- 无标题文档
查看论文信息

论文中文题名:

 矿用挖掘机驾驶室空间布局及人机界面优化研究    

姓名:

 郝秀丽    

学号:

 21214109017    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 130500    

学科名称:

 艺术学 - 设计学    

学生类型:

 硕士    

学位级别:

 艺术学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 艺术学院    

专业:

 设计学    

研究方向:

 工业设计    

第一导师姓名:

 冯青    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-25    

论文答辩日期:

 2024-06-03    

论文外文题名:

 Research on spatial layout and human-machine interface optimization of mining excavator cab    

论文中文关键词:

 工业设计 ; 布局优化 ; 人机界面 ; 快速上肢评价法 ; 量子粒子群算法    

论文外文关键词:

 Industrial design ; Layout optimization ; Human machine interface ; Rapid upper limb evaluation method ; Quantum particle swarm optimization algorithm    

论文中文摘要:

随着我国工业化进程的不断推进,工业设计的应用范围已广泛拓展至精密设备研发、交通工具制造及重型机械平台开发等多个行业,这对舱室工效学的研究也提出了更为深刻的要求。现阶段,舱室工效学在精密高端设备领域已经取得了十足的成就,然而其理论方法在基础性设备的应用上仍存在滞后性,这使得国有工程机械舱室设计实践参差不齐。在过去的数十年中,包括矿用挖掘机在内的重型机械装备,其工作性能已有显著跃升,然而在这一过程中,驾驶舱的人机工效设计作为改善人员工作效率进而优化机械作业性能的高性价比因素,却并未得到应有的重视。矿用挖掘机驾驶室作为操作人员支配机械完成工作任务的“大脑”,其工作区域与人机界面布局的优劣,将直接影响到机械的作业效率与驾驶员的舒适体验。如何兼顾舱室工效学理论与驾驶员的真实工作情景,建立起一套完整的矿用挖掘机驾驶室工效设计体系,实现复杂多目标下的驾驶室设计优化,是当下亟需解决的问题。主要的研究工作如下:

(1)从布局研究的角度出发,对工程机械驾驶室涉及到的布局问题及研究方法进行文献综述,明确布局优化对应解决途径的优缺点与侧重点,找出矿用挖掘机驾驶室空间布局与人机界面存在的问题,为后续有针对性地解决问题奠定基础。

(2)对矿用挖掘机的基本构成、矿用挖掘机驾驶室的设计要素(以空间布局与人机界面为主)及矿用挖掘机的设计流程进行调研与确定,构建一套较为完整的矿用挖掘机驾驶室工效设计方法与理论体系。

(3)构建起矿用挖掘机驾驶室空间布局的研究模型,对驾驶室内工作区域的定位及不同功能区域的综合布局进行考量。一方面,借鉴汽车人机工程学的人体模型理论,建立起人体尺寸数据、舒适关节角度、驾驶室工作视野、胯点等多约束条件下的工作区域布局方法;另一方面,结合工效学理论与室内设计准则,对驾驶室的空间利用率与人员动线进行分析,以此为基础运用系统布置设计中的关联图法来指导驾驶室各功能区域的综合布局。

(4)构建起将人体舒适因素定量化的矿用挖掘机操作界面优化的研究模型。将待布面板根据上肢作业姿势的不同进行区域划分,利用快速上肢评价法对已划分的区域进

 

行操作舒适度等级的赋值,同时对其视觉注意程度进行赋值。基于人类工效学设计标准,尤其是针对元件面板匹配的通用布局原则及工作人员的姿势舒适性原则,构建起操作界面布局优化的数学模型,并借助量子粒子群算法来进行求解,从而高效地生成满足要求的设计方案。

(5)以某型矿用挖掘机驾驶室为研究对象,对上述提出的布局优化策略进行实例验证。运用模糊数学评价法来检验所得布局方案的优劣。实践结果表明,运用该驾驶室空间布局和人机界面优化方法改进的设计方案,不仅充分契合驾驶员的实际操作习惯,同时也满足了复杂作业环境下驾驶人员不同的功能需求。此类布局优化方法具有一定的通用性,可推广应用于相关工程机械的驾驶舱设计中,以辅助设计团队提升产品效能。

论文外文摘要:

With the continuous advancement of industrialization in our country, the application scope of industrial design has been widely expanded to multiple industries such as precision equipment research and development, transportation vehicle manufacturing, and heavy machinery platform development. This has also put forward more profound requirements for the study of cabin ergonomics. At present, cabin ergonomics has achieved great success in the field of precision high-end equipment. However, there is a lag in its theoretical methods in the application of basic equipment, which leads to uneven design practices in state-owned engineering machinery cabins. In the past few decades, the performance of heavy machinery and equipment, including mining excavators, has significantly improved. However, in this process of improvement, the human-machine efficiency design of the cockpit, as a high cost-effective factor to improve personnel work efficiency and optimize mechanical operation efficiency, has not received the attention it deserves. The cab of a mining excavator serves as the "brain" for operators to control large machinery to complete work tasks. The quality of its work area and human-machine interface layout will directly affect the operational efficiency of the machinery and the comfortable experience of the driver. How to balance the theory of cabin ergonomics with the real working scenario of mining excavators, establish a complete system of cabin ergonomics design for mining excavators, and achieve complex and multi-objective layout design of cabins is an urgent problem that needs to be solved at present. The main research work is as follows:

(1) Starting from the layout problem, this paper conducts a literature review on the current situation and research methods of layout problems related to the construction machinery cab, clarifies the solutions to layout optimization, as well as its advantages, disadvantages, and focuses, identifies the problems in the spatial layout and human-machine

 

interface optimization of mining excavator cabins, and lays a theoretical foundation for targeted problem-solving in the future.

(2) Conduct research and determination on the basic composition of mining excavators, the design elements of mining excavator cabins (mainly spatial layout and human-machine interface), and the design process of mining excavators, and construct a relatively complete set of ergonomic design methods and theoretical systems for mining excavator cabins.

(3) Construct a research model for the spatial layout of the mining excavator cab, achieving the positioning of the working area inside the mining excavator cab and considering the comprehensive layout of different functional areas. On the one hand, drawing on the human body model theory of automotive ergonomics, a work area layout method is established under multiple constraints such as human body size data, cab work field of view, comfortable joint angles, and hip points; On the other hand, combining ergonomics theory and interior design principles, the space utilization rate and personnel flow line of the cab are analyzed, and based on this, the correlation diagram method in system layout design is used to guide the comprehensive layout of various functional areas in the cab.

(4) Build a research model for optimizing the operation interface of mining excavators that quantifies human comfort factors. Divide the panel to be laid according to the different postures of the upper limbs, and use the fast upper limb evaluation method to assign the comfort level of the divided area for operation, while assigning a value to its visual attention level. A mathematical model for optimizing the layout of a control panel is constructed based on ergonomic design standards, especially the general layout principles for component panel matching and the principles of comfortable posture for workers. Utilize quantum particle swarm optimization algorithm for optimization and efficient generation of layout schemes that meet requirements.

(5) Taking a typical mining excavator cockpit as the research object, the layout optimization strategy proposed above is verified through an example. The fuzzy mathematical evaluation method is used to test the superiority and inferiority of the layout scheme obtained. The practical results show that the improved design scheme using the cab space layout and human-machine interface optimization method not only fully fits the actual operating habits of the driver, but also meets the different functional requirements of the driver in the complex operating environment of mining excavators. This type of layout optimization method has a certain degree of popularity and can be promoted and applied to the internal design of relevant engineering machinery cabins to support design teams in improving product efficiency.

参考文献:

[1]易军,颜胡.工程机械工业设计知识库构建方案研究[J].包装工程,2020,41(18):71-77.

[2]刘昕.混合感性工学驱动的舱内人机设计与评价方法研究[D].西安:西北工业大学,2016.

[3]赵静.大型矿用挖掘机驾驶室工效设计方法及技术研究[D].太原:太原理工大学,2019.

[4]王紫瑞,关旭,冀雯馨.基于CANopen的工程机械控制器设计[J].成都信息工程大学学报,2020,35(05):487-492.

[5]易军,曲金勇,肖狄虎.工程机械工业设计及研究[J].包装工程,2019,40(18):1-11.

[6]葛磊,董致新,李运华,等.系列化液压挖掘机数字样机研究[J].机械工程学报,2019,55(14):186-196.

[7]李运华,范茹军,杨丽曼,等.智能化挖掘机的研究现状与发展趋势[J].机械工程学报,2020,56(13):165-178.

[8]邹智红.反铲液压挖掘机挖掘性能综合评价体系构建及其应用研究[D].重庆:重庆大学,2019.

[9]李泽鹏,权龙,葛磊,等.液电混合驱动液压挖掘机动臂特性及能效研究[J].机械工程学报,2018,54(20):213-219.

[10]GE L,QUAN L,LI YW,et al.A novel hydraulic excavator boom driving system with high effic-iency and potential energy regeneration capability[J].Energy Conversion and Management,2018,166:308-317.

[11]LIN T,WANG Q.Hydraulic accumulator-motor-generator energy regeneration system for a hybri-d hydraulic excavator[J].Chinese Journal of Mechanical Engineering,2012,25(6):1121-1129.

[12]边轩毅,赵静,李娟莉.WK-35大型矿用挖掘机驾驶室人机工程改进设计[J].矿业研究与开发,2019,39(07):92-98.

[13]任家骏,王雅坤,李娟莉,等.任务-结构-迭代融合的挖掘机操作界面设计方法[J].东北大学学报(自然科学版),2021,42(02):267-275.

[14]董兵兵.矿用挖掘机提升机构动力学性能优化[J].机械设计与制造,2019(09):142-145.

[15]全国土方机械标准化技术委员会.土方机械司机座椅标定点:GB/T 8591-2000[S].北京:中国标准出社,2000.

[16]全国土方机械标准化技术委员会.土方机械司机的身材尺寸与司机的最小活动空间:GB/T 8420-2011[S].北京:中国标准出版社,2011.

[17]MATTHEW R.Applicability of Occupant Packaging and Interior Ergonomics Tools to Highly Automated Vehicles[J].SAE Technical Paper 2018(1):8-45.

[18]胡锦强.基于人机工程学的装甲车驾驶室优化设计研究[D].西安:长安大学,2017.

[19]张志波,苑林,谢东明,等.汽车驾驶员前方视野测量及评价[J].汽车技术,2013,(04):46-49.

[20]黄金陵,龚礼洲,葛安林.车身布置中H点的优化[J].汽车工程,2000,22(6):368-372.

[21]李冉儿,任家骏,李畅.75m~3大型挖掘机驾驶室的人机工程学研究[J].太原理工大学学报,2016,47(05):572-575.

[22]LI H, ZHAO D, MA X,et al.Predictive model of tractor driving posture considering front and rear view[J].Biosystems engineering,2019,185:64-75.

[23]OZSOY B,Ji XW,Yang J,et al.Simulated effect of driver and vehicle interaction on vehicle int-erior layout[J]. International Journal of Industrial Ergonomics,2015,49:11-20.

[24]任文营,朱新悦.秸秆收获压捆机驾驶室人因改进分析[J].中国农机化学报,2023, 44(05):148-154.

[25]任德良,徐书雷,王兴伟,等.基于RAMSIS的拖拉机驾驶室人机工程布置设计与测试[J].农业机械学报,2022,53(S2):303-309.

[26]陈登凯,郭家言,王憬鸾,等.基于CATIA的汽车驾驶室人机工效改进设计研究[J].机械设计,2019,36(09):127-131.

[27]尹航.装载机驾驶舱人机工程改进设计研究[J].机械设计,2017,34(08): 120-123.

[28]王沈策,梁嘉豪,史雨霖.基于Jack的挖掘装载机驾驶室人机工程分析与改进设计[J].机械设计,2024,41(02):170-176.

[29]王瑶,陈登凯,孙意为,等.舰艇睡眠舱布局复合优化设计方法[J/OL].哈尔滨工程大学学报, 1-9[2024-04-10].http://kns.cnki.net/kcms/detail/23.1390.U.20240111.1631.004.html.

[30]李娟,周慧敏,刘涛,李沛芸,袁光宇,胡蝶.基于WSR的塔机驾驶室空间布局优化设计研究[J].包装工程,2023,44(02):69-80+136.

[31]冯青,张承嫄,余隋怀等.NSGA-Ⅱ算法与能量法相结合的舰艇居住舱室布局优化研究[J/OL].机械科学与技术:1-8[2023-03-24].

[32]陈登凯,范昱,张帅,曲俊霖.舱内功能及人机工效导向的载人潜水器工作舱布局设计方法[J].中国舰船研究,2018,13(02):41-50.

[33]刘昕,余隋怀,初建杰,姚澜,张婉玉,赵明磊.改进PSO的飞机驾驶舱组合排序人机布局优化[J].计算机工程与应用,2015,51(07):1-6.

[34]宗立成,余隋怀,孙晋博,韩立伟,安珊珊.基于鱼群算法的舱室布局优化问题关键技术研究[J].机械科学与技术,2014,33(02):257-262.

[35]刘峰,韩端锋,韩海辉.载人潜器载人舱布局优化[J].哈尔滨工程大学学报,2014,35(01):30-37.

[36]张芳燕,刘国闯,张磊,等.基于Jack的反铲式挖掘机驾驶室人机工程仿真分析与设计改进[J].机械设计,2023,40(06):145-152.

[37]王启超,秦增志,张文杰,等.基于DELMIA拖拉机驾驶室人机系统静态舒适性分析[J].安徽农业大学学报,2022,49(03):506-513.

[38]ETEMADINEZHAD S,RANJBAR F, GORJI M.Posture Analysis by OWAS Method and Prevalence of Musculoskeletal Disorders using Nordic Questionnaire among Workers of Sourak Tob-acco Factory in 2013[J].Iranian journal of health sciences,2013,1(2):89-94.

[39]DAVID G,WOODS V,LI G,et al.The development of the Quick Exposure Check (QEC) for assessing exposure to risk factors for work-related musculoskeletal disorders[J].Applied ergonomi-cs,2008,39(1): 57-69.

[40]MCATAMNEY L,CORLETT E N.RULA:a survey method for the investigation of work-related upper limb disorders[J].Applied ergonomics,1993,24(2):91-99.

[41]HIGNETT S,MCATAMNEY L.Rapid entire body assessment (REBA)[J].Applied ergonomics,2000,31(2):201-205.

[42]KEE D,KARWOWSKI W.LUBA:an assessment technique for postural loading on the upper bo-dy based on joint motion discomfort and maximum holding time[J].Applied ergonomics,2001,32(4):357-366.

[43]冯青,范丁力,杨惠珺,赵思伊.认知负荷下的智慧矿山信息交互界面优化[J].西安科技大学学报,2022,42(05):1028-1036.

[44]孟浩南,任家骏,李爱峰,李娟莉,王雅坤.排土机操作界面的布局优化设计分析[J].机械设计与研究, 2020,36(06):159-165.

[45]王雅坤,任家骏,李爱峰,孟浩南.矿用挖掘机驾驶室操作界面的布局优化设计[J].工程设计学报,2020,27(04):469-477.

[46]张宏瑞,任家骏,李爱峰,赵静.大型矿用挖掘机操作界面的优化设计研究[J].图学学报,2019,40(04):796-801.

[47]仇莹,朱忠祥,毛恩荣,宋正河,扈伟斌,朱现学.联合收获机驾驶室人机界面布局优先序研究[J].农业机械学报,2009,40(12):43-47.

[48]ONSORODI A H H,KORHAN O.Application of a genetic algorithm to the keyboard layout pr-oblem[J].PloS one,2020,15(1):e0226611.

[49]HAO L,CHUNG W J.Human-machine interface visual communication design model of electronic equipment using machine vision technology[J].Wireless Communications and Mobile Computing,2022,2022.

[50]王旭,姜兴宇,杨国哲,等.基于可达域的激光增材制造装备人机界面布局优化研究[J].机械工程学报,2023,59(02):317-330.

[51]陈磊,吕健,潘伟杰,等.融合认知负荷的用户界面布局优化[J].计算机系统应用,2022,31(07):307-315.

[52]王大颜,瞿珏,王崴,等.防空反导装备指控舱显控台界面布局优化设计与评价[J].空军工程大学学报(自然科学版),2021,22(05):104-111.

[53]康慧,杨随先,邓淑文,王波.产品操作界面元素布局多目标优化设计[J].包装工程,2020,41(08):149-153+172.

[54]邓丽,王国华,余隋怀.遗传-蚁群算法求解司钻控制室操纵器布局优化[J].工程设计学报,2016,23(02):143-151.

[55]陈德钧,方卫宁,秦永贞,刘英.轨道车辆司机操纵台人机界面布局优化模型与算法[J].铁道学报,2014,36(11):40-47.

[56]王雅坤.矿用挖掘机驾驶室操作界面及空间布局设计[D].太原:太原理工大学,2021.

[57]孙建华,蒋婷,王春慧等.航天器软件人机界面工效评价指标与评价方法研究[J].载人航天,2020,26(02):208-213.

[58]张承嫄.矿用挖掘机驾驶空间人机界面布局优化方法研究[D].西安:西安科技大学,2022.

[59]毛亮,薛月菊,林焕凯等.一种基于视频图像的挖掘机工作状态识别方法[J].系统工程理论与实践,2019,39(03):797-804.

[60]李晓玲.车辆人机工程设计与实践[M].西安:西安交通大学出版社,2017.

[61]勒·柯布西耶.走向新建筑[M].南京:江苏科学技术出版社,2014.

[62]张朦.沈阳市中小型住宅室内空间适应性设计研究[D].沈阳:东北大学,2015.

[63]张宏瑞,任家骏,李爱峰.液压挖掘机驾驶室的舒适H点域研究[J].太原理工大学学报,2019,50 (05):630-634.

[64]全国汽车标准化技术委员会.汽车和挂车类型的术语和定义:GB/T 3730.1-2022[S].北京:中国标准出版社,2022.

[65]姜涛,黄秋霞,舒培,等.公路铁路两用电动运输车司机室人机工程分析[J].中国工程机械学报,2019,17(02):121-126.

[66]王旭,姜兴宇,杨国哲等.基于可达域的激光增材制造装备人机界面布局优化研究[J].机械工程学报,2023,59(02):317-330.

[67]全国汽车标准化技术委员会.乘用车 驾驶员手控制区域:GB/T 43402-2023[S].北京:中国标准出版社,2023.

[68]LI J,GUO H,ZHANG S,et al.Optimum design of ship cabin equipment layout based on SLP method and genetic algorithm[J].Mathematical Problems in Engineering,2019,2019:1-14.

[69]张梦杨,朱玉杰,张许英龙.基于系统布置设计与混合算法的锻造厂车间布局优化[J].科学技术与工程,2024,24(01):170-176.

[70]CAGAN J,SHIMADA K,YIN S.A survey of computational approaches to three-dimensional lay-out problems[J].Computer Aided Design,2002,34(3):597-611P.

[71]DOWSLAND K A,DOWSLAND W B.Packing problem.European Journal of Operational Resea-rch[J],1992,56(1):2-14P.

[72]许彧青.核电站主控室后备盘台人机界面建模及其优化方法研究[D].哈尔滨工程大学,2012.

[73]冯青,郝秀丽,杨延璞,等.基于RULA与QPSO的矿用挖掘机操作界面布局优化研究[J].包装工程,2023,44(18):155-165.

[74]范建平,朱兆钰,吴美琴.一种新的基于群AHP和DEA的距离测度方法[J].统计与决策,2018,34(21):41-45.

[75]夏春艳,蒋鲲.基于信度系数的人机界面评价指标权重分配[J].沈阳工业大学学报,2013,35(01):53-57.

[76]谌炎辉,周德俭,袁海英,等.复杂产品的最小最大划分模块化方法[J].计算机集成制造系统,2012,18(01):9-14.

[77]崔奥,黄金娥,黄祥兵,等.基于量子粒子群算法的船舶机舱布局方法[J].舰船科学技术,2022,44(18):51-56.

[78]孙俊.量子行为粒子群优化算法研究[D].无锡:江南大学,2009.

[79]李铁,张文虎,张帅军.基于GA-MaxEnt 权重的产品模糊综合评价[J].制造业自动化,2023,45(3):34-37.

[80]李余峰,薛艳敏,张晓辉.基于人机工程学的电子设备人机界面设计[J].包装工程,2011,32(06):63-66.

中图分类号:

 TB472    

开放日期:

 2024-06-25    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式