- 无标题文档
查看论文信息

论文中文题名:

 废石尾砂胶结充填材料力学性能及损伤演化规律研究    

姓名:

 张富舜    

学号:

 20203226039    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 能源学院    

专业:

 资源与环境    

研究方向:

 固废处置与充填开采    

第一导师姓名:

 邱华富    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-26    

论文答辩日期:

 2023-06-06    

论文外文题名:

 Study on mechanical properties and damage evolution law of waste rock tailings cemented backfill material    

论文中文关键词:

 充填材料 ; 微观结构 ; 循环加卸载 ; 力学特性 ; 声发射特征 ; 损伤本构模型    

论文外文关键词:

 Backfill material ; Microstructure ; Cyclic loading and unloading ; Mechanical properties ; Acoustic emission characteristics ; Damage constitutive model    

论文中文摘要:

利用矿山固废制备充填材料,对采空区进行有规划的局部充填,构建地下石油储库,是一种地下储库构建的新方法,能实现矿山地下空间资源和矿山固废的双重利用,解决矿山固废处置和地下储库紧缺的难题。充填材料的力学性能及其在不同应力条件下的损伤特性,是影响储库安全稳定性的关键。因此,本文以构建石油储库的充填材料为研究目标,选择尾砂、废石颗粒为骨料,水泥为胶凝材料,开展不同配比废石尾砂胶结充填材料不同应力条件下的力学试验,利用声发射技术对细观损伤演化进行表征,结合微观结构分析,得到以下主要结论:

(1) 借助XRD分析了水化产物的构成,利用电镜扫描手段,可观察到无定形态C-S-H凝胶,针棒状AFt以及片状Ca(OH)2等水化产物,利用二值化预处理软件获取了充填材料孔隙率特征。

(2) 充填材料力学强度与灰砂比呈正相关关系,随废石含量增加呈现先增大后减小现象,灰砂比1:4废石含量10%时,单轴抗压强度最高,为5.053 Mpa。充填材料弹性模量与灰砂比呈正相关关系,力学强度与弹性模量存在一定线性关系。

(3) 单轴压缩过程充填材料声发射特征可与应力应变曲线所划分的四个阶段相对应:其中,压密与弹性阶段,充填材料内主要是原生裂隙的压密和微裂隙的稳定发展,声发射活动平静,振铃计数与能率较小;屈服阶段裂隙逐渐萌生、发育扩展并相互贯通,声发射活动开始活跃,振铃计数与能率开始出现高值;破坏阶段充填材料内损伤严重,存在宏观滑移,声发射活动活跃,振铃计数与能率均处于高频高值状态。

(4) 恒下限循环加卸载下充填材料力学强度略小于等幅循环加卸载下充填材料力学强度,等幅循环加卸载的多次相同峰值应力作用对充填材料有一定的压密作用。

(5) 两种循环加卸载方式下声发射振铃计数均呈现“峰谷现象”,累计振铃计数呈阶梯式上涨;恒下限循环加卸载可利用Felicity判断其损伤程度,Felicity值随循环次数的增大不断降低,表明充填材料损伤程度不断增大;恒下限循环加卸载过程中损伤点分布展示了充填材料循环过程中损伤的生成与分布特征。

(6) 根据充填材料单轴压缩所得物理力学参数,根据损伤力学理论进行计算,获得本文所研究废石尾砂胶结充填材料的损伤参数,并建立了废石尾砂胶结充填材料损伤本构方程与损伤演化方程。

论文外文摘要:

It is a new method to construct underground oil storage by using mine solid waste to prepare filling materials, filling the goaf in a planned way, which can realize the dual utilization of mine underground space resources and mine solid waste, and solve the problem of mine solid waste disposal and underground storage shortage. The mechanical properties of the filling material and its damage characteristics under different stress conditions are the key to the safety and stability of the storage. Therefore, this paper takes the construction of filling materials for oil storage as the research goal, selects tailings and waste rock particles as aggregates, and cement as cementitious materials to carry out mechanical tests under different stress conditions of different proportions of waste rock tailings cemented filling materials. Acoustic emission technology is used to characterize the meso-damage evolution. Combined with microstructure analysis, the following main conclusions are obtained:

(1) The composition of hydration products was analyzed by XRD. The amorphous C-S-H gel, needle-like AFt and flake Ca(OH)2 were observed by scanning electron microscopy. The porosity characteristics of f backfill materials were obtained by binarization pretreatment software.

(2) The mechanical strength of backfill material is positively correlated with the cement-sand ratio. With the increase of waste rock content, it increases first and then decreases. When the cement-sand ratio is 1:4 and the waste rock content is 10 %, the uniaxial compressive strength is up to 5.053 Mpa. The elastic modulus of the backfill material is positively correlated with the cement-sand ratio, and there is a certain linear relationship between the mechanical strength and the elastic modulus.

(3) The acoustic emission characteristics of the backfill material during the uniaxial compression process can correspond to the four stages divided by the stress-strain curve: Among them, in the compaction and elastic stage, the compaction of the primary cracks and the stable development of the micro-cracks mainly occur in the backfill material. At this time, the acoustic emission activity is calm, the ringing count and the energy rate are small; in the yield stage, the cracks gradually developed and expanded and connected with each other, the acoustic emission activity began to be active, and the ringing count and energy rate began to appear high value. In the failure stage, the damage in the backfill material is serious, there is macroscopic slip, and the acoustic emission activity is active.

(4) The mechanical strength of the backfill material under constant lower limit cyclic loading and unloading is slightly smaller than that under constant amplitude cyclic loading and unloading. The multiple same peak stress effects of constant amplitude cyclic loading and unloading have a strong compaction effect on the backfill material.

(5) Under the two cyclic loading and unloading methods, the ringing count showed a ' peak-valley phenomenon ', and the cumulative acoustic emission ringing count showed a stepwise increase. The constant lower limit cyclic loading and unloading can be used to judge the damage degree by the ' Felicity ' effect. The Felicity value decreases with the increase of the number of cycles, indicating that the damage degree of the backfill material increases. The damage points during the constant lower limit cyclic loading and unloading process show the generation and distribution characteristics of damage during the backfill material cycle.

(6) According to the physical and mechanical parameters obtained by uniaxial compression of backfill materials, the damage parameters of waste rock tailings cemented backfill materials studied in this paper are obtained by using the theory of damage mechanics, and the damage constitutive equation and damage evolution equation of waste rock tailings cemented backfill materials are established.

参考文献:

[1] 谢和平, 高峰, 鞠杨, 等. 深地煤炭资源流态化开采理论与技术构想[J]. 煤炭学报, 2017, 42(3):547-556.

[2] 蔡美峰, 吴允权, 李鹏, 等. 宁夏地区煤炭资源绿色开发现状与思路[J]. 工程科学学报, 2022, 44(1):1-10.

[3] 谢和平, 任世华, 谢亚辰, 等. 碳中和目标下煤炭行业发展机遇[J]. 煤炭学报, 2021, 46(7):2197-2211.

[4] 钱鸣高, 许家林. 煤炭开采与岩层运动[J]. 煤炭学报, 2019, 44(4):973-984.

[5] 王双明, 耿济世, 李鹏飞, 等. 煤炭绿色开发地质保障体系的构建[J]. 煤田地质与勘探, 2023, 51(1):33-43.

[6] 郭利杰, 刘光生, 马青海, 等. 金属矿山充填采矿技术应用研究进展[J]. 煤炭学报, 2022, 47(12):4182-4200.

[7] 张吉雄, 张强, 周楠, 等. 煤基固废充填开采技术研究进展与展望[J]. 煤炭学报, 2022, 47(12):4167-4181.

[8] 王玉涛. 煤矸石固废无害化处置与资源化综合利用现状与展望[J]. 煤田地质与勘探, 2022, 50(10):54-66.

[9] 宋许根, 陈从新, 庞厚利, 等. 金属矿山采矿推进与地表变形关系研究[J]. 岩土力学, 2018, 39(S1):425-436.

[10] 刘希灵, 李夕兵, 刘科伟, 等. 地下空区激光三维探测及稳定性分析[J]. 中国矿业大学学报, 2009, 38(4):549-553.

[11] 刘浪, 辛杰, 张波, 等. 矿山功能性充填基础理论与应用探索[J]. 煤炭学报, 2018, 43(7):1811-1820.

[12] 刘浪, 方治余, 张波, 等. 矿山充填技术的演进历程与基本类别[J]. 金属矿山, 2021(3):1-10.

[13] 刘浪, 王双明, 朱梦博, 等. 基于功能性充填的CO2储库构筑与封存方法探索[J]. 煤炭学报, 2022, 47(3):1072-1086.

[14] 刘建功, 李新旺, 何团. 我国煤矿充填开采应用现状与发展[J]. 煤炭学报, 2020, 45(1):141-150.

[15] 周泽, 朱川曲, 李青锋, 等. 近距离下保护层矸石充填开采可行性理论分析[J]. 采矿与安全工程学报, 2017, 34(5):838-844.

[16] 童晓光, 张光亚, 王兆明, 等. 全球油气资源潜力与分布[J]. 地学前缘, 2014, 21(3):1-9.

[17] 袁亮, 杨科. 再论废弃矿井利用面临的科学问题与对策[J].煤炭学报, 2021, 46(01):16-24.

[18] 谢和平, 高明忠, 刘见中, 等. 煤矿地下空间容量估算及开发利用研究[J]. 煤炭学报, 2018, 43(06):1487-1503.

[19] 邱华富, 刘浪, 王美, 等. 金属矿采矿—充填—建库协同系统及充填储库结构[J]. 石油学报, 2018, 39(11):1308-1316.

[20] 常春勤, 邹友峰. 国内外废弃矿井资源化开发模式述评[J]. 资源开发与市场, 2014, 30(4):425-429.

[21] Ilg P, Gabbert S, Wekard H. Nuclear waste management under approaching disaster: A comparison of decommissioning strategies for the germane repository Asse II[J]. Risk Analysis An Official Publication of the Society for Risk Analysis, 2017, 37(7):1213.

[22] Rosina E, Sansonetti A, Erba S. Focus on soluble salts transport phenomena: The study cases of Leonardo mural paintings at Sala delle Asse (Milan)[J]. Construction and Building Materials, 2016, 136:643-652.

[23] 彭振华, 李俊彦, 杨森, 等. 利用废弃石膏矿储存原油可行性分析[J]. 工程地质学报, 2013, 21(3):470-475

[24] 刘浪, 辛杰, 张波, 等. 矿山功能性充填基础理论与应用探索[J]. 煤炭学报, 2018, 43(7):1811-1820.

[25] 刘浪, 王双明, 朱梦博, 等. 基于功能性充填的CO2储库构筑与封存方法探索[J]. 煤炭学报, 2022, 47(3):1072-1086.

[26] 王双明, 申艳军, 孙强, 等. “双碳”目标下煤炭开采扰动空间CO2地下封存途径与技术难题探索[J]. 煤炭学报, 2022, 47(1):45-60.

[27] 师修昌. 煤矿地下水库研究进展与展望[J]. 煤炭科学技术, 2022, 50(10):216-225.

[28] 李百宜, 张吉雄, 刘恒凤, 等. 煤矿采空区储能式充填技术及储能增效机制[J]. 采矿与安全工程学报, 2022, 39(6):1161-1168+1176.

[29] 袁亮, 姜耀东, 王凯, 等. 我国关闭/废弃矿井资源精准开发利用的科学思考[J]. 煤炭学报, 2018, 43(1):14-20.

[30] Fall M., Benzaazoua M., Ouellet S. Experimental characterization of the influence of tailings fineness and density on the quality of cemented paste backfill[J]. Minerals Engineering, 2005, 18(1):41-44.

[31] 侯永强, 尹升华, 杨世兴, 等. 混合骨料胶结充填体强度特性及与开挖矿体的合理匹配[J]. 中国有色金属学报, 2021, 31(12):3750-3761.

[32] Liu L, Xin J, Qi C, et al. Experimental investigation of mechanical, hydration, microstructure and electrical properties of cemented paste backfill[J]. Construction and Building Materials,2020,263:120137

[33] Qiu J, Guo Z, Yang L, et al. Effect of tailings fineness on flow, strength, ultrasonic and microstructure characteristics of cemented paste backfill[J]. Construction and Building Materials, 2020, 263:120645.

[34] 姜关照, 吴爱祥, 李红, 等. 含硫尾砂充填体长期强度性能及其影响因素[J]. 中南大学学报(自然科学版), 2018, 49(6):1504-1510.

[35] 付建新, 杜翠凤, 宋卫东. 全尾砂胶结充填体的强度敏感性及破坏机制[J]. 北京科技大学学报, 2014, (9):1149-1157.

[36] Liu Z, Lan M, Xiao S, et al. Damage failure of cemented backfill and its reasonable match with rock mass[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(3):954-959.

[37] 赵康, 宋宇峰, 于祥, 等. 不同纤维作用下尾砂胶结充填体早期力学特性及损伤本构模型研究[J]. 岩石力学与工程学报, 2022, 41(2):282-291.

[38] Cao S, Song W, Yilmaz E. Influence of structural factors on uniaxial compressive strength of cemented tailings backfill[J]. Construction and Building Materials, 2018, 174:190-201.

[39] 赵康, 朱胜唐, 周科平, 等. 钽铌矿尾砂胶结充填体力学特性及损伤规律研究[J]. 采矿与安全工程学报, 2019, 36(2):413-419.

[40] 付自国, 乔登攀, 郭忠林, 等. 超细尾砂胶结充填体强度计算模型及应用[J]. 岩土力学, 2018, 39(9):3147-3156.

[41] Zhao Y, Ma Z, Qiu J, et al. Experimental study on the utilization of steel slag for cemented ultra-fine tailings backfill[J]. Powder Technology, 2020, 375:284-291.

[42] Liu S, Mamadou Fall. Fresh and hardened properties of cemented paste backfill: Links to mixing time[J]. Construction and Building Materials, 2022, 324:126688

[43] Xu W, Wei C, Tian M, et al. Effect of temperature on time-dependent rheological and compressive strength of fresh cemented paste backfill containing flocculants. [J]. Construction and Building Materials, 2021, 267:121038.

[44] Wu D., Zhao R.K., Qu C.L. Effect of Curing Temperature on Mechanical Performance and Acoustic Emission Properties of Cemented Coal Gangue-Fly Ash Backfill[J]. Geotechnical and Geological Engineering, 2019, 37(4):3241-3253.

[45] 侯永强, 尹升华, 曹永, 等. 不同加载速率下胶结充填体损伤特性与能量耗散特征分析[J]. 湖南大学学报(自然科学版), 2020, 47(08):108-117.

[46] 冯国瑞, 解文硕, 郭育霞, 等. 早期受载对矸石胶结充填体力学特性及损伤破坏的影响[J]. 岩石力学与工程学报, 2022, 41(4):775-784.

[47] 唐亚男, 付建新, 宋卫东, 等. 分层胶结充填体力学特性及裂纹演化规律[J]. 工程科学学报, 2020, 42(10):1286-1298.

[48] 李猛, 张卫清, 李艾玲, 等. 矸石充填材料承载压缩变形时效性试验研究[J]. 采矿与安全工程学报, 2020, 37(1):147-154.

[49] 侯永强, 尹升华, 杨世兴, 等. 冲击荷载作用下全尾砂胶结充填体的能耗特征与损伤特性[J]. 中国有色金属学报, 2021, 31(6):1661-1671.

[50] Xiu Z, Wang S, Ji Y, et al. Loading rate effect on the uniaxial compressive strength (UCS) behavior of cemented paste backfill (CPB)[J]. Construction and Building Materials, 2020, 271:121526.

[51] Guo Y, Ran H, Feng G, et al. Effects of curing under step-by-step load on mechanical and deformation properties of cemented gangue backfill column[J]. Journal of Central South University, 2020, 27(11):3417-3435.

[52] 谭玉叶, 汪杰, 宋卫东,等. 循环冲击下胶结充填体动载力学特性试验研究[J]. 采矿与安全工程学报, 2019, 36(1):184-190+197

[53] 杨世兴, 付玉华, 彭锦浩, 等. 三轴压缩条件下全尾砂充填体破坏形式及能量耗散特征分析[J]. 化工矿物与加工, 2018, 47(6):30-33.

[54] Liu P, Liu J, Bi J. Experimental and theoretical study of dynamic mechanical behavior of concrete subjected to triaxial confining and impact loads[J]. Journal of Building Engineering, 2023, 64:105715.

[55] Luan J, Chen X, Ning Y, et al. Mechanical characteristics and energy dissipation characteristics of dredged sand concrete during triaxial loading[J]. Journal of Building Engineering, 2022, 55:104700.

[56] Sun W, Hou K, Yang Z., et al. X-ray CT three-dimensional reconstruction and discrete element analysis of the cement paste backfill pore structure under uniaxial compression[J]. Construction and Building Materials, 2017, 138(Complete):69-78.

[57] 易雪枫, 刘春康, 王宇. 金属矿尾废胶结充填体破裂演化过程原位CT扫描试验研究[J]. 岩土力学, 2020, 41(10):3365-3373.

[58] Liu L, Fang Z, Qi C, et al. Experimental investigation on the relationship between pore characteristics and unconfined compressive strength of cemented paste backfill[J]. Construction and Building Materials, 2018, 179(aug.10):254-264.

[59] 张友志, 甘德清, 薛振林, 等. 基于NMR技术的孔隙结构与充填体强度关联机制[J]. 工程科学与技术, 2022, 54(4):121-128.

[60] Kaiser J. A Study of Acoustic Phenomena in Tensile Tests, Ph D Dissertation. Munich FRG: Technische Hochschule Munchen,1950.

[61] 程爱平, 戴顺意, 张玉山, 等. 胶结充填体损伤演化尺寸效应研究[J]. 岩石力学与工程学报, 2019, 38(S1):3053-3060.

[62] 程爱平, 张玉山, 戴顺意,等. 单轴压缩胶结充填体声发射参数时空演化规律及破裂预测[J]. 岩土力学, 2019, 40(8):2965-2974.

[63] 曹世荣, 韩建文, 王晓军, 等. 充填体受压全程应力应变声发射特性研究[J]. 化工矿物与加工, 2016, 45(8):61-63.

[64] 卢宏建, 梁鹏, 甘德清, 等. 采场充填体单轴压缩变形及声发射特征[J]. 矿业研究与开发, 2017, 37(1):74-77.

[65] 孙光华, 魏莎莎, 刘祥鑫. 基于声发射特征的充填体损伤演化研究[J]. 实验力学, 2017, 32(01):137-144.

[66] 龚囱, 李长洪, 赵奎. 加卸荷条件下胶结充填体声发射b值特征研究[J]. 采矿与安全工程学报, 2014, (5):788-794.

[67] 李杨, 孙光华, 叶洪涛,等. 单轴加载下充填体声发射特征研究[J]. 矿业研究与开发, 2018, 38(3):109-112.

[68] Cao S, Yilmaz E, Song W, et al. Loading rate effect on uniaxial compressive strength behavior and acoustic emission properties of cemented tailings backfill[J]. Construction and Building Materials, 2019, 213:313-324.

[69] Zhao K, Yu X, Zhu S, et al. Acoustic emission investigation of cemented paste backfill prepared with tantalum–niobium tailings[J]. Construction and Building Materials, 2020, 237:117523.

[70] Zhou N, Zhang J, Ouyang S, et al. Feasibility study and performance optimization of sand-based cemented paste backfill materials[J]. Journal of Cleaner Production, 2020, 259:120798

[71] Liu L, Xin J, Huan C, et al. Pore and strength characteristics of cemented paste backfill using sulphide tailings: Effect of sulphur content[J]. Construction and Building Materials, 2020, 237:117452.

[72] Kupwade-patil K, Alaibani A, Abdulsalam M, et al. Microstructure of cement paste with natural pozzolanic volcanic ash and Portland cement at different stages of curing[J]. Construction and Building Materials, 2016, 113:423-441.

[73] 邹俊鹏, 陈卫忠, 杨典森, 等. 基于SEM的珲春低阶煤微观结构特征研究[J]. 岩石力学与工程学报, 2016, 35(9):1805-114

[74] Rakhimova N, Rakhimov R, Naumkina N, et al. Influence of limestone content, fineness, and composition on the properties and microstructure of alkali-activated slag cement[J]. Cement and Concrete Composites, 2016, 72:268-274.

[75] 王清, 陈慧娥, 蔡可易. 水泥土微观结构特征的定量评价[J]. 岩土力学, 2003, (S1):12-16.

[76] Sankar K, Stynoski P, Alchaar G, et al. Sodium silicate activated slag-fly ash binders: Part I-processing, microstructure and mechanical properties[J]. Journal of the American Ceramic Society, 2018.

[77] Qi T, Guo Y, Zhang Y, et al. Experimental study on the changes of coal paste backfilling material performance during hydration process[J]. Journal of Mining and Safety Engineering, 2015, 32(1):42-48.

[78] 辛杰. 尾砂胶结充填材料的微细观结构特征与力学特性研究[D]. 西安科技大学, 2020.

[79] Gastaldi D, Paul G, Marchesel, et al. Hydration products in sulfoaluminate cements: Evaluation of amorphous phases by XRD/solid-state NMR[J]. Cement and Concrete Research, 2016, 90:162-173.

[80] Wang C, Lin X, He M, et al. Environmental performance, mechanical and microstructure analysis of concrete containing oil-based drilling cuttings pyrolysis residues of shale gas[J]. Journal of Hazardous Materials, 2017, 338:410-427.

[81] 阮竹恩, 吴爱祥, 焦华喆, 等. 我国全尾砂料浆浓密研究进展与发展趋势[J]. 中国有色金属学报, 2022, 32(1):286-301.

[82] 王洪江, 王小林, 张玺, 等. 超细全尾砂深锥动态絮凝浓密试验[J]. 工程科学学报, 2022, 44(2):163-169.

[83] 唐大雄. 工程岩土学[M]. 北京:地质出版社, 1987.

[84] 周家惠, 楚泽涵, 乔文孝. 一种估算岩石弹性模量的方法[C]. 第三届全国岩石动力学学术会议论文选集, 1992.

[85] 徐颖, 李成杰, 郑强强, 等. 循环加卸载下泥岩能量演化与损伤特性分析[J]. 岩石力学与工程学报, 2019, 38(10):2084-2091.

[86] 赵光明, 刘之喜, 孟祥瑞, 等. 高径比对砂岩能量积聚与耗散试验及分析方法[J]. 煤炭学报, 2022, 47(3):1110-1121.

[87] 张广辉, 邓志刚, 蒋军军, 等. 不同加载方式下强冲击倾向性煤声发射特征研究[J]. 采矿与安全工程学报, 2020, 37(5):977-982+990.

[88] 程昀, 宋战平, 杨腾添, 等. 孔隙水压对分级循环加载灰岩声发射Felicity效应的影响[J]. 应用基础与工程科学学报, 2022, 30(2):361-373.

[89] Lemaitre J. How to use damage mechanics[J]. Nuclear Eang & Design, 1984, 80(1):233-245.

[90] 彭向和, 杨春和. 复杂加载史下混凝土的损伤及其描述[J]. 岩石力学与工程学报, 2000, 19(2):157-164.

[91] Mazars J. A description of macro scale damage of concreted structures[J]. Engineering Facture Mechanics, 1986, 25(5/6):729-737.

[92] 谢和平. 岩石混凝土损伤力学[M]. 北京:中国矿业大学出版社, 1990.

[93] 余寿文, 冯西桥. 损伤力学[M]. 北京:清华大学出版社, 1997.

中图分类号:

 TD823.7    

开放日期:

 2024-06-26    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式