- 无标题文档
查看论文信息

论文中文题名:

 激光-电复合熔覆630不锈钢丝材熔覆层组织与性能研究    

姓名:

 杨文选    

学号:

 19305201001    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085500    

学科名称:

 工学 - 机械    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 机械工程学院    

专业:

 机械工程    

研究方向:

 增材制造    

第一导师姓名:

 杨来侠    

第一导师单位:

 西安科技大学    

第二导师姓名:

 徐超    

论文提交日期:

 2022-06-29    

论文答辩日期:

 2022-06-01    

论文外文题名:

 Study on the microstructure and properties of laser-electricity composite 630 stainless steel wire cladding layer    

论文中文关键词:

 激光-电熔覆技术 ; 630不锈钢丝材 ; 熔覆层组织性能 ; 修复性能    

论文外文关键词:

 laser electricity cladding technology ; 630 stainless steel wire ; Microstructure and properties of cladding layer ; Repair performance    

论文中文摘要:

激光熔覆技术作为一种先进的修复技术凭借其高速的熔覆效率在修复领域发挥着举足轻重的作用,但是存在材料利用率低与激光能量损耗严重等问题,激光-电复合丝材熔覆技术作为一种新兴的复合熔覆技术具有材料利用率高,激光能量损耗小等特点,但是,该技术的工艺特点目前尚不明确。本文采用激光-电复合熔覆技术对大型回转体零件进行修复,展开预先工艺研究,本文的研究有助于该技术的推广与应用,对降低修复成本实现大型零件的绿色修复有重要意义。

首先,在氮气气体保护环境下,使用激光-电复合丝材熔覆技术在45#钢基体表面进行多道单层630不锈钢丝材熔覆,对熔覆层表面形貌、缺陷分布、微观组织以及元素分布等进行研究,结果表明:熔覆层表面杂质小颗粒随着激光功率的提升而增加,熔覆层表面均未出现缺陷与裂纹,熔覆层组织主要为等轴晶与柱状晶,在熔覆层顶部为等轴树枝晶,组织较为混乱,各部分元素分布均匀。

其次,对不同工艺参数下熔覆层的性能进行研究,分别对不同激光功率、熔覆速度、进给距离下熔覆层的显微硬度和摩擦磨损性能进行了研究,分析了显微硬度、摩擦系数、磨损量、微观磨损形貌随工艺参数的变化规律,结果表明:在当前实验条件下,激光功率为3000W时,熔覆层硬度与耐磨损性能最好;在当前实验条件下,熔覆速度为50mm/s与进给距离为1.2mm时,熔覆层的耐磨损性能最好;与激光功率相比,熔覆速度与进给距离对硬度的影响较小。

最后,制备了测试结合强度的多道多层熔覆试样,采用特制工装进行实验,获得了断裂最大载荷,并对断口形貌、断裂原因进行分析。通过断裂位置、断口形貌及断裂最大载荷评价其结合强度,结果表明:熔覆层与基体之间断裂最大载荷在60KN上下浮动,熔覆层与基体均能良好的结合。

论文外文摘要:

As an advanced maintenance technology, laser cladding technology plays an important role in the maintenance field with its high cladding efficiency, but it still exists some problems like low material utilization and serious energy loss. As a new technology, laser and electricity composited wire cladding technology has the characteristics of high material utilization and low energy loss. However, the process characteristics of this technology are not clear at present. In this paper, the large rotating parts are taken as the research object, which are repaired by laser and electricity composited cladding technology, through which the process is studied beforehead. This research is benefited to the popularization and application of this technology and has great significance on reducing the maintenance cost and achieving the green maintenance of large parts.

Firstly, under the protection of nitrogen atmosphere, multi-channel and single-layer 630 stainless steel wire is cladded on the surface of 45# steel substrate by using laser and electricity composited wire cladding technology. The surface morphology, defect distribution, microstructure and element distribution of the cladding layer are studied. The results show that small impurity particles on the surface of the cladding layer were raised with the increase of laser power, there are not any defects on the cladding surface, The microstructure of the cladding layer is mainly made up by equiaxed crystal and columnar crystal. There is equiaxed dendritic crystal at the top of the cladding layer, where the structure is chaotic but the elements in each part are evenly distributed.

Secondly, the properties of the cladding layer under different process parameters are studied. The microhardness and friction and wear properties of the cladding layer under different laser power, cladding speed and feed distance are studied respectively. The variation laws of microhardness, friction coefficient, wear amount and micro wear morphology with changed process parameters are analyzed. The results show that: Under the current experimental conditions, the hardness and wear resistance of the cladding layer are the best when the laser power is 3000W. Under the current experimental conditions, the wear resistance of the cladding layer is the best, when the cladding speed is 50mm/s and the feed distance is 1.2mm. Compared with the laser power, cladding speed and feed distance have less influence on hardness.

Finally, the multi-channel and multi-layer cladding samples for testing the bonding strength were prepared. The experiments were carried out with the special tooling, the maximum fracture force was obtained, the fracture morphology and fracture cause were analyzed. The bonding strength is evaluated through the maximum fracture force, the fracture morphology, and the fracture location. The results show that the maximum fracture load fluctuates up and down at 60KN, and the cladding layer and the matrix are well bonded.

参考文献:

[1]周小利.液压支架各部件常见故障及维修分析[J].内蒙古石油化工,2020,46(10):50-51.

[2]郭永昌,廉自生,袁红兵,等.液压支架用大流量安全阀性能分析[J].液压与气动,2019(01):71-74.

[3]高张宝,钟毅,吴富姬,等.矿山井下有毒有害气体远程监测分析系统的设计与实现[J].中国钨业,2020,35(03):74-77.

[4]史强,王子腾,邵艺凯.激光熔覆技术在煤矿机械中的应用[J].中国设备工程,2021(04):185-186.

[5]朱青青,马秋环,孙强,等.激光熔覆技术在液压支架修复工艺中的应用[J].煤矿机械,2020,41(10):152-155.

[6]张玉杰,杨建华,许玲萍.激光熔覆技术在表面失效机械件中的应用[J].电镀与饰,2021,43(08):39-43.

[7]李春生,石世宏,刘双,等.光内送丝激光熔覆修复砂光机轧辊[J].热加工艺,2009,38(18):93-95.

[8]曹鹏,雷高峰,苏成明,等.不同送料工艺对液压支架激光熔覆再制造的影响[J].材料导报,2021,35(S2):424-427+432.

[9]章敏. 送粉式和送丝式的钛合金激光增材制造特性研究[D].哈尔滨工业大学,2013.

[10]胡晓冬,赵万华.等离子弧焊直接金属成形技术的工艺研究[J].机械科学与技术,2005(05):540-542.

[11]S. Biamino, A. Penna, U. Ackelid. Electron beam melting of Ti-48Al-2Cr-2Nb alloy: Microstructure and mechanical properties investigation[J]. Intermetallics,2011,19(6):776-781.

[12]龚美美,谢林圯,吴腾,等.TC4表面激光熔覆Fe60-TiO_(2)涂层性能研究[J/OL].激光技术:1-10[2022-02-28].

[13]安相龙,王玉玲,姜芙林,等.搭接率对42CrMo激光熔覆层温度场和残余应力分布的影响[J].中国激光,2021,48(10):95-106.

[14]章奇,李忠文,于治水.45#钢激光熔覆FeNiMoCoCrTi高熵合金涂层工艺参数优化[J].机械强度,2021,43(02):308-312.

[15]韩显柱,杨义成,张彦东,等.激光同轴送粉熔覆工艺特性研究[J].金属加工(热加工),2021(08):9-13.

[16]陈义武,吴鑫翔,周利华,等.高强不锈钢激光熔覆层的组织与性能[J].金属热处理,2021,46(10):232-236.

[17]周建波,张晶,张蕾涛,等.激光工艺参数对Ni60/WC涂层裂纹率及组织的影响[J].金属热处理,2021,46(09):252-257.

[18]邓德伟,常占东,马云波,等.工艺参数对316L激光熔覆层组织性能及残余应力的影响[J].应用激光,2021,41(01):83-88.

[19]Yuan, Wuyan, Li, Ruifeng, Chen, Zhaohui, et al. A comparative study on microstructure and properties of traditional laser cladding and high-speed laser cladding of Ni45 alloy coatings[J]. Surface & Coatings Technology,2021,405.

[20]Goodarzi, Dara Moazami, Pekkarinen, et al. Analysis of laser cladding process parameter influence on the clad bead geometry[J]. Welding in the World: Journal of the International Institute of Welding: Journal of the International Institute of Welding,2017,61(5):883-891.

[21]Microstructure and properties of a laser cladded NiCrBSi alloy coating[J]. Material-s Testing,2020,62(7):698-702.

[22]Goodarzi, Dara Moazami, Pekkarinen, et al. Effect of process parameters in laser cladding on substrate melted areas and the substrate melted shape[J]. Journal of laser applications,2015,27(Suppl.2):A30-S29201.9.

[23]果春焕,严家印,王泽昌,等.金属激光熔丝增材制造工艺的研究进展[J].热加工工艺,2020,49(16):5-10.

[24]刘伟亮,何广忠,李凯,等.厚壁横梁管激光-MAG电弧复合焊坡口形式及工艺窗口优化研究[J].电焊机,2021,51(10):86-93+155.

[25]周勇,张成文,张国军,等.高强钢激光电弧复合焊接温度场的数值模拟与试验研究[J].精密成形工程,2022,14(01):153-158.

[26]桂晓燕,高向东,孙友松,等.激光电弧复合焊变形及残余应力的数值分析[J].应用激光,2021,41(03):651-656.

[27]Hirohata Mikihito, Takeda Fumiya, Suzaki Masato, et al. Influence of laser-arc hybrid welding conditions on cold cracking generation[J]. Welding in the World,2019,63(5):1407-1416.

[28]雷正龙,陈彦宾,郭新建.电流对激光-电阻复合焊接铝合金焊缝成形的影响[J].航天制造技术,2010(02):10-14.

[29]王强,李洋洋,杨洪波,等.激光功率对17-4PH丝材激光熔覆组织及硬度的影响[J].表面技术,2021,50(03):191-197.

[30]温鹏,冯振华,王罡,等.激光热丝焊表面修复成形质量分析和控制[J].焊接学报,2015,36(05):21-24+114.

[31]안영남, 김철희. 분말송급및와이어송급을이용한레이저클래딩특성[J]. Journal of Welding and Joining,2013,31(4):13-16.

[32]Liu Shuang, Liu Wei, Kovacevic, et al. Experimental investigation of laser hot-wire cladding[J]. Proceedings of the Institution of Mechanical Engineers, Part B. Journal of engineering manufacture,2017,231(6):1007-1020.

[33]Wenquan Li, Xingang Liu, Motomichi Yamamoto, et al, Gen Sasaki,Research on interface characteristics of 308L stainless steel coatings manufactured by laser hot wire cladding,Surface and Coatings Technology, Volume 427,2021,127822,

[34]宋仁伯. 不锈钢钢丝生产与质量控制[M].北京:冶金工业出版社,2018.12

[35]李嘉宁. 激光熔覆技术及应用[M].北京:化学工业出版社,2016.

[36]石世宏,贾帅,周亮,等. 激光熔覆层与基体结合强度的评定方法[P]. 江苏:CN105092379A,2015-11-25.

[37]陈丹,赵岩,刘天佑. 金属学与热处理[M].北京:北京理工大学出版社,2017.11

[38]Kou Sindo. Welding metallurgy[M]. Wiley, 2003.

[39]Chen Yunxiao, Wu Dongjiang, Ma Guangyi, et al. Coaxial laser cladding of A12O313%TiO2 powders on Ti6Al4V alloy [J]. Surface & Coatings Technology, 2013, 228(9): 452-455.

[40]李洋. 热力作用下钴基熔覆层表面/界面失效行为及机理研究[D]. 哈尔滨工程大学, 2018.

[41]刘全昆著.材料成形基本原理[M].北京:机械工业出版社,2010.04 :93

[42]郭卫,张亚普,胡磊,等.激光熔覆304不锈钢组织与力学性能研究[J].应用激光,2019,39(02):191-197.

[43]林水泉,胡勤,覃爱淞,等.浅谈着色渗透探伤技术[J].广东化工,2017,44(01):24-25.

[44]闫世兴,董世运,徐滨士,等.Fe314合金粉末激光快速成形组织与力学性能分析[J].中国激光,2009,36(11):3074-3078.

[45]李岩,张永忠,黄灿,等. 纯铜表面激光熔覆TiB2/Cu涂层的组织及导电性能[J]. 激光技术,2012,36(5):585-588.

[46]Yanxin Qiao, Jie Huang, Ding Huang, et al. Effects of Laser Scanning Speed on Microstructure, Microhardness, and Corrosion Behavior of Laser Cladding Ni45 Coatings[J]. Journal of Chemistry,2020,2020.

[47]周圣丰,曾晓雁.激光感应复合快速熔覆Fe基WC涂层的显微组织特征[J].中国激光,2010,37(04):1143-1146.

[48]赵万新,周正,黄杰,等.FeCrNiMo激光熔覆层组织与摩擦磨损行为[J].金属学报,2021,57(10):1291-1298.

[49]孙智,任耀剑,隋艳伟.失效分析:基础与应用[M].北京:机械工业出版社,2018.04

[50]Cui Gang, Han Bin, Zhao Jianbo, et al. Comparative study on tribological properties of the sulfurizing layers on Fe, Ni and Co based laser cladding coatings[J]. Tribology International,2019,13436-49.

[51]Guo Huo-ming, Wang Qian, Wang Wen-jian, et al. Investigation on wear and damage performance of laser cladding Co-based alloy on single wheel or rail material[J]. Wear: an International Journal on the Science and Technology of Friction, Lubrication and Wear,2015,328/329329-337.

[52]蒲良贵,陈国定,吴立言.机械设计[M].北京:高等教育出版社,2013.5.

[53]张彦华. 焊接强度分析[M].西安:西北工业大学出版社, 2011.

中图分类号:

 TG47    

开放日期:

 2022-06-29    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式