- 无标题文档
查看论文信息

论文中文题名:

 充填体蓄/释热及内置换热管擦热性能的实验研究    

姓名:

 文德    

学号:

 18203057004    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 081404    

学科名称:

 工学 - 土木工程 - 供热、供燃气、通风及空调工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 能源学院    

专业:

 供热 ; 供燃气 ; 通风及空调工程    

研究方向:

 可再生能源利用与能量转换技术    

第一导师姓名:

 张小艳    

第一导师单位:

 西安科技大学    

论文提交日期:

 2021-06-21    

论文答辩日期:

 2021-06-03    

论文外文题名:

 Experimental study on the heat recovery performance of the heat storage/release of the backfill body and the internal displacement heat pipe    

论文中文关键词:

 地热能 ; 缩尺模型 ; 埋管换热 ; 充填材料 ; 蓄热/释热    

论文外文关键词:

 Geothermal energy ; Scale model ; Buried pipe heat transfer ; Backfill material ; Heat storage/release    

论文中文摘要:

       化石燃料消耗的不断增加,导致浅部矿产资源加速枯竭,因此,矿产资源开采逐渐向地层深部延伸已成为国家的重大发展需求,同时深部地层中所蕴含的丰富地热能也属于资源开采的范畴。矿床-地热协同开采是将充填采矿与地热资源开采相结合,利用充填体的蓄热/释热提取地热能,借助深井采矿已有条件为地热能开采的动力供应和管路布设提供保障,可有效节约地热资源开发所需的钻探和开采成本。本论文以实现深部矿产资源与地热协同开采为着眼点,以该协同体系的核心—充填体作为研究对象,对充填体蓄/释热过程及其影响因素、充填材料配比及其优化、充填材料改性处理及其蓄/释热性能等进行实验测试与分析,主要研究及结论如下:

      以相似理论为指导,搭建充填体蓄/释热模化实验台对传统充填体展开蓄/释热实验研究,分析管排布置方式、换热介质速度、围岩温度对其蓄/释热性能的影响。结果表明:随着换热管间距增加,换热介质出口水温、换热量及系统总效率都有所提升,而采用蛇形管时比采用管间距为18cm时其总能效系数更大,总能效系数增加5.5%,可见,与增加管间距相比,蛇形管因换热面积的增大更有利于热量提取。换热介质流速是影响充填体蓄/释热性能的重要因素之一,对于蛇形管排,围岩温度为45℃,流速为0.7m/s对充填体热量提取效果最佳,系统总能效系数最高,其值为46.1%。围岩温度升高会导致系统总能效系数有所降低,对于蛇形管排,流速为0.7m/s,围岩温度从35℃增加到55℃时,总能效系数从47.9%降低到44.5%,降低幅度为3.4%。

        以传统充填材料为基础,使用石墨、铜粉、铝屑粉等材料替代部分尾砂制作标准试件养护28天后对其单轴抗压强度、导热系数、比热容、密度等物性参数进行测试,实验结果表明:随着改性材料加入,标准试件的抗压强度、密度、比热容都有所降低,导热系数有所提升。不同改性材料及不同替代比例下的测试结果表明,添加10%的钢渣粉替代尾砂对试件抗压强度影响程度最小,降低幅度为14.6%。使用10%的煤气化渣替代尾砂时比热容的下降幅度较小,降低幅度为56.4%。用10%的石墨替代尾砂时对试件导热系数提升效果最佳,增加幅度为60.2%。

       通过对改性充填材料进行综合分析,选用10%的石墨替代尾砂制作缩尺模型展开蓄/释热实验研究,分析围岩温度、换热介质入口温度、充填体初始温度对蓄/释热性能的影响。由实验结果可知:进口温度降低可使充填体释热更充分,当入口温度由22℃降低至6℃时,总效率由70.4%增加到81.3%,增加幅度为10.9%。适当提高充填体初始温度,系统的总效率也得到提升,初始温度由14℃增加至26℃总能效系数增加幅度为13.3%。在同样的采热条件下,与传统充填体相比,改性充填体总能效系数提升幅度较大,当围岩温度为35℃,总能效系数提升幅度最大,为29.9%。

      本研究探索了适用于矿山-地热协同开采的管排布置模式、换热介质流速、入口水温等参数以及充填材料优化配比,揭示了改性充填材料下典型采热管排布置的传热基本特征及机理,提高了矿井充填体地下换热体系的能量利用水平,拓展和完善了充填体-采热介质之间换热的基础理论体系,为践行“矿床-地热协同开采”提供基础数据支撑。

论文外文摘要:

          The increasing consumption of fossil fuels leads to the accelerated depletion of shallow mineral resources. Therefore, the gradual extension of mineral resources exploitation to deep strata has become a major national development demand; meanwhile, the rich geothermal energy contained in deep strata also belongs to the category of resource exploitation. The collaborative exploitation of deposit and geothermal energy combines backfill mining with geothermal resource mining, extracts geothermal energy by using heat storage/ release of backfill body, and provides guarantee for the power supply and pipeline layout of geothermal resources development by virtue of existing conditions of deep-well mining, which can effectively save drilling and mining costs required for geothermal resources development. In this paper, based on the collaborative exploitation of deep mineral resources and geothermal energy, taking the core of collaborative system-backfill body as the research object, the heat storage/release process of backfill body and its influencing factors, the backfill material proportion and its optimization, the modification of backfill material and the heat storage/release performance of modified backfill body are tested and analyzed. The main researches and conclusions are as follows:

           Based on similarity theory, a heat storage/release modeling test bench was built, the heat storage/release process of traditional backfill body was experimentally studied and the influence of pipe arrangement, the working fluid velocity and the  surrounding rock temperature on heat storage/release performance of backfill body was analyzed. The results indicate that the outlet temperature of working fluid, heat exchange capacity and the total efficiency of system are improved with the increase of the spacing between heat transfer pipes. The total energy efficiency coefficient of serpentine pipes is 5.5% higher than that of pipe spacing of 18cm. The increase of heat transfer area of serpentine pipe is more conducive to heat extraction than the increase of pipe spacing. The total energy efficiency coefficient has increased by 5.5%. The velocity of heat transfer medium is one of the important factors affecting the heat storage/release performance of backfill body. For the serpentine pipe, when the surrounding rock temperature is 45℃ and the velocity of 0.7m/s, the maximum heat is extracted from the  backfill body, and the total energy efficiency coefficient of the system is the highest of 46.1%. The increase of surrounding rock temperature leads to a decrease in the total energy efficiency coefficient of system. For the serpentine pipe, when the surrounding rock temperature increases from 35℃ to 55℃, the total energy efficiency coefficient decreases from 47.9% to 44.5%, with a reduction of 3.4%.

             Based on traditional backfill materials, graphite, copper powder, aluminum powder and other materials were used to replace part of the tailings and  thestandard specimens were prepared. After 28 days of curing, the uniaxial compressive strength, mini-slump, thermal conductivity, specific heat capacity, density and other physical parameters were tested. The experiment results show that the compressive strength, density and specific heat capacity of the standard specimens are reduced and the thermal conductivity is increased with the addition of modified materials. The test results of different modified materials and different substitution ratios showed that adding 10% steel slag powder instead of tailings has the weakest effect on the compressive strength of the specimen, with a reduction of 26.8%. When the mass ratio 10% of coal gasification slag is used to replace the tailings, the decrease of specific heat capacity is the least, with a reduction of 56.7%. When the mass ratio 10% of graphite is used to replace the tailings, the thermal conductivity of the specimens can be maximized by 60.2%.

        Based on the comprehensive analysis of the modified backfill materials, the mass ratio 10% of graphite was selected to replace the tailings to make a scale model and the heat storage/release experiment was carried out. The influences of surrounding rock temperature, inlet temperature of working fluid and initial temperature of backfill body on heat storage/release performance were analyzed. According to the experimental results, the decrease of the inlet temperature of working fluid can make the backfill body release heat more fully. When the inlet temperature decreases from 22℃ to 6℃, the total efficiency of the system increases from 70.4% to 81.3%, with an increase of 10.9%. The total efficiency is also improved with the appropriate increase of the initial temperature of backfill body. When the initial temperature increases from 14℃ to 26℃, the total efficiency increases by 13.3%. Under the same heat extraction conditions, compared with the traditional backfill body, the total energy efficiency coefficient of the modified backfill body improves greatly. When the surrounding rock temperature is 35℃, the total energy efficiency coefficient increases by 29.9% at the maximum.

        In this study, the parameters such as the pipe arrangement, the velocity and inlet temperature of working fluid, the temperature of surrounding rock and the optimization ratio of backfill materials suitable for the collaborative exploitation of deposit and geothermal energy were explored. The basic characteristics and mechanism of heat transfer for typical pipe arrangement under modified backfill materials were revealed. The energy utilization level of underground heat exchange system of backfill body in mine was improved, the basic theoretical system of heat transfer between backfill body and heat recovery medium was expanded and perfected. The results provide the theoretical support for the practice of collaborative exploitation of deposit and geothermal energy.

参考文献:

[1]谢和平,周宏伟,薛东杰,等. 煤炭深部开采与极限开采深度的研究与思考[J]. 煤炭学报, 2012, 37(04): 535-542.

[2]李夕兵,宫凤强,王少锋,等.深部硬岩矿山岩爆的动静组合加载力学机制与动力判据[J]. 岩石力学与工程学报, 2019, 38(04): 708-723.

[3]蔡美峰,薛鼎龙,任奋华. 金属矿深部开采现状与发展战略[J]. 工程科学学报, 2019, 41(04): 417-426.

[4]《国土资源“十三五”科技发展规划》开始征求意见[J]. 中国氯碱, 2015,(06):11.

[5]国务院常务会议讨论通过《找矿突破战略行动纲要(2011-2020年)》[J]. 中国煤炭, 2011, 37(11): 82.

[6]胡汉华. 深热矿井环境控制[M].长沙: 中南大学出版社, 2009:50-252.

[7]谭海文. 金属矿山深井热害产生原因及其治理措施[J]. 黄金, 2007, 28(2): 20-22.

[8]Wang H N, Peng J L, Analysis of ventilation and cooling in high temperature mine[J] Nonferrous Metals Engineering, 2013, 3(03): 34-37.

[9]Jalaluddin, Miyara A, Tsubaki K, et al. Experimental study of several types of ground heat exchanger using a steel pile foundation, Renewable Energy, 2011, (36): 764-771.

[10]Sivasakthivel T, Philippe M, Murugesan K, et al. Experimental thermal performance analysis of ground heat exchangers for space heating and cooling applications, Renewable Energy, 2017, (113): 1168-1181.

[11]Zhou H, Lv J, Li T. Applicability of the pipe structure and flow velocity of vertical ground heat exchanger for ground source heat pump, Energy and Buildings, 2016, (117): 109-119.

[12]刘浪,张波,张小艳,等. 矿山功能性充填基础理论与应用探索[J]. 煤炭学报, 2018, 43(07): 1811-1820.

[13]Ghoreishi-Madiseh S A, Hassani F, Abbasy F. Numerical and experimental study of geothermal heat extraction from backfilled mine stopes,Applied Thermal Engineering, 2015, (90): 1119-1130.

[14]亓玉栋,程卫民,于岩斌,等. 高温矿井低品位余热综合利用技术研究[J]. 中国矿业, 2015, 24(02): 60-66.

[15]赵聪,王凯. 矿井水余热利用技术在太平煤矿的开发应用[J]. 山东煤炭科技, 2015, (04): 199-200+202.

[16]韩磊,裴婷. 矿井余热利用技术研究现状及展望[J]. 应用能源技术, 2013, (05): 36-39.

[17]王景刚,张鑫. 矿井余热水源热泵技术的研究[J]. 能源与能, 2012, (03): 46-47+77.

[18]段泽敏,马素霞,郭千中. 矿井余热资源利用技术[J]. 煤矿安全, 2014, 45(09): 68-71.

[19]魏忠勋,王彦洪,赵川. 矿井余热综合利用技术研究与应用[J]. 煤炭科学技术, 2013, 41(S2): 376-378.

[20]令狐磊. 矿区余热资源协同利用方式探讨[J]. 煤炭与化工, 2017, 40(02): 130-131+134.

[21]赵增选. 矿区余热综合利用项目的研究与应用[J]. 价值工程, 2019, 38(20): 240-242.

[22]罗景辉,熊楚超,魏莹,等. 煤矿低温余热应用探究[J]. 煤炭与化工, 2019, 42(11): 96-99.

[23]李铭新. 煤矿井下制冷机冷却水和矿井水余热综合利用[J]. 机电信息, 2017, (12): 68-70.

[24]黄方益. 煤矿余热资源的利用分析研究[J]. 中国新技术新产品, 2019, (15): 56-57.

[25]汤玲玲,祝健,姚曜,等. 某矿井余热资源利用系统研究[J]. 供热制冷, 2017, (05): 18-21.

[26]赵忠玲,姜晓云,孔德志,等. 彭庄煤矿余热综合利用可行性研究[J]. 煤炭技术, 2016, 35(10): 178-180.

[27]毕世科,万志军,张洪伟,等. 唐口煤矿地热资源开发及利用研究[J]. 煤炭科学技术, 2018, 46(04): 208-214.

[28]吕盼,高蕊,崔福海,等. 吸收式热泵余热利用优化研究[J]. 煤炭技术, 2018, 37(03): 309-311.

[29]Howladar M F, Karim M M. The selection of backfill materials for Barapukuria underground coalmine, Dinajpur, Bangladesh: insight from the assess-ments of engineering properties of some selective materials[J]. Environmental Earth Sciences, 2015, 73(10): 6153-6165

[30]Bouzalakos S, Dudeney A W L, Chan B K C. Formulating and optimising the compressive strength of controlled low-strength materials containing mine tailings by mixture design and response surface methods[J]. Minerals Engineering, 2013, 53(1): 48-56.

[31] 魏会军. 矿山充填采矿法探究[J]. 世界有色金属, 2018, (19): 43-446.

[32]王丽红,鲍爱华,罗园园. 中国充填技术应用与展望[J]. 矿业研究与开发, 2017, 37(03): 1-7.

[33]周爱民. 中国充填技术概述[A]. 中国有色金属学会.第八届国际充填采矿会议论文集[C]. 中国有色金属学会: 中国有色金属学会, 2004: 7.

[34]杨明军. 充填采矿法的优势及应用[J]. 科学技术创新, 2018, (22): 36-37.

[35]Wang M, Liu L, Zhang X Y, et al. Experimental and numerical investigations of heat transfer and phase change characteristics of cemented paste backfill with PCM[J]. Applied Thermal Engineering, 2019, (150): 121-131.

[36]李建东. 基于绿色开采理念的煤炭充填开采技术研究[J]. 技术与市场, 2016, 23(08): 70-71.

[37]黄玉诚,孙恒虎. 高水固结尾砂充填材料强度影响因素分析[J]. 中国矿业, 1997, (05): 22-25.

[38]郭瑞. 国内外充填采矿技术发展现状综述[J]. 智能城市, 2016, 2(07): 79.

[39]Farzaan A, Ghoreishi M S A, Jean C, et al. An exper-imental study on the effective parameters of thermal conductivity of mine backfill. Nokken, MichelleR. 4, in: Heat. Transfer[J]. Engineering, 2014, (13): 1209-1224.

[40]黄永祥. 金川铜镍矿固体废弃物用于井下充填试验研究[D]. 兰州大学, 2014.

[41]梁志强. 新型矿山充填胶凝材料的研究与应用综述[J]. 金属矿山, 2015, (06): 164-170.

[42]匡中文,何利辉,胡磊,等. 固体废物用作煤矿膏体充填原材料的可行性研究[J]. 煤矿开采. 2009, 14(03): 16-18.

[43]Kirgiz M S. Advancements in mechanical and physical properties for marble powder–cement composites strengthened by nanostructured graphite particles, Mechanics of Materials, 2016, (92): 223-234.

[44]Gomes M G, Flores-Colen I, Manga L, et al. The influence of moisture content on the thermal conductivity of external thermal mortars[J]., Constr. Build. Mater, 2017, (135): 279-286.

[45]Jiao W X, Sha A, Liu Z Z, et al. Utilization of steel slags to produce thermal conductive asphalt concretes for snow melting pavements[J]. Journal of Cleaner Production, 2020, (261): 121-197.

[46]Mirzanamadi R, Johansson P, Sotirios A. Grammatikos Thermal properties of asphalt concrete: A numerical and experimental study[J]. Construction and Building Materials, 2018, (158): 774-785.

[47]Zhou H Y, Brooks A L. Thermal and mechanical properties of structural lightweight concrete containing lightweight aggregates and fly-ash cenospheres[J]. Construction and Building Materials, 2019, (198): 512-526.

[48]Rao R, Wang H F, Wang H H, et al. Models for estimating the thermal properties of electric heating concrete containing steel fifiber and graphite[J]. Composites Part B, 2019, (164): 116-120.

[49]Girardi F, Giannuzzi G M, Mazzei D, et al. Recycled additions for improving the thermal conductivity of concrete in preparing energy storage systems[J]. Construction and Building Materials, 2017, (135): 565-579.

[50]曾照凯,张义平,吴刚. 基于正交优化的胶结充填体强度试验研究[J]. 有色金属, 2010, 62(03): 6-8+13.

[51]Li C, Mao J, Zhang H, et al. Numerical simulation of horizontal spiral-coil ground source heat pump system:Sensitivity analysis and operation characteristics[J]. Applied Thermal Engineering, 2017, (110): 424-435.

[52]Kim M J, Lee S R, Yoon S, et al. An applicable design method for horizontal spiral-coil-type ground heat exchangers[J]. Geothermics, 2018, (72): 338-347.

[53]Kayaci N, Demir H. Long time performance analysis of ground source heat pump for space heating and cooling applications based on thermo-economic optimization criteria[J]. Energy and Buildings, 2018, (163): 121-139.

[54]Neupauer K, Pater S, Kupiec K. Study of Ground Heat Exchangers in the Form of Parallel Horizontal Pipes Embedded in the Ground[J]. Energies, 2018, 11(3): 491.

[55]Soni S K, Pandey M, Bartaria V N. Ground coupled heat exchangers:A review and applications[J]. Renewable and Sustainable Energy Reviews, 2015, (47): 83-92.

[56]Han C, Ellett K M, Naylor S, et al. Influence of local geological data on the performance of horizontal ground-coupled heat pump system integrated with building thermal loads[J]. Renewable Energy, 2017, (113): 1046-1055.

[57]Dasare R R, Saha S K. Numerical study of horizontal ground heat exchanger for high energy demand applications[J]. Applied Thermal Engineering, 2015, (85): 252-263.

[58]Liu J, Zhang X, Gao J, et al. Evaluation of heat exchange rate of GHE in geothermal heat pump systems[J]. Renewable Energy, 2009, (34): 2898-2904

[59]Li C F, Mao J F, Zhang H, et al. Numerical simulation of horizontal spiral-coil ground source heat pump system: Sensitivity analysis and operation characteristics[J]. Applied Thermal Engineering, 2017, (110): 424-435.

[60]Naili N, Hazami M, Attar I, et al. In-field performance analysis of ground source cooling system with horizontal ground heat exchanger in Tunisia[J]. Energy, 2013, (61): 319-331.

[61]Man Y, Yang H, Wang J, et al. In situ operation performance test of ground coupled heat pump system for cooling and heating provision in temperate zone[J]. Applied Energy, 2012, (97): 913-920.

[62]Cammarata G, Cammarata L, Petrone G, Thermodynamic Analysis of ORC for Energy Production from Geothermal Resources[J]. Energy Procedia, 2014, (45): 1337-1343.

[63]Naili N, Hazami M, Kooli S, et al. Energy and exergy analysis of horizontal ground heat exchanger for hot climatic condition of northern Tunisia[J]. Geothermics, 2015, (53): 270-280.

[64]Pu L, Qi D, Xu L, et al. Optimization on the performance of ground heat exchangers for GSHP using Kriging model based on MOGA[J]. Applied Thermal Engineering, 2017, (118): 480-489.

[65]Sofyan S E, Hu E. A Kotousov, A new approach to modelling of a horizontal geo-heat exchanger with an internal source term[J]. Applied Energy, 2016, (164): 963-971.

[66]Hu P, Yu Z, Zhu N, et al. Performance study of a ground heat exchanger based on the multipole theory heat transfer model[J]. Energy and Buildings, 2013, (65): 231-241.

[67]Noorollahi Y, Saeidi R, Mohammadi M, et al. The effects of ground heat exchanger parameters changes on geothermal heat pump performance A review[J]. Applied Thermal Engineering, 2018, (129): 1645-1658.

[68]Kayaci N, Demir H. Numerical modelling of transient soil temperature distribution for horizontal ground heat exchanger of ground source heat pump[J]. Geothermics, 2018, (73): 33-47.

[69]Nam Y J, Chae H-B. Numerical simulation for the optimum design of ground source heat pump system using building foundation as horizontal heat exchanger[J]. Energy, 2014, (73): 933-942.

[70]Chong C S A, Gan G H, Verhoef A, et al. Simulation of thermal performance of horizontal slinky-loop heat exchangers for ground source heat pumps[J]. Applied Energy, 2013, (104): 603-610.

[71]Ghoreishi-Madiseh S A, Hassani F P, Mohammadian A, et al.A study into extraction of geothermal energy from tailings ponds[J]. International Journal of Mining, Reclamation and Environment, 2013, (27): 257-274.

[72]Zhang X Y, Liu L, Liu L, et al. Numerical simulation of heat release performance of filling body under condition of heat extracted by fluid flowing in buried tube[J]. Journal of Central South University, 2019, (26): 2160-2174.

[73]彭远玲,李文欣,韦科娟,等. 竖直地埋管热相似试验台原理及试验验证[J]. 暖通空调, 2018, 48(09): 45-49.

[74]姚景相,陶珍东,刘鹏. 钢渣比表面积和掺入量对水泥性能的影响[J]. 水泥工程, 2008, (01): 20-23.

[75]贺婷,廖洪强,童震松,等. 钢渣微粉对泡沫混凝土基本性能的影响[J]. 混凝土, 2013, (11): 75-78.

[76]屈春来,薛少欣,辛悦,等. 石墨对混凝土导热系数及抗压强度影响规律分析[J]. 科学技术与工程, 2019, 19(13): 243-248.

[77]俞佳美,邵梦婷,王震,等. 轻质泡沫混凝土材料性能研究[J]. 科技创新导报, 2019, 16(28): 48-49.

[78]彭铖,陈宇恒,倪浩伟,等. 铜水泥基复合材料导热流动特性研究[J]. 环境与发展, 2019, 31(08): 130-132.

[79]田尔布,王逢朝,康海鑫,等. 钢渣-石粉混凝土工作性和水泥胶砂力学性能实验研究[J]. 武夷学院学报, 2016, 35(03): 67-71.

[80]屈春来,辛悦,党承华. 石墨掺量及骨料种类对混凝土导热系数的影响与内在机理研究[J]. 混凝土, 2020, (07): 70-73+77.

[81]Liu L, Ruan S S, QI C C, et al. Co-disposal of magnesium slag and high-calcium fly ash as cementitious materials in backfill. Journal of Cleaner Production [J], 2021.

[82]杨莹,吴爱祥,杨柳华. 全尾砂膏体性能试验研究[J]. 金属矿山, 2016, (08): 185-189.

中图分类号:

 TK529    

开放日期:

 2023-04-11    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式