- 无标题文档
查看论文信息

论文中文题名:

 饱和砂层斜井冻结壁与井壁相互作用力学机理研究    

姓名:

 孙杰龙    

学号:

 B201409020    

保密级别:

 秘密    

学科代码:

 081401    

学科名称:

 岩土工程    

学生类型:

 博士    

学位年度:

 2018    

院系:

 建筑与土木工程学院    

专业:

 岩土工程    

第一导师姓名:

 任建喜    

第一导师单位:

 西安科技大学    

论文外文题名:

 Study on the Mechanical Characteristic of Frozen Soil Wall and Inclined Shaft Lining in Saturated Sand Stratum    

论文中文关键词:

 富水砂层 ; 人工冻结斜井 ; 冻结壁与井壁 ; 相互作用 ; 三维物理模拟 ; 现场实测 ; FLAC3D数值模拟    

论文外文关键词:

 Water-rich sand stratum ; artificial frozen inclined shaft ; frozen wall and outer shaft wall ; interaction ; model test ; field measurement ; FLAC3D numerical simulation    

论文中文摘要:
开展富水砂层人工冻结斜井冻结壁与井壁共同作用机理研究具有重要的理论意义和工程应用价值。本文以陕北某煤矿人工冻结斜井工程为依托,通过室内物理力学试验、室内相似材料物理模型试验、理论分析、现场实测和数值模拟相结合的手段开展研究工作。 对不同冻结温度下冻结砂土的物理力学参数进行了测定,分析了砂土和冻结砂土比热容、砂土和冻结砂土导热系数、冻结砂土粘聚力、冻结砂土内摩擦角、冻结砂土弹性模量、冻结砂土单轴抗压强度随冻结温度的变化规律;同时开展了基于声发射试验的人工冻结砂土单轴压缩破坏规律研究,给出了不同冻结温度下人工冻结砂土单轴压缩破坏时的声发射特征规律。 对单根冻结管条件下的冻结壁温度场、应力场和渗流场分布数学模型进行了研究,给出了单根冻结管下冻结壁温度场、应力场和渗流场分布数学模型,并根据场的叠加原理给出了多根冻结管下的冻结壁温度场、应力场和渗流场分布数学模型;给出了冻结壁水热力耦合模型,并在此基础上分析了“外壁-冻结壁-未冻砂土”共同作用机理,给出了基于水热力作用的富水砂层冻结压力计算公式和斜井冻结壁厚度计算公式。 采用自行研制的冻结斜井三维物理模拟系统,完成了斜井冻结壁与井壁相互作用力学特性三维物理模拟试验研究,重点分析了冻结过程中冻结壁温度、冻结压力和孔隙水压力随时间和空间的变化规律,试验结果表明:在积极冻结期随冻结壁温度不断降低,冻结壁竖向冻结压力和水平向冻结压力迅速增大,当冻结由积极冻结期转为维护冻结期时冻结壁竖向冻结压力和水平向冻结压力基本不发生变化;当冻结壁为负温时,随着冻结壁温度降低,孔隙水压力随之减小,当冻结壁温度升高时,孔隙水压力随之增大;根据试验结果给出了冻结壁温度-时间计算公式、冻结壁温度-冻胀力计算公式和冻胀力-时间计算公式。 完成了水热力耦合作用下富水砂层斜井冻结壁与井壁相互作用FLAC仿真分析研究,给出了不同埋深下冻结壁温度场、冻结压力和孔隙水压力的变化规律,对比FLAC数值模拟结果和模型试验结果可知:积极冻结期冻结壁温度、冻结压力和孔隙水压力变化趋势基本一致,说明本文设计的斜井冻结壁与井壁相互作用力学特性三维物理模拟试验合理可靠,能准确反应斜井冻结过程中冻结壁与井壁相互作用的一般规律;对斜井冻结壁厚度计算公式进行验证,结果表明:本文提出的富水砂层斜井冻结壁厚度计算公式合理可靠,能够满足设计要求。 根据斜井冻结壁与井壁相互作用现场实测结果,分析了冻结壁温度、冻结压力、井壁受力、混凝土应变和孔隙水压力随时间和空间的变化规律,对比分析了三维物理模拟试验和现场实测所得的冻结壁温度-时间、冻胀力-温度和冻胀力-时间变化规律,对冻结压力计算公式进行验证,结果表明:本文提出的斜井冻结壁与井壁相互作用力学特性三维物理模拟试验合理可靠,能准确的反应冻结压力、冻结壁温度和冻胀力发展的一般规律;根据理论分析、模型试验、数值模拟和现场实测结果,基于冻结壁与井壁相互作用,确定了斜井井壁以“工字钢棚+钢筋混凝土砌碹”为支护结构,分析了斜井井壁荷载模型,确定了富水砂层斜井井壁荷载计算方法,给出了富水砂层斜井井壁内力计算模型和井壁厚度,提出了富水砂层斜井冻结法凿井施工方案,可为富水砂层斜井井壁设计和施工提供理论支持。
论文外文摘要:
It is have great theoretical significance and engineering application value to study the mechanism of the combined action of freezing wall and shaft wall in an artificially frozen inclined shaft with water-rich sand stratum. In this paper, based on the artificially frozen inclined shaft project in a coal mine in northern Shaanxi, the research work was carried out through indoor physical and mechanical tests, indoor similar material physical model test, theoretical analysis, field measurement and finite element simulation. The physical and mechanical tests of frozen sand under different freezing temperatures were measured, including: saturated volumetric weight of sand, saturated moisture content of sandy soil, specific heat capacity of frozen soil, thermal conductivity of frozen sand, cohesive force of frozen sand, angle of internal friction of frozen sand, modulus of elasticity of frozen sand and uniaxial compressive strength of frozen sand. At the same time, the uniaxial compression failure of frozen sand is analyzed based on the acoustic emission test, gives the acoustic emission characteristics of artificial frozen sand under different freezing temperatures. Studied on the mathematical model of the temperature field, stress field and seepage field distribution of the frozen wall under the condition of a single freezing pipe. Given the mathematical model for the temperature field, stress field and seepage field distribution of frozen wall under a single freezing pipe, and based on the superposition principle of the field given the mathematical model for the distribution of temperature field, stress field and seepage field of frozen wall under multiple freezing pipes. Given the coupling calculation model of the heat-moisture-stress fields, based on that, analyzed the interaction mechanism of outer wall-frozen wall-unfrozen sand. Given the formula for calculating freezing pressure and the calculation formula of the inclined frozen wall thickness, that is based on the heat-moisture-stress fields. Completed model test of mechanical characteristics of the interaction between the frozen wall and the inclined shaft wall by used the self made simulation system of the inclined shaft freezing. Analyzed the law of freezing wall temperature, freezing pressure and pore water pressure, the test results show that: in the active freezing period, with the increases temperature of freezing wall the freezing pressure and the horizontal freezing pressure increase rapidly. When the freezing period is changed from the active freezing period to the maintenance of the freezing period, the vertical freezing pressure and horizontal freezing pressure of the frozen wall do not change basically. When the freezing wall is negative temperature, the pore water pressure is decreases with the decrease of the freezing wall temperature, and the pore water pressure increases when the freezing wall temperature rises. According to the test results, the paper gives fitting formula of the freezing wall temperature-time, the fitting formula of frozen-heave force-freezing wall temperature, and the fitting formula of frozen-heave force-time. Used the FLAC3D software, analyzed the interaction between the frozen wall and the inclined shaft wall, given the law of temperature field, freezing pressure and pore water pressure of frozen wall under different buried depth. Comparative the results of numerical simulation and model test we can know that: the changing trend of freezing wall temperature, freezing pressure and pore water pressure in the active freezing period are basically the same, which prove that the mechanical characteristic model test of the interaction between the frozen wall and the shaft wall designed in this paper is reasonable and reliable. Verified the formula for calculating the thickness of frozen wall of inclined shaft, the results show that the formula is reasonable and reliable, and it can meet the design requirements. Analyzed the field measured results of the interaction between the frozen wall and the shaft wall of the inclined shaft, mainly includes the law of freezing wall temperature, freezing pressure, wall stress, concrete strain and pore water pressure, according to the measured results verified the freezing pressure calculation formula, the frozen wall temperature time fitting formula, freezing wall temperature and frost heave force fitting formula and frost-heave force time fitting formula. The results show that: the fitting formula of the freezing wall temperature-time, the fitting formula of frozen-heave force-freezing wall temperature, and the fitting formula of frozen-heave force-time is reasonable and reliable, and it can meet the design requirements. According to the theoretical analysis, model test, numerical simulation, field measurement results and the interaction of the frozen wall and shaft, used the I-steel shed + reinforced concrete brickwork for supporting structure. Analyzed the load model of the inclined shaft wall and given the calculation method for the inclined shaft loads. The internal force calculation model of the inclined shaft wall and the thickness of shaft wall are given. Put forward the construction scheme for the freezing method of inclined shaft and it can provide theoretical support for the design and construction of inclined shaft.
中图分类号:

 TD265.3    

开放日期:

 2018-06-28    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式