- 无标题文档
查看论文信息

论文中文题名:

 基于PSTD的矿井富水区逆时偏移成像研究    

姓名:

 毛磊    

学号:

 18207205039    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 085208    

学科名称:

 工学 - 工程 - 电子与通信工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 电子与通信工程    

研究方向:

 计算电磁学    

第一导师姓名:

 田丰    

第一导师单位:

 西安科技大学    

论文提交日期:

 2021-06-20    

论文答辩日期:

 2021-06-05    

论文外文题名:

 Research on Reverse Time Migration Imaging in Mine-rich Water Area Based on PSTD    

论文中文关键词:

 时域伪谱 ; 逆时偏移成像 ; 波场分离 ; 坡印廷矢量 ; 拉普拉斯滤波    

论文外文关键词:

 Time domain pseudo-spectrum ; reverse time migration imaging ; wavefield separation ; Poynting vector ; Laplacian filter    

论文中文摘要:

    逆时偏移成像方法是时域电磁法中最直观的一种方法,由于矿井下环境复杂,电磁干扰严重,影响着矿井下成像的分辨率。因此,提高逆时偏移成像分辨率对逆时偏移方法具有十分重要的意义。
    针对低频噪声导致逆时偏移成像分辨率低的问题,提出一种基于波场分离的时域伪谱逆时偏移成像方法。将时域伪谱算法引入逆时偏移成像过程中,研究二维时域伪谱算法的稳定性条件,确定激励源为Ricker子波,选取PML作为边界条件。在逆时偏移波场延拓时,采用波场分离的方法提取所需的波场,在有效路径上进行波场互相关,通过坡印廷矢量判断源波场与接收波场的夹角,在使用成像条件时乘以权重系数来压制大角度成像产生的噪声,在成像后,对成像剖面采用拉普拉斯滤波提高成像分辨率。建立圆形、矩形空洞模型,对比基于波场分离的时域伪谱逆时偏移成像算法与基于时域伪谱逆时偏移成像算法的成像效果。建立矿井富水区含水陷落柱、含水断层以及采空区积水模型,采用波场分离的时域伪谱成像算法对矿井富水区三种典型模型进行成像。
    富水区三种典型模型的xoz面与xoy面成像图与原始模型相比,三种模型的相对误差平均值分别为:4.9%、4.98%以及5.6%,整体平均误差为5.16%,所得xoz面与xoy面成像结果图中其形状、位置和范围与原始模型基本吻合。成像结果表明,基于波场分离的时域伪谱逆时偏移成像算法解决了时域伪谱逆时偏移成像算法中成像分辨率低的问题,理论上能够对富水区的几种典型模型实现高分辨成像。
 

论文外文摘要:

    The reverse time migration imaging method is the most intuitive method in the time domain electromagnetic method. Due to the complex underground environment and serious electromagnetic interference, it affects the resolution of underground imaging. Therefore, improving the imaging resolution of reverse time migration is of great significance to the reverse time migration method.
    Aiming at the problem that low frequency noise causes low resolution of reverse time migration imaging, a time-domain pseudospectral reverse time migration imaging method based on wavefield separation is proposed. The time-domain pseudo-spectrum algorithm is introduced into the reverse time migration imaging process, the stability conditions of the two-dimensional time-domain pseudo-spectrum algorithm are studied, the excitation source is determined to be the Ricker wavelet, and PML is selected as the boundary condition. In reverse time migration wavefield continuation, the wavefield separation method is used to extract the required wavefield, and the wavefield cross-correlation is performed on the effective path, and the angle between the source wavefield and the received wavefield is judged by the Poynting vector When using imaging conditions, multiply the weight coefficient to suppress the noise generated by large-angle imaging. After imaging, Laplacian filtering is used to improve the imaging resolution of the imaging section. Establish circular and rectangular cavity models, and compare the imaging effects of time-domain pseudo-spectrum reverse-time migration imaging algorithm based on wavefield separation and time-domain pseudo-spectrum reverse-time migration imaging algorithm. Establish water-bearing subsidence columns, water-bearing faults, and old-gap water models in the water-rich area of the mine, and use the time-domain pseudospectral imaging algorithm with wave field separation to image three typical models of the water-rich area of the mine.
    Compared with the original model of the xoz surface and xoy surface imaging images of the three typical models in the rich water area, the relative errors of the three models are respectively: 4.9%, 4.98% and 5.6%, and the overall average error is 5.16%. The obtained xoz The shape, position and range of the surface and xoy surface imaging results are basically consistent with the original model. The imaging results show that the time-domain pseudospectral reverse-time migration imaging algorithm based on wavefield separation solves the problem of low resolution in reverse-time migration imaging, and can theoretically achieve high-resolution imaging of several typical models in the water-rich area.
 

参考文献:

[1] 陈紫静,陈清礼.瞬变电磁的逆时偏移成像方法[J].物探与化探,2020,44(06):1415-1419.

[2] 戴锐,李展辉,黄清华.瞬变电磁法三维模型数据的一维反演效果研究[J].地球物理学进展,2017,32(03):1121-1129.

[3] 丁亮,刘洋.逆时偏移成像技术研究进展[J].地球物理学进展,2011,26(03):1085-1100.

[4] 李文翰,刘斌,李术才,等.基于高性能瞬变电磁辐射源的城市地下空间多分辨成像方法研究[J].地球物理学报,2020,63(12):4553-4564.

[5] 丁超,张伟,杨辉.基于波动方程差分和Kirchhoff积分的被动源弹性波逆时成像对比研究[J].物探化探计算技术,2020,42(04):429-441.

[6] 刘红伟,刘洪,邹振,崔永福.地震叠前逆时偏移中的去噪与存储[J].地球物理学报,2010,53(09):2171-2180.

[7] 鲁兴林,钱荣毅.地质雷达有限差分逆时偏移方法研究[J].地球物理学进展,2017,32(02):885-890.

[8] 王敏玲,梁值欢,王洪华,等.探地雷达逆时偏移成像方法研究现状及进展[J].地球物理学进展,2019,157(05):387-396.

[9] 严红勇,刘洋.基于时空域自适应高阶有限差分的声波叠前逆时偏移[J].地球物理学报,2013,56(03):971-984.

[10] 王维红,张伟,石颖,柯璇.基于波场分离的弹性波逆时偏移[J].地球物理学报,2017,60(07):2813-2824.

[11] Xu S, Liu Y. Effective modeling and reverse-time migration for novel pure acoustic wave in arbitrary orthorhombic anisotropic media[J]. Journal of Applied Geophysics, 2018, 150:126-143.

[12] 刘炜,王彦春,毕臣臣,徐仲博.基于优化交错网格有限差分法的VSP逆时偏移[J].物探与化探,2020,44(06):1368-1380.

[13] 于富文,刘斌,范景文,李振春.逆时偏移中几种角度域成像条件噪声压制效果分析[J].地球物理学进展,2018,33(01):297-303.

[14] 陈德鹏,戴前伟,冯德山,等.基于归一化互相关成像条件的GPR逆时偏移成像[J].中南大学学报(自然科学版),2018,49(05):1221-1227.

[15] Chen Y, Chen H, Xiang K, et al. Preserving the discontinuities in least-squares reverse time migration of simultaneous-source data[J]. Geophysics, 2017, 82(3):S185-S196.

[16] Li Chuang, Huang Jianping, Li Zhenchun, et al. Preconditioned least-squares reverse time migration[J]. Oil Geophysical Prospecting, 2016, 51(3):513-520.

[17] Fang J, Zhou H, Chen H, et al. Source-independent elastic least-squares reverse time migration[J]. Geophysics, 2019, 84(1):S1-S16.

[18] Zhang X, Zhu L, Guo H. Multi-scale high order finite different reverse time migration imaging[J]. EURASIP Journal on Image and Video Processing, 2018, 2018(1):1-13.

[19] Zhao Z, Sen M K, Stoffa P L. Double plane-wave reverse-time migration[J]. Geophysical Prospecting, 2017, 65(6):1541-1558.

[20] Duan P, Gu B, Li Z. An efficient 3D reverse time migration in vertical time-domain based on optimal operator boundary storage strategy[M]//SEG Technical Program Expanded Abstracts 2018. Society of Exploration Geophysicists, 2018:4271-4275.

[21] Li C, Liu G, Li Y. A practical implementation of 3D TTI reverse time migration with multi-GPUs[J]. Computers & Geosciences, 2017, 102:68-78.

[22] Nogueira P, Leite V, Porsani M J. A wavefield domain dynamic approach: Application in reverse time migration[J]. Journal of Applied Geophysics, 2020, 177:104036.

[23] Nunes-do-Rosario D A, Xavier-de-Souza S, Maciel R C, et al. Parallel scalability of a fine-grain prestack reverse time migration algorithm[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(12):2433-2437.

[24] Bradford J H, Privette J, Wilkins D, et al. Reverse-Time Migration from Rugged Topography to Image Ground-Penetrating Radar Data in Complex Environments[J]. Engineering, 2018, 4(5):661-666.

[25] Shin Y, Oh J W, Min D J, et al. Pseudo-acoustic anisotropic reverse-time migration of an ocean-bottom cable dataset acquired in the North Sea[J]. Exploration Geophysics, 2020:1-12.

[26] Liu S, Li X, Wang W, et al. Source wavefield reconstruction using a linear combination of the boundary wavefield in reverse time migration[J]. Geophysics, 2015, 80(6):S203-S212.

[27] 柯璇,石颖.基于一步法波场延拓的正演模拟和逆时偏移成像[J].地球物理学报,2017,60(11):4468-4479.

[28] Basir H M, Javaherian A, Shomali Z H, et al. Reverse time migration by Krylov subspace reduced order modeling[J]. Journal of Applied Geophysics, 2018, 151:298-308.

[29] Sun W, Fu L Y. Two effective approaches to reduce data storage in reverse time migration[J]. Computers & Geosciences, 2013, 56:69-75.

[30] 宋利伟,石颖,柯璇,等.基于检查点方法的各向异性介质逆时偏移[J].石油物探,2018,57(002):274-282.

[31] 王维红,郭雪豹,石颖,等.VSP 逆时偏移及其存储策略研究[J].石油地球物理勘探,2015,50(1):77.

[32] Shi Y, Fang X, Wang W, et al. Acoustic VTI reverse time migration based on an improved source wavefield storage strategy[J]. Exploration Geophysics, 2018, 49(6):891-897.

[33] Cho Y, Gibson Jr R L, Fu S, et al. Frequency-domain reverse-time migration withaccelerated wave simulation via generalized multiscale finite element[J]. Journal of Applied Geophysics, 2019, 160:103-120.

[34] Nguyen B D. Efficient strategies and imaging conditions for elastic prestack reverse-time migration of reflection seismic data[M]. The University of Texas at Dallas, 2014.

[35] Li Y S, Li N, Yuan Y, et al. Optimizing the wavefield storage strategy in reflection-acoustic logging reverse-time migration[J]. Applied Geophysics, 2019, 16(4):530-538.

[36] Xue Z, Fomel S, Sun J. Increasing resolution of reverse‐time migration using time‐shift gathers[J]. Geophysical Prospecting, 2018, 66(4):726-735.

[37] Zhao X B, Zhou H, Li Q Q, et al. A method to avoid the snapshots wavefields storage in reverse time migration[C]//79th EAGE Conference and Exhibition 2017. European Association of Geoscientists & Engineers, 2017, 2017(1): 1-5.

[38] Fang Jinwei, Zhou Hui, Chen Hanming, et al. Source-independent elastic least-squares reverse time migration[J]. Geophysics, 2018, 84(1):S1-S16.

[39] Cai X, Chen G, Fan X, et al. Least-squares based rectangular-grid cross and rhombus stencils for acoustic wave propagation and reverse time migration[J]. Journal of Computational Physics, 2019, 392:335-353.

[40] Zhong Y, Liu Y, Luo X. Elastic reverse time migration in VTI media based on the acoustic wave equations[J]. Journal of Applied Geophysics, 2019, 168:128-138.

[41] Bai M, Wu J, Zu S, et al. A structural rank reduction operator for removing artifacts in least-squares reverse time migration[J]. Computers & Geosciences, 2018, 117:9-20.

[42] Moradpouri F, Moradzadeh A, Pestana R C, et al. Seismic reverse time migration using a new wave-field extrapolator and a new imaging condition[J]. Acta Geophysica, 2016, 64(5):1673-1690.

[43] Wang W, McMechan G A, Xie F. Analysis of up/down decomposed acoustic reverse time migration images[J]. Geophysics, 2016, 81(4):S253-S259.

[44] Liu S, Yan Z, Gu H, et al. Imaging artefacts of artificial diving waves in reverse time migration: cause analysis in the angle domain and an effective removal strategy[J]. Geophysical Prospecting, 2019, 67(3):496-507.

[45] Moradpouri F, Moradzadeh A, Cruz Pestana R, et al. An improvement in RTM method to image steep dip petroleum bearing structures and its superiority to other methods[J]. Journal of Mining and Environment, 2017, 8(4):573-578.

[46] Chen T, Huang L. Directly imaging steeply-dipping fault zones in geothermal fields with multicomponent seismic data[J]. Geothermics, 2015, 57:238-245.

[47] Li Z , Li X , Xiao J , et al. Amplitude-preserved reverse time migration with Gaussian beam based on crosscorrelation imaging conditions[J]. Wutan Huatan Jisuan Jishu, 2017, 39(3):354-358.

[48] Yan H, Liu Y. Acoustic VTI modeling and pre-stack reverse-time migration based on the time–space domain staggered-grid finite-difference method[J]. Journal of Applied Geophysics, 2013, 90:41-52.

[49] Zhao Z. Efficient seismic imaging with the double plane wave data[D]. 2015.

[50] Liu F, Zhang G, Morton S A, et al. An optimized wave equation for seismic modeling and reverse time migration[J]. Geophysics, 2009, 74(6): WCA153-WCA158.

[51] Wang J, Hong L. Stable optimization of finite-difference operators for seismic wave modeling[J]. Studia Geophysica et Geodaetica, 2020, 64(4):452-464.

[52] 杨庆节,刘财,耿美霞,等.交错网格任意阶导数有限差分格式及差分系数推导[J].吉林大学学报(地球科学版),2014,44(1):375-385.

[53] Ren Y J, Huang J P, Yong P, et al. Optimized staggered-grid finite-difference operators using window functions[J]. Applied Geophysics, 2018, 15(2):253-260.

[54] Zha X, Gao X, Wang W, et al. Advanced prediction migration method research in tunnel engineering investigation. Chinese Journal of Geophysics, 2018, 61(3):1150-1156.

[55] 李扬.频率域波动方程高精度有限差分格式及并行模拟算法研究[D].哈尔滨工业大学,2016.

[56] Lei Y, Haynes M S, Arumugam D, et al. A 2-D Pseudospectral Time-Domain (PSTD) Simulator for Large-Scale Electromagnetic Scattering and Radar Sounding Applications[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(6):4076-4098.

[57] Zhan Q, Fang Y, Zhuang M, et al. Stabilized DG-PSTD method with nonconformal meshes for electromagnetic waves[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(6):4714-4726.

[58] Liu Q H. The PSTD algorithm: A time‐domain method requiring only two cells per wavelength[J]. Microwave & Optical Technology Letters, 2015, 15(3):158-165.

[59] Takougang E M T, Bouzidi Y, Ali M Y. Characterization of small faults and fractures in a carbonate reservoir using waveform inversion, reverse time migration, and seismic attributes[J]. Journal of Applied Geophysics, 2019, 161:116-123.

[60] Liu H, Long Z, Tian B, et al. Two-dimensional reverse-time migration applied to GPR with a 3-D-to-2-D data conversion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(10):4313-4320.

[61] 胡雄武,张平松.坑道隐伏陷落柱直流电阻率法超前探测分析[J].地球物理学进展,2019,34(03):1176-1183.

[62] 陈栋,王恩元,李楠.不同煤岩介质模型的波场特征研究[J].岩土力学,2019,40(S1):449-458.

[63] 江微娜.基于综合物探方法的煤矿采空区积水分布范围精细探测[J].中国煤炭,2020,46(11):101-106.

中图分类号:

 TM15/O441.4    

开放日期:

 2023-06-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式