- 无标题文档
查看论文信息

论文中文题名:

 基于Sentinel-2遥感数据评价中国内蒙古呼伦贝尔地区泥炭地覆盖情况    

姓名:

 Asma Tanveer    

学号:

 19510010002    

保密级别:

 公开    

论文语种:

 eng    

学科代码:

 0705    

学科名称:

 理学 - 地理学    

学生类型:

 硕士    

学位级别:

 理学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 地理学    

研究方向:

 遥感与地理信息技术应用    

第一导师姓名:

 李崇贵    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-07-01    

论文答辩日期:

 2022-07-09    

论文外文题名:

 Evaluation of peatland cover in Hulunbuir region, Inner Mongolia, China based on Sentinel-2 remote sensing data    

论文中文关键词:

 泥炭地分布 ; 遥感 ; Sentinel-2 ; Google Earth Engine ; 随机森林分类    

论文外文关键词:

 Peatland distribution ; Remote Sensing ; Sentinel-2 ; Google Earth Engine ; Radom Forest Classification    

论文中文摘要:

泥炭沼泽是陆地生态系统的重要碳库,与此同时也是重要的湿地类型之一,其独特的生态功能对维持生态平衡和可持续发展具有重要的作用。目前,随着人类活动范围的不断增加,泥炭沼泽湿地退化现象日趋严重。为更好的保护现有的泥炭沼泽资源、减少泥炭沼泽的破坏和制定科学的管理措施,确定泥炭沼泽的空间分布是其前提和基础。

内蒙古地区由于其适宜的气候和水文条件,泥炭沼泽广泛发育。因此,本研究以内蒙古呼伦贝尔地区为研究区,基于Google Earth Engine(GEE)平台,结合Landsat 8、Sentinel-2和地面调查数据,应用传统分类方法对研究区泥炭沼泽信息进行提取,以期快速准确提取泥炭沼泽空间位置分布。本文的主要研究结论如下:

(1)研究使用2020年4月15日至2020年10月15日的Landsat 8数据,采用单窗算法得到研究区地表温度数据,结合植被指数数据,分别使用随机森林(Random Forest,RF)和决策树分类(Classification and Regression Trees,CART)两种分类方法, 制作了呼伦贝尔地区的两张泥炭地地图。其中,基于RF的分类估计呼伦贝尔的泥炭地面积为44737km2,而CART的结果是49565km2的泥炭地,并且两种分类结果都显示出高度准确的结果,总体准确率超过80%。

(2)研究通过对比GEE平台中RF和CART两种分类方法进行泥炭沼泽信息提取发现CART的精确度略低于RF,并且使用的Sentinel-2数据很容易在GEE平台中获得,这也为后续大区域尺度泥炭地信息提取研究提供重要的指导作用。

论文外文摘要:

Peat swamp is an important carbon reservoir of terrestrial ecosystem and one of the important wetland types, and its unique ecological functions play an important role in maintaining ecological balance and sustainable development. Currently, with the increasing scope of human activities, the degradation of peat bog wetlands is becoming more and more serious. To better protect the existing peat bog resources, reduce the destruction of peat bogs and develop scientific management measures, it is a prerequisite and basis to determine the spatial distribution of peat bogs.

Peat bogs are widely developed in Inner Mongolia due to its suitable climatic and hydrological conditions. Therefore, this study takes the Hulunbuir region of Inner Mongolia as the study area, and applies traditional classification methods to extract peat bog information in the study area based on Google Earth Engine (GEE) platform, combined with Landsat 8, Sentinel-2 and ground survey data, in order to quickly and accurately extract the spatial location distribution of peat bogs. The main findings of this paper are as follows.

(1) The study used Landsat 8 data from April 15, 2020 to October 15, 2020, a single-window algorithm to obtain surface temperature data of the study area, and combined with vegetation index data, two classification methods, random forest (Random Forest, RF) and decision tree classification (Classification and Regression Trees, CART), were used to produce two peatland maps of the Hulunbuir region. Among them, the RF-based classification estimated the peatland area of Hulunbuir to be 44737 km2, while the CART result was 49565 km2 of peatland, and both classification results showed highly accurate results with an overall accuracy rate of over 80%.

(2) By comparing the two classification methods of RF and CART for peat bog information extraction in the GEE platform, the study found that the accuracy of CART was slightly lower than that of RF, and the Sentinel-2 data used were easily available in the GEE platform, which also provided important guidance for subsequent studies on peatland information extraction at large regional scales.

参考文献:

[1] Asian development bank.

[2] Managing peatland in Mongolia and enhancing the Resilience of pastoral Ecosystem.

[3] UCSF.

[4] 2015. Google Al Blog.

[5] Anderson, R. 2001. Deforesting and Restoring Peat Bogs. A Review. Forestry Commission, Edinburgh, UK.

[6] Andriesse, J. 1988. Nature and management of tropical peat soils. Food & Agriculture Org.

[7] Baird, A. J., P. J. Morris, and L. R. Belyea. 2012. The DigiBog peatland development model 1: rationale, conceptual model, and hydrological basis. Ecohydrology 5:242-255.

[8] Bauer, I. E., J. S. Bhatti, C. Swanston, R. K. Wieder, and C. M. Preston. 2009. Organic Matter Accumulation and Community Change at the Peatland–Upland Interface: Inferences from 14 C and 210 Pb Dated Profiles. Ecosystems 12:636-653.

[9] Biester, H., A. Martinez-Cortizas, S. Birkenstock, and R. Kilian. 2003. Effect of peat decomposition and mass loss on historic mercury records in peat bogs from Patagonia. Environmental science & technology 37:32-39.

[10] Cann. 2019. The Importance of Wetlands and Peatlands.

[11] Center, E. R. O. a. S. E. 2018. USGS EROS Archive - Sentinel-2

[12] Crowson, M., E. Warren‐Thomas, J. K. Hill, B. Hariyadi, F. Agus, A. Saad, K. C. Hamer, J. A. Hodgson, W. D. Kartika, and J. Lucey. 2019. A comparison of satellite remote sensing data fusion methods to map peat swamp forest loss in Sumatra, Indonesia. Remote Sensing in Ecology and Conservation 5:247-258.

[13] Daly, H. E. 2017. Toward some operational principles of sustainable development 1. Pages 97-102 The Economics of Sustainability. Routledge.

[14] DeLancey, E. R., J. Kariyeva, J. T. Bried, and J. N. Hird. 2019. Large-scale probabilistic identification of boreal peatlands using Google Earth Engine, open-access satellite data, and machine learning. Plos one 14:e0218165.

[15] Evans, M., and J. Warburton. 2011. Geomorphology of upland peat: erosion, form and landscape change. John Wiley & Sons.

[16] FitzPatrick, E. A. 1971. Pedology: a systematic approach to soil science. Oliver and Boyd.

[17] Fournier, R. A., M. Grenier, A. Lavoie, and R. Hélie. 2007. Towards a strategy to implement the Canadian Wetland Inventory using satellite remote sensing. Canadian Journal of Remote Sensing 33:S1-S16.

[18] Frolking, S., N. T. Roulet, T. R. Moore, P. J. Richard, M. Lavoie, and S. D. Muller. 2001. Modeling northern peatland decomposition and peat accumulation. Ecosystems 4:479-498.

[19] Gorham, E. 1995. The biogeochemistry of northern peatlands and its possible responses to global warming. Biotic feedbacks in the global climatic system: will the warming feed the warming:169-187.

[20] Hartshorn, A. S., R. J. Southard, and C. S. Bledsoe. 2003. Structure and function of peatland‐forest ecotones in southeastern Alaska. Soil Science Society of America Journal 67:1572-1581.

[21] Hobbs, N. 1986. Mire morphology and the properties and behaviour of some British and foreign peats. Quarterly Journal of Engineering Geology and Hydrogeology 19:7-80.

[22] Hongguang, Y. 2019. Peat swamp carbon pool survey.

[23] J.M.Read. 2009. International Encyclopedia of Human Geography Sciencedirect.

[24] Jaenicke, J., S. Englhart, and F. Siegert. 2011. Monitoring the effect of restoration measures in Indonesian peatlands by radar satellite imagery. Journal of Environmental Management 92:630-638.

[25] Jin, Z., Q. Zhuang, J.-S. He, X. Zhu, and W. Song. 2015. Net exchanges of methane and carbon dioxide on the Qinghai-Tibetan Plateau from 1979 to 2100. Environmental Research Letters 10:085007.

[26] Johansson, T., N. Malmer, P. M. Crill, T. Friborg, J. H. Åkerman, M. Mastepanov, and T. R. Christensen. 2006. Decadal vegetation changes in a northern peatland, greenhouse gas fluxes and net radiative forcing. Global change biology 12:2352-2369.

[27] Joosten, H. 2004. The IMCG global peatland database. Hans Joosten (Greifswald University, Germany).

[28] Joosten, H. 2015. Peatlands, climate change mitigation and biodiversity conservation: An issue brief on the importance of peatlands for carbon and biodiversity conservation and the role of drained peatlands as greenhouse gas emission hotspots. Nordic Council of Ministers.

[29] Joosten, H. 2016. Peatlands across the globe. Pages 19-43 Peatland restoration and ecosystem services: Science, policy and practice. Cambridge University Press Cambridge, UK.

[30] Joosten, H., and D. Clarke. 2002. Wise use of mires and peatlands. International Mire Conservation Group and International Peat Society 304.

[31] Joosten, H., A. Sirin, J. Couwenberg, J. Laine, and P. Smith. 2016. The role of peatlands in climate regulation. Pages 63-76 Peatland restoration and ecosystem services: science, policy and practice. Cambridge University Press Cambridge, UK.

[32] Khan, A., M. C. Hansen, P. V. Potapov, B. Adusei, A. Pickens, A. Krylov, and S. V. Stehman. 2018. Evaluating Landsat and RapidEye data for winter wheat mapping and area estimation in Punjab, Pakistan. Remote Sensing 10:489.

[33] Khan, A., A. Said, and I. Ullah. 2020. Landsat based distribution mapping of high-altitude peatlands in Hindu Kush Himalayas—a case study of Broghil Valley, Pakistan. Journal of Mountain Science 17:42-49.

[34] Khatami, R., G. Mountrakis, and S. V. Stehman. 2016. A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research. Remote sensing of Environment 177:89-100.

[35] Kiew, F., R. Hirata, T. Hirano, G. X. Wong, E. B. Aeries, K. K. Musin, J. W. Waili, K. San Lo, M. Shimizu, and L. Melling. 2018. CO2 balance of a secondary tropical peat swamp forest in Sarawak, Malaysia. Agricultural and Forest Meteorology 248:494-501.

[36] König, M., M. Hieronymi, and N. Oppelt. 2019. Application of Sentinel-2 MSI in Arctic research: evaluating the performance of atmospheric correction approaches over Arctic sea ice. Frontiers in Earth Science 7:22.

[37] Kurbatov, I. 1968. The question of the genesis of peat and its humic acids. Pages 133-137 in Transactions of the 2nd international peat congress, Leningrad.

[38] Lees, K., T. Quaife, R. Artz, M. Khomik, and J. Clark. 2018. Potential for using remote sensing to estimate carbon fluxes across northern peatlands–A review. Science of the Total Environment 615:857-874.

[39] Leng, L. Y., O. H. Ahmed, and M. B. Jalloh. 2019. Brief review on climate change and tropical peatlands. Geoscience Frontiers 10:373-380.

[40] Li, Q., C. Qiu, L. Ma, M. Schmitt, and X. X. Zhu. 2020. Mapping the land cover of Africa at 10 m resolution from multi-source remote sensing data with Google Earth Engine. Remote Sensing 12:602.

[41] Liu, J., Z. Wang, H. Zhao, M. Peros, Q. Yang, S. Liu, H. Li, S. Wang, and Z. Bu. 2018. Mercury and arsenic in the surface peat soils of the Changbai Mountains, northeastern China: distribution, environmental controls, sources, and ecological risk assessment. Environmental Science and Pollution Research 25:34595-34609.

[42] Locky, D. A., S. E. Bayley, and D. H. Vitt. 2005. The vegetational ecology of black spruce swamps, fens, and bogs in southern boreal Manitoba, Canada. Wetlands 25:564-582.

[43] Maltby, E. 2013. Waterlogged wealth: why waste the world's wet places? Routledge.

[44] Maltby, E., and T. Barker. 2009. The Wetlands Handbook, 2 Volume Set. John Wiley & Sons.

[45] Miao, Y., C. Song, L. Sun, X. Wang, H. Meng, and R. Mao. 2012. Growing season methane emission from a boreal peatland in the continuous permafrost zone of Northeast China: effects of active layer depth and vegetation. Biogeosciences 9:4455-4464.

[46] Minasny, B., Ö. Berglund, J. Connolly, C. Hedley, F. de Vries, A. Gimona, B. Kempen, D. Kidd, H. Lilja, and B. Malone. 2019. Digital mapping of peatlands–A critical review. Earth-Science Reviews 196:102870.

[47] Oyunkhorol.D2017. 2017. Peatland Mongolia policy brief.

[48] Page, S. E., and A. Baird. 2016. Peatlands and global change: response and resilience. Annual Review of Environment and Resources 41:35-57.

[49] Page, S. E., C. J. Banks, and J. O. Rieley. 2007. Tropical peatlands: distribution, extent and carbon storage-uncertainties and knowledge gaps. Peatlands International 2:26-27.

[50] Parish, F., A. Sirin, D. Charman, H. Joosten, T. Y. Minaeva, and M. Silvius. 2008. Assessment on peatlands, biodiversity and climate change.

[51] Phan, T. N., V. Kuch, and L. W. Lehnert. 2020. Land cover classification using Google Earth Engine and random forest classifier—The role of image composition. Remote Sensing 12:2411.

[52] Rapalee, G., S. E. Trumbore, E. A. Davidson, J. W. Harden, and H. Veldhuis. 1998. Soil carbon stocks and their rates of accumulation and loss in a boreal forest landscape. Global Biogeochemical Cycles 12:687-701.

[53] Richards, D. R., and R. N. Belcher. 2019. Global changes in urban vegetation cover. Remote Sensing 12:23.

[54] Robroek, B. J., V. E. Jassey, R. J. Payne, M. Martí, L. Bragazza, A. Bleeker, A. Buttler, S. J. Caporn, N. B. Dise, and J. Kattge. 2017. Taxonomic and functional turnover are decoupled in European peat bogs. Nature Communications 8:1-9.

[55] Roulet, N. T., P. M. Lafleur, P. J. Richard, T. R. Moore, E. R. Humphreys, and J. Bubier. 2007. Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Global change biology 13:397-411.

[56] Schilstra, A. J. 2001. How sustainable is the use of peat for commercial energy production? Ecological Economics 39:285-293.

[57] Schnitzer, M., and S. U. Khan. 1975. Soil organic matter. Elsevier.

[58] Schumann, M., and H. Joosten. 2008. Global peatland restoration manual. Institute of Botany and Landscape Ecology, Greifswald University, Germany 39:103.

[59] Schumann, M., N. Thevs, and H. Joosten. 2008. Extent and degradation of peatlands on the Ruoergai Plateau (Tibet, China) assessed by remote sensing. Pages 77-80 in Proc. Intern. Peat Congress Tullamore. Prisfine Mire Landscape.

[60] Shirokova, L. S., A. V. Chupakov, S. A. Zabelina, N. V. Neverova, D. Payandi-Rolland, C. Causserand, J. Karlsson, and O. S. Pokrovsky. 2019. Humic surface waters of frozen peat bogs (permafrost zone) are highly resistant to bio-and photodegradation. Biogeosciences 16:2511-2526.

[61] Shuttleworth, E., M. Evans, S. M. Hutchinson, and J. Rothwell. 2014. Assessment of lead contamination in peatlands using field portable XRF. Water, Air, & Soil Pollution 225:1-13.

[62] Staib, R. 2005. Environmental auditing. Environmental management and decision making for business (serial publication):263-270.

[63] Straková, P., T. Penttilä, J. Laine, and R. Laiho. 2012. Disentangling direct and indirect effects of water table drawdown on above‐and belowground plant litter decomposition: consequences for accumulation of organic matter in boreal peatlands. Global Change Biology 18:322-335.

[64] Sushko, G. G. 2018. Effect of vegetation cover on the abundance and diversity of ladybirds (Coccinellidae) assemblages in a peat bog. Biologia 73:371-377.

[65] Topcuoğlu, B., and M. Turan. 2018. Peat. BoD–Books on Demand.

[66] Usgs.eros. Usgs-eros-archive-sentinel-2.

[67] Van der Werf, G. R., J. T. Randerson, L. Giglio, G. Collatz, M. Mu, P. S. Kasibhatla, D. C. Morton, R. DeFries, Y. v. Jin, and T. T. van Leeuwen. 2010. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric chemistry and physics 10:11707-11735.

[68] Wang, M., H. Chen, N. Wu, C. Peng, Q. Zhu, D. Zhu, G. Yang, J. Wu, Y. He, and Y. Gao. 2014. Carbon dynamics of peatlands in China during the Holocene. Quaternary Science Reviews 99:34-41.

[69] Wang, X., X. Xiao, Z. Zou, L. Hou, Y. Qin, J. Dong, R. B. Doughty, B. Chen, X. Zhang, and Y. Chen. 2020. Mapping coastal wetlands of China using time series Landsat images in 2018 and Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing 163:312-326.

[70] Wilding, L. P., N. E. Smeck, and G. Hall. 1983. Pedogenesis and soil taxonomy: the soil orders. Elsevier.

[71] Winde, F. 2011. Peatlands as Filters for Polluted Mine Water?—A Case Study from an Uranium-Contaminated Karst System in South Africa Part II: Examples from Literature and a Conceptual Filter Model. Water 3:323-355.

[72] Wu, Y., K. Zhu, J. Zhang, M. Müller, S. Jiang, A. Mujahid, M. F. Muhamad, and E. S. A. Sia. 2019. Distribution and degradation of terrestrial organic matter in the sediments of peat-draining rivers, Sarawak, Malaysian Borneo. Biogeosciences 16:4517-4533.

[73] Wulder, M. A., N. C. Coops, D. P. Roy, J. C. White, and T. Hermosilla. 2018. Land cover 2.0. International Journal of Remote Sensing 39:4254-4284.

[74] Xing, W., K. Bao, W. Guo, X. Lu, and G. Wang. 2015. Peatland initiation and carbon dynamics in northeast China: links to Holocene climate variability. Boreas 44:575-587.

[75] Xintu, L. 2009. Conditions of peat formation. Encyclopedia of Life Support Systems:298-308.

[76] Xu, J., P. J. Morris, J. Liu, and J. Holden. 2018. PEATMAP: Refining estimates of global peatland distribution based on a meta-analysis. Catena 160:134-140.

[77] Xuehui, M., and H. Jinming. 2009. Peat and peatlands. Coal, Oil Shale, Natural Bitumen, Heavy Oil and Peat 2.

[78] Zhang, M., M. Zhang, H. Yang, Y. Jin, X. Zhang, and H. Liu. 2021. Mapping regional soil organic matter based on Sentinel-2A and MODIS imagery using machine learning algorithms and google earth engine. Remote Sensing 13:2934.

[79] Zhang, X., H. Liu, C. Baker, and S. Graham. 2012. Restoration approaches used for degraded peatlands in Ruoergai (Zoige), Tibetan Plateau, China, for sustainable land management. Ecological Engineering 38:86-92.

[80] Zhang, Y., P. Yang, C. Tong, X. Liu, Z. Zhang, G. Wang, and P. A. Meyers. 2018. Palynological record of Holocene vegetation and climate changes in a high-resolution peat profile from the Xinjiang Altai Mountains, northwestern China. Quaternary Science Reviews 201:111-123.

[81] Zhao, Y., Z. Yu, Y. Tang, H. Li, B. Yang, F. Li, W. Zhao, J. Sun, J. Chen, and Q. Li. 2014. Peatland initiation and carbon accumulation in China over the last 50,000 years. Earth-Science Reviews 128:139-146.

[82] Zhu, X., M. Jiang, Y. Yuan, and J. T. Verhoeven. 2019a. Case Studies of Ecological Restoration and Conservation Strategies for Marshes and Peatlands. Pages 219-254 Wetlands: Ecosystem Services, Restoration and Wise Use. Springer.

[83] Zhu, Y., D. Shan, B. Wang, Z. Shi, X. Yang, and Y. Liu. 2019b. Floristic features and vegetation classification of the Hulun Buir steppe in North China: geography and climate-driven steppe diversification. Global Ecology and Conservation 20:e00741.

[84] Zigang, L., and L. Xintu. THE GLOBAL DISTRIBUTION OF PEAT.

中图分类号:

 P237/X171    

开放日期:

 2022-07-01    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式