论文中文题名: | 基于Transformer的牙齿病灶图像分割算法研究 |
姓名: | |
学号: | 21208223045 |
保密级别: | 保密(1年后开放) |
论文语种: | chi |
学科代码: | 085400 |
学科名称: | 工学 - 电子信息 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2024 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 图像处理 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2024-06-19 |
论文答辩日期: | 2024-05-31 |
论文外文题名: | Research on Lightweight Dental Lesion Image Segmentation Algorithm Based on Transformer |
论文中文关键词: | 语义分割 ; 医学分割 ; 牙齿病灶 ; 轻量化Transformer ; 多尺度算法 |
论文外文关键词: | Semantic Segmentation ; Medical Segmentation ; Dental Lesions ; Lightweight Transformer ; Multi-scale Algorithm |
论文中文摘要: |
随着人工智能技术的发展,研究人员开始将语义分割技术应用于医学图像分析,旨在提高医生临床检查中诊断病灶的效率。在临床检查中,牙结石、牙龈炎和磨损面是出现数量较多的三类病灶,针对这三类病灶的分割和应用难点提出对应的解决方案具有重要的现实意义。本文重点探讨了牙齿病灶分割模型的轻量化和病灶类别分布不平衡的问题,提出了基于Transformer和卷积神经网络双分支并行的轻量化牙齿病灶分割算法和基于牙齿病灶特征增强的轻量化多尺度分割算法。 本文的主要工作和创新点如下: (1)针对现有的牙齿病灶分割算法计算复杂度高、模型参数量大的问题,提出了一种基于Transformer和卷积神经网络双分支并行的轻量化语义分割算法。首先,基于Transformer分支的卷积注意力提取空间局部特征和全局语义特征,卷积分支采用轻量化的卷积网络,快速下采样以获得更大的感受野,编码高级特征的上下文信息。然后通过嵌入设计的高效残差注意力模块进一步细化病灶特征的边缘信息,通过设计的主干特征对齐模块与Transformer分支保持通道的一致性,减少特征融合阶段的特征损失。实验结果表明,所提方法在牙齿病灶数据集上的平均准确率为87.35%,参数量为14.73M,保持了较低的计算复杂度和较少的模型参数量。 (2)针对牙齿病灶数据集中病灶类别分布不均衡和同一病灶外观差异大的问题,在以上工作的基础上,提出了一种基于牙齿病灶特征增强的多尺度分割方法。首先,通过优化离散小波变换的参数,对牙齿病灶图像进行特征增强,以提升病灶区域的对比度和可辨识度;其次,设计了多尺度特征融合模块,通过并行金字塔池化算法和带状卷积算法进行多尺度特征融合,进一步提高模型对不同尺度特征的提取能力;最后,采用多尺度特征轴向注意力解码器,轴向注意力通过分解Transformer的自注意力机制降低计算复杂度,并保留了多尺度信息和病灶边缘细节信息。实验结果表明,所提方法在少量增加算法复杂度的情况下,提升了对牙龈炎和磨损面的分割效果以及整体的分割精度。 (3)针对口腔内牙齿病灶分割任务,本文基于Transformer和卷积神经网络双分支并行的轻量化语义分割算法和多尺度分割算法,设计并实现了一套基于B/S架构的智能口腔诊断系统,主要实现了病灶分割模块、数据管理模块、算法管理模块和系统管理模块,经过测试验证,系统具有良好的稳定性和可靠性,能够有效分割口腔内牙齿病灶区域。 |
论文外文摘要: |
With the development of artificial intelligence technology, researchers have begun to apply semantic segmentation technology to medical image analysis, aiming to improve the efficiency of doctors in diagnosing lesions in clinical examination. In the clinical examination, dental calculus, gingivitis, and wear surfaces are the three categories of lesions that appear in large numbers, and it is of great practical significance to propose corresponding solutions for the segmentation and application difficulties of these three categories of lesions. In this thesis, we focus on the lightweight dental lesion segmentation model and the problem of unbalanced distribution of lesion categories, and propose a lightweight dental lesion segmentation algorithm based on the dual-branch parallelism of Transformer and convolutional neural network, and a lightweight multiscale segmentation algorithm based on the feature enhancement of dental lesions. The main contributions and innovations of this thesis are as follows: (1) In response to the high computational complexity, large number of model parameters in existing dental lesion segmentation algorithms, a lightweight semantic segmentation algorithm based on a dual-branch parallel architecture of Transformer and Convolutional Neural Networks is proposed. The Transformer branch utilizes convolutional attention to extract spatial local features and global semantic features. The convolutional branch employs a lightweight convolutional network for rapid downsampling to obtain a larger receptive field, encoding the context information of advanced features. Subsequently, the edge information of the lesion features is further refined through an efficiently designed residual attention module. Finally, a backbone feature alignment module is designed to maintain channel consistency with the Transformer branch, reducing feature loss during the feature fusion stage. The experimental results show that the proposed method has an average accuracy of 87.35% on the dental lesion dataset with 14.73M covariates, which maintains a low computational complexity and a small number of model covariates. (2) Addressing the issue of imbalanced lesion category distribution and significant appearance variation within the same lesion type in dental lesion datasets, a multi-scale segmentation method based on dental lesion feature enhancement is proposed, building upon previous work. First, feature enhancement of dental lesion images is conducted by optimizing the parameters of the discrete wavelet transform to enhance the contrast and recognizability of the lesion areas. Second, a multi-scale feature fusion module is designed, which employs parallel pyramid pooling and dilated convolution algorithms to integrate features at multiple scales, thereby improving the model's ability to extract features of different scales. Lastly, a multi-scale feature axial attention decoder is utilized. Axial attention, by decomposing the self-attention mechanism of the Transformer, reduces computational complexity while preserving multi-scale information and lesion edge detail information. Experimental results demonstrate that the proposed method, with only a slight increase in algorithm complexity, improves the segmentation effectiveness of gingivitis and abrasion surfaces as well as the overall segmentation accuracy. (3) For the task of segmenting dental lesions in the oral cavity, this thesis designs and implements a browser/server (B/S) architecture-based intelligent oral diagnosis system. The system is based on a lightweight semantic segmentation algorithm and a multi-scale segmentation algorithm with dual-branch parallelism of Transformer and Convolutional Neural Network (CNN). It primarily realizes the lesion segmentation module, data management module, algorithm management module, and system management module. Through testing and verification, the system demonstrates good stability and reliability, effectively segmenting dental lesion areas in the oral cavity. |
参考文献: |
[1] 邹宁劼.基于深度学习的齿科图像语义分割方法[D].浙江工商大学,2023.DOI:10.27462/d.cnki.ghzhc.2023.001442. [40] Ba J L, Kiros J R, Hinton G E. Layer normalization[J]. arXiv preprint arXiv:1607.06450, 2016. [41] 傅励瑶, 尹梦晓, 杨锋. 基于Transformer的U型医学图像分割网络综述[J]. 计算机应用, 2023, 43(05): 1584-1595. [51] 文敏.基于多尺度特征融合的无人车图像语义分割技术研究[D].北京邮电大学,2022.DOI:10.26969/d.cnki.gbydu.2022.000785. [65] Bhabatosh C. Digital image processing and analysis[M]. PHI Learning Pvt. Ltd., 2011. |
中图分类号: | TP391 |
开放日期: | 2025-06-19 |