的应变率效应,冲击破坏的应变率越高,岩体破坏程度越严重,裂隙煤岩试样吸能比先增加后减弱。

(5)基于自然平衡拱理论和“强支强卸”理念,完成了401102顺槽锚杆(索)支护参数设计。支护参数为:锚杆均采用 22mm×2500mm 左旋无纵筋等强螺纹钢锚杆;顶板锚索采用28.6mm×8200mm ​​​​​​​钢绞线,顺槽帮部的锚索采用28.6mm×5000mm ​​​​​​​ 钢绞线。

(6)采用FLAC3D数值模拟软件,运输顺槽在冲击能量为5*105 J作用下,部分锚杆被拉断,巷道发生失稳破坏。设置深孔预裂爆破、煤层分级卸压和地面水平井压裂卸压后,围岩顶板应力下降了7.71%,水平应力下降了7.21%,锚杆(索)受力均在设计承受极限内。地面水平井压裂深度为20m~30m,竖向应力下降率为30.31%,竖向位移下降率为42.26%;水平应力下降率为18.57%,水平位移下降率为20.01%。

(7)基于顺槽围岩动力破坏机理及其支护技术研究,完成了401102综放工作面顺槽围岩变形机理监测方案设计及现场实测。现场实测表明:监测断面距回采工作面50m,运输顺槽顶板锚杆最大受拉98kN,锚索最大受拉400kN,顶板最大沉降187mm,围岩松动圈半径小于3m。顺槽围岩高应力显著降低,综放面水平井压裂、巷道围岩结构弱化与高强度支护参数合理,有效的控制了顺槽围岩变形,提出的支护及卸压方案合理有效。

论文外文摘要:

It is of great engineering application value to study the dynamic failure mechanism and support technology of surrounding rock in deep fully mechanized caving face. Based on the background of 401102 fully mechanized caving face of Mengcun Coal Mine in Binchang mining area of Shaanxi Province, this paper adopts the method of theoretical analysis, indoor static load test and impact test, numerical simulation and field test. The main contents and conclusions are as follows:

(1) The research shows that the factors affecting the stability of the surrounding rock of the 401102 fully mechanized caving face in Mengcun Coal Mine include : mining depth, overlying strata characteristics, fault structure, geological factors composed of in-situ stress field ; mining technical factors composed of bottom coal thickness, coal pillar width and mining intensity ; the induced factors of rock burst are composed of mining disturbance, blasting pressure relief and roadway maintenance.

(2) The whole process test of triaxial compression failure of intact and fractured coal rock under different confining pressures was completed. The results show that the strength and main fracture angle of intact coal rock increase nonlinearly with confining pressure, the failure mechanism changes from local shear failure to overall shear failure, and the acoustic emission ringing count increases significantly in the elastic-plastic deformation stage and failure stage. The peak stress and elastic modulus of the fractured coal rock are negatively correlated with the fracture dip angle. The failure mode starts from the tip of the prefabricated fracture, extends to the loading surface along the loading direction, and finally forms the shear slip surface with the prefabricated fracture. The instability failure occurs, and the acoustic emission ringing count of the fractured coal rock is greater than that of the intact coal rock.

(3) The dynamic analysis test of Hopkinson pressure bar of fractured coal rock with different dip angles was completed. The test results show that the dynamic peak strength and dynamic peak strain of coal rock have a nonlinear growth relationship with the impact pressure. The dynamic elastic modulus, dynamic peak stress and dynamic peak strain of 45° fractured coal rock are the minimum, followed by 60° fractured coal rock and 30° fractured coal rock. Compared with fractured coal rock, the brittle failure characteristics of intact coal rock are more obvious. With the increase of the dip angle of the prefabricated cracks in coal rock, the cracks gradually change from coplanar shear cracks along the crack direction to tensile cracks. When the fracture dip angle is 30°, it is tensile failure; when the fracture dip angle is 45°, dislocation slip occurs along the fracture surface; when the fracture dip angle is 60°, the overall failure type is shear-tensile mixed mode. Based on wave mechanics, the wave scattering phenomenon caused by the incident crack surface of stress wave is analyzed. The 45° fractured coal rock has a critical angle with weak resistance to shear failure. At this time, the sample has weak resistance to dynamic impact and is prone to shear failure.

(4) The dynamic analysis test of Hopkinson pressure bar of fractured coal rock shows that the initiation and propagation of internal cracks are greatly affected by the transfer and dissipation of energy under the action of impact load failure. The strain rate is positively correlated with incident energy, reflection energy, transmission energy and absorption energy. With the increase of strain rate, the initiation and propagation of microcracks in rock mass deepen, and the overall damage degree increases. The damage variable of rock mass is characterized by energy absorption density, and it is found that the damage variable has obvious strain rate effect. The higher the strain rate of impact failure, the more serious the damage degree of rock mass, and the energy absorption ratio of fractured coal rock samples increases first and then decreases

(5) Based on the theory of natural equilibrium arch and the concept of " strong support and strong unloading, " the design of bolt (cable) support parameters of 401102 crossheading was completed. The support parameters are as follows: the left-handed non-longitudinal reinforcement and other strong thread steel bolt is  22mm×2500mm  ; the roof anchor cable adopts 28.6mm×8200mm steel strand, and the anchor cable of the side of the trough adopts 28.6mm×5000mm ​​​​​​​ steel strand.

(6) Using FLAC3D numerical simulation software, under the action of impact energy 5*105  J, part of the bolt is pulled off and the roadway is unstable. After setting deep hole pre-splitting blasting, coal seam grading pressure relief and ground horizontal well fracturing pressure relief, the roof stress of surrounding rock decreased by 7.71%, the horizontal stress decreased by 7.21%, and the stress of bolt (cable) was within the design bearing limit. The fracturing depth of surface horizontal wells is 20m~30m, the roof stress reduction rate is 30.31%, and the vertical displacement reduction rate is 42.26%. The decrease rate of horizontal stress is 18.57%, and the decrease rate of horizontal displacement is 20.01%.

(7) Based on the study of the dynamic failure mechanism and support technology of the surrounding rock, the monitoring scheme design and field measurement of the deformation mechanism of the surrounding rock of the 401102 fully mechanized caving face are completed. roadway surrounding rock deformation and supporting structure stress characteristics monitoring are completed. The field application shows that the maximum stress of the roof bolt is 98kN, the maximum stress of the anchor cable is 400kN, the maximum settlement of the roof is 187mm, and the range of the surrounding rock loose circle is less than 3m. The high stress of the surrounding rock of the roadway is significantly reduced. The horizontal well fracturing, the weakening of the surrounding rock structure and the high strength support parameters of the fully mechanized caving face are reasonable, which effectively controls the deformation of the surrounding rock of the roadway and provides a theoretical basis for the surrounding rock control of similar rock burst mines.

参考文献:

[1] 李晓锋, 李海波, 刘凯, 等. 冲击荷载作用下岩石动态力学特性及破裂特征研究[J]. 岩石力学与工程学报, 2017, 36(10): 2393-2405.

[2] 刁心宏, 于洋, 朱陈, 等. 冲击荷载作用下硬岩损伤及变形特性分析[J]. 华东交通大学, 2018.

[3] 赵毅鑫, 龚爽等. 冲击载荷作用下煤的动态拉伸及Ⅰ型断裂力学特性研究[J]. 徐州:中国矿业大学出版社, 2018.

[4] 赵毅鑫, 赵高峰, 姜耀东. 基于微焦点CT的煤岩细观破裂机理研究[M].科学出版社, 2012

[5] 李夕兵, 古德生. 岩石冲击动力学[M]. 长沙; 中南工业大学出版社, 1994.

[6] Attwell P B. Response of Rocks to High Velocity Impact [J]. Trans Inst Min Metal, 1962, 71:705-724.

[7] Huang G, Yin G, Gang W, et al. A review on rockburst mechanisms [J]. Disaster Adv, 2010, 3(4): 467-472.

[8] Tan Y L, Guo W Y, Gu Q H, et al. Research on the Rockburst Tendency and AE Characteristics of Inhomogeneous Coal-Rock Combination Bodies [J]. Shock Vib, 2016(2): 1-11.

[9] Gu R, Ozbay U. Distinct element analysis of unstable shear failure of rock discontinuities in underground mining conditions [J]. Int J Rock Mech Min Sci, 2014, 68(6): 44-54.

[10] Manouchehrian A, Cai M. Simulation of unstable rock failure under unloading conditions [J]. Revue Canadienne De Géotechnique, 2016, 53(4): 150617143612000.

[11] Li X, Li C, Cao W, et al. Dynamic stress concentration and energy evolution of deep-buried tunnels under blasting loads [J]. Int J Rock Mech Min Sci, 2018, 104: 131-146.

[12] 杨凡杰, 周辉, 卢景景, 等. 岩爆发生过程的能量判别指标[J]. 岩石力学与工程学报, 2015(s1): 2706-2714.

[13] 李玉生. 冲击地压机理探讨[J]. 煤炭学报, 1984, 8(3): 1-10.

[14] 齐庆新, 高作志. 层状煤岩体结构破坏的冲击矿压理论[J]. 煤矿开采, 1998,8(2): 14-17.

[15] 齐庆新. 层状煤岩体结构破坏的冲击矿压理论与实践研究[D]. 北京煤炭科学研究总院, 1996.

[16] 章梦涛. 冲击地压失稳理论与数值模拟计算[J]. 岩石力学与工程学报, 1987, 6(3): 197-204.

[17] 窦林名, 陆菜平, 牟宗龙, 等. 冲击矿压的强度弱化减冲理论及其应用[J]. 煤炭学报, 2005, 30(6): 690-694.

[18] 潘俊锋, 毛德兵, 等. 煤矿开采冲击地压启动理论[J]. 岩石力学与工程学报, 2012, 31(3): 586-596.

[19] 齐庆新, 欧阳振华, 赵善坤, 等. 我国冲击地压矿井类型及防治方法研究[J]. 煤炭科学技术, 2014, 42(10): 1-5.

[20] 潘一山, 李忠华, 章梦涛. 我国冲击地压分布、类型、机理及防治研究[J]. 岩石力学与工程学报, 2003(11): 1844-1851.

[21] 姜耀东, 王涛, 陈涛等. “两硬”条件正断层影响下的冲击地压发生规律研究[J]. 岩石力学与工程学报, 2013, 32(S2): 3712-3718.

[22] 陈国祥, 郭兵兵, 窦林名. 褶皱区综放面开采布置与冲击地压的关系探讨[J]. 煤炭科学技术, 2010, 38(10): 27-30.

[23] 陈国祥, 窦林名, 乔中栋, 等. 褶皱区应力场分布规律及其对冲击矿压的影响[J]. 中国矿业大学学报, 2008, No.165(6): 751-755.

[24] 林远东, 涂敏, 付宝杰, 等. 断层自锁与活化的力学机理及稳定性控制[J]. 采矿与安全工程学报, 2019, 36(5): 898-905.

[25] 林远东, 涂敏, 付宝杰, 等. 采动影响下断层稳定性的力学机理及其控制研究[J]. 煤炭科学技术, 2019, 47(9): 158-165.

[26] 林远东, 涂敏. 采场端部底板破坏深度解析分析[J]. 煤炭科学技术, 2011, 39(3): 25-28.

[27] 顾士坦, 黄瑞峰, 谭云亮等. 背斜构造成因机制及冲击地压灾变机理研究[J]. 采矿与安全工程学报, 2015, 32(1): 59-64.

[28] 李振雷, 窦林名, 蔡武, 等. 深部厚煤层断层煤柱型冲击矿压机制研究[J]. 岩石力学与工程学报, 2013, 32(2): 333-342.

[29] 李振雷, 窦林名, 王桂峰, 等. 坚硬顶板孤岛煤柱综放面冲击特征及机制分析[J]. 采矿与安全工程学报, 2014, 31(4): 519-524.

[30] 李振雷, 何学秋, 窦林名, 等. 煤冲击破坏过程规律及同源声电响应特征[J]. 岩石力学与工程学报, 2019, 38(10): 2057-2068.

[31] 潘一山. 煤矿冲击地压扰动响应失稳理论及应用[J]. 煤炭学报, 2018, 43(8): 2091-2098.

[32] 潘一山, 代连朋. 煤矿冲击地压发生理论公式[J]. 煤炭学报, 2021, 46(3): 789-799.

[33] 潘一山, 齐庆新, 王爱文, 等. 煤矿冲击地压巷道三级支护理论与技术[J]. 煤炭学报, 2020, 45(5): 1585-1594.

[34] 赵阳升, 冯增朝, 万志军. 岩体动力破坏的最小能量原理[J]. 岩石力学与工程学报, 2003(11): 1781-1783.

[35] 姜福兴, 刘烨, 刘军, 等. 冲击地压煤层局部保护层开采的减压机理研究[J]. 岩土工程学报, 2019, 41(2): 368-375.

[36] 姜福兴, 陈洋, 李东, 等. 孤岛充填综放面初采致冲力学机理探讨[J]. 煤炭学报, 2019, 44(1): 151-159.

[37] 姜福兴, 温经林, 白武帅, 等. 深部条带开采高位关键层离层区周边冲击危险性研究[J]. 中国矿业大学学报, 2018, 47(1): 40-47.

[38] 姜福兴, 王玉霄, 李明, 等. 上保护层煤柱引发被保护层冲击机理研究[J]. 岩土工程学报, 2017, 39(9): 1689-1696.

[39] 何满潮, 刘冬桥, 宫伟力, 等. 冲击岩爆试验系统研发及试验[J]. 岩石力学与工程学报, 2014, 33(9): 1729-1739.

[40] 窦林名, 何江, 曹安业, 等. 煤矿冲击矿压动静载叠加原理及其防治[J]. 煤炭学报, 2015, 40(7): 1469-1476.

[41] 窦林名, 白金正, 李许伟, 等. 基于动静载叠加原理的冲击矿压灾害防治技术研究[J]. 煤炭科学技术, 2018, 46(10): 1-8.

[42] 窦林名, 何江, 曹安业, 等. 煤矿冲击矿压动静载叠加原理及其防治[J]. 煤炭学报, 2015, 40(7): 1469-1476.

[43] Houpert, R.,Proc. 2nd Cong. Int. Soe. Rock Mech.,Belgrade, 1970 Vol. 2. PP. 49-55.

[44] Perkins, R.D.,Green, S. J. and Friedman, M.,Int. J. Rock Mech. Min. Sci.,Vo1.7, No.S,Sept1970, pp.527-535

[45] Friedman M. Perkins RD and Green SJ. Observation of brittle-deformation features at the maximum stress of westly granite and solenhofen limestone [J]. Int J Rock Mech Min Sci, 1970, 7: 297-306.

[46] Janach W. The role of bulking in brittle failure of rock under rapid compression [J]. Int J Rock Mech Min Sci, 1976, 13: 177-186.

[47] Chong KP, Hoyt PM, Smith JW. Effects of strain rate on oil shale fracturing [J]. Int J Rock Mech Min Sci, 1980, 17: 35-43.

[48] Olsson W.A. The compressive strength of tuff as a function of strains rate from 10-6 to 103/sce. Int JRock Mech Min Sci & Geomech. Abstr, 1991, 28(1): 115-118.

[49] 夏开文, 王帅, 徐颖, 等. 深部岩石动力学实验研究进展[J]. 岩石力学与工程学报, 2021, 40(3): 448-475.

[50] 陶明, 汪军, 李占文, 等. 冲击荷载下花岗岩层裂断口细–微观试验研究[J]. 岩石力学与工程学报, 2019, 38(11): 2172-2181.

[51] 崔衡. 不同冲击荷载作用下粉砂岩动力学特性试验研究[J]. 安徽建筑, 2021, 28(11): 170-171.

[52] 王以贤, 梁为民. 冲击荷载对无烟煤微观孔隙影响的分形研究[J]. 高压物理学报, 2020, 34(5): 134-144.

[53] 赵洪宝, 王中伟, 张欢, 等. 冲击荷载对煤岩内部微结构演化及表面新生裂隙分布规律的影响[J]. 岩石力学与工程学报, 2016, 35(5): 971-979.

[54] 张嘉凡, 周飞文, 周洪文. 冲击荷载作用下的煤岩动力学特性及本构模型[J]. 煤矿安全, 2021, 52(3): 84-89

[55] 戴兵, 罗鑫尧, 单启伟, 等. 循环冲击荷载下含孔洞岩石损伤特性与能量耗散分析[J]. 中国安全科学学报, 2020, 30(7): 69-77.

[56] 纪杰杰, 李洪涛, 吴发名, 等. 冲击荷载作用下岩石破碎分形特征[J]. 振动与冲击, 2020, 39(13): 176-183+214.

[57] 张明涛, 王伟, 张思怡, 等. 冲击荷载作用下灰砂岩破坏过程及损伤数值模拟研究[J]. 爆破, 2020, 37(1): 46-54.

[58] 张雨霏, 李建春, 闫亚涛, 等. 基于SHPB试验的粗糙节理面动态损伤特征研究[J]. 岩土力学, 2021, 42(2): 491-500.

[59] 刘新宇, 张先伟, 孔令伟, 等. 冲击荷载下花岗岩残积土的滞回曲线特征与损伤定量评价[J]. 振动与冲击, 2021, 40(1): 58-67.

[60] 赵洪宝, 吉东亮, 王涛, 等. 双向约束条件下冲击荷载对煤样结构影响与机理研究[J]. 采矿与安全工程学报, 2021, 38(2): 353-360.

[61] 赵洪宝, 吉东亮, 李金雨, 等. 单双向约束下冲击荷载对煤样渐进破坏的影响规律研究[J]. 岩石力学与工程学报, 2021, 40(1): 53-64.

[62] 张文清, 穆朝民, 李重情. 冲击荷载下煤的动态力学性质研究[J]. 煤炭科学技术, 2019, 47(10): 198-204.

[63] 苗磊刚, 牛园园, 石必明. 煤-岩-煤组合体冲击荷载作用下力学特性研究[J]. 采矿与安全工程学报, 2018, 35(6): 1217-1224.

[64] Kong Xiangguo, Li Shugang, Wang Enyuan, et al. Experimental and numerical investigations on dynamic mechanical responses and failure process of gas-bearing coal under impact load[J]. Soil Dynamics and Earthquake Engineering,2021,142:

[65] Gang Wang, Yi Luo, Xinping Li, Tingting Liu, et al. Study on dynamic mechanical properties and Meso-Deterioration mechanism of sandstone under cyclic impact load[J]. Arabian Journal for Science and Engineering, 2020, 45(6):

[66] 宫凤强, 李夕兵, 刘希灵. 一维动静组合加载下砂岩动力学特性的试验研[J]. 岩石力学与工程学报, 2010, 29(10): 2076-2085.

[67] 高文蛟, 单仁亮, 苏永强. 无烟煤单轴冲击动态强度理论[J]. 爆炸与冲击, 2013, (3):297-302.

[68] 赵毅鑫, 肖汉, 黄亚琼. 霍普金森杆冲击加载煤样巴西圆盘劈裂试验研宄[J]. 煤炭学报, 2014, 39(2): 286-291.

[69] 王栋. 冲击荷载作用下煤的动态力学性能及微观孔隙结构特征研宄[D].焦作:河南理工大学, 2015.

[70] 刘少虹, 毛德兵, 齐庆, 等. 动静加载下组合煤岩的应力波传播机制与能量耗散[J]. 煤炭学报, 2014, 39(S1): 15-22.

[71] 李成杰, 徐颖, 叶洲元. 冲击荷载下类煤岩组合体能量耗散与破碎特性分析[J]. 岩土工程学报, 2020, 42(5): 981-988.

[72] 王笑然, 王恩元, 刘晓斐, 等. 煤样三点弯曲裂纹扩展及断裂力学参数研究[J]. 岩石力学与工程学报, 2021, 40(4): 690-702.

[73] 潘俊锋, 康红普, 闫耀东, 等. 顶板“人造解放层”防治冲击地压方法机理及应用[J/OL]. 煤炭学报: 1-11.

[74] 陈涛, 阮学云, 王襄禹, 等. 钻孔卸压防治冲击地压影响因素分析[J]. 煤炭技术, 2023, 42(1):119-123.

[75] 潘俊锋, 陆闯, 马小辉, 等. 井上下煤层顶板区域压裂防治冲击地压系统及应用[J/OL]. 煤炭科学技术: 1-9.

[76] 陈结, 刘博, 朱超, 等. 基于煤样破坏声发射特征的冲击地压评价预警研究[J/OL]. 煤炭科学技术: 1-14.

[77] 姜福兴, 张翔, 朱斯陶. 煤矿冲击地压防治体系中的关键问题探讨[J]. 煤炭科学技术, 2023, 51(1): 203-213.

[78] 荣海, 于世棋, 王雅迪, 等. 坚硬覆岩的结构失稳运动规律及其对冲击地压的影响[J]. 采矿与岩层控制工程学报, 2022, 4(6): 16-26.

[79] 郑建伟, 鞠文君, 吕大钊, 等. 顶板条带弱化法防治中央大巷冲击地压机制及实践[J/OL]. 煤炭学报: 1-10.

[80] 潘俊锋, 闫耀东, 马小辉, 等. 考虑时变特性的煤层大巷群冲击地压机理及防治[J]. 煤炭学报, 2022, 47(9): 3384-3395

[81] 曹安业, 刘耀琪, 蒋思齐, 等. 临地堑开采冲击地压发生机制及主控因素研究[J].采矿与安全工程学报, 2022, 39(1): 36-44+53.

[82] 杜涛涛, 鞠文君, 陈建强, 等. 坚硬顶板遗留煤层下综放面冲击地压发生机理[J]. 采矿与安全工程学报, 2021, 38(6): 1144-1151

[83] 任建喜, 陈江, 郑赞赞, 等. 深埋厚煤层综放面运顺围岩变形规律分析[J].煤矿安全, 2014, 45(7): 179-182.

[84] 李娜娜,李建春,李海波, 等. 节理接触面对应力波传播影响的SHPB试验研究[J]. 岩石力学与工程学报, 2015, 34(10): 1994-2000.

[85] Yan Z L, Dai F, Liu Y.et al. Dynamic strength and cracking behaviors of single‑flawed rock subjected to coupled static–dynamic compression[J]. Rock Mechanics and Rock Engineering, 2020, 53(9): 4289-4298.

[86] 谢和平, 鞠杨, 黎立云, 等. 岩体变形破坏过程的能量机制[J]. 岩石力学与工程学报, 2008(9): 1729-1740.

[87] 李淼, 乔兰, 李庆文. 高应变率下预制单节理岩石SHPB劈裂试验能量耗散分析[J].岩土工程学报, 2017, 39(7): 1336-1343.

[88] Rekucki K, Chmielewski R, Kruszka L, Rekucki R. Strength characterization of soils' properties at high strain rates using the hopkinson technique-a review of experimental testing[J]. Materials, 2022, 15(1): 274.

[89] 熊仲明, 吕世鸿, 李运良, 等. 被动围压下黄土动态力学性能与能量耗散研究[J].岩土力学, 2021, 42(3): 775-782+789.

[90] 王盛川. 褶皱区顶板型冲击矿压“三场”监测原理及其应用[D].中国矿业大学,2021.

[91] 潘俊锋, 康红普, 闫耀东, 等. 顶板“人造解放层”防治冲击地压方法、机理及应用[J/OL].煤炭学报: 1-11.

中图分类号:

 TD353    

开放日期:

 2024-06-12    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式