题名: | 浅埋近距离煤层工作面过斜交煤柱矿压机理与控制研究 |
作者: | |
学号: | 19103077008 |
保密级别: | 保密(4年后开放) |
语种: | chi |
学科代码: | 081901 |
学科: | 工学 - 矿业工程 - 采矿工程 |
学生类型: | 博士 |
学位: | 工学博士 |
学位年度: | 2024 |
学校: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 矿山压力与岩层控制 |
导师姓名: | |
导师单位: | |
第二导师姓名: | |
提交日期: | 2024-12-31 |
答辩日期: | 2024-12-08 |
外文题名: | Research on Mechanism and Control of Mine Pressure in Shallow Buried and Close-Proximity Coal Seam Working Faces Passing Oblique Coal Pillars |
关键词: | 浅埋近距离煤层 ; 上层斜交煤柱:矿压显现规律 ; 区段煤柱变形 ; 控制技术 |
外文关键词: | Shallow buried close range coal seam ; Oblique coal pillar ; Law of mining pressure manifestation ; Section coal pillar deformation ; Control technology |
摘要: |
近距离煤层采空区遗留斜交煤柱条件下,工作面表现出显著的强矿压特征。传统单一煤层过煤柱开采时的矿压控制方法尚无法有效解决在上覆遗留煤柱下开采时产生的现场矿压问题。本文针对神东矿区近距离煤层过上层遗留煤柱开采时发生的顶板破碎与切落、煤壁片帮、支架压死等生产技术难题,以神东大柳塔煤矿活鸡兔井典型近距离煤层开采工作面过斜交煤柱为背景,采用理论分析、相似模拟、数值模拟、现场实测及工业应用等综合研究方法,深入探讨不同斜交角度下的煤柱对工作面矿压显现、工作面过上覆斜交煤柱时顶板断裂模式及其影响因素、覆岩垮落特征及其载荷传递模式、遗留煤柱下底板应力分布等问题。建立了过斜交煤柱顶板结构模型、煤柱变形分区分布式光纤表征方法,形成工作面过斜交煤柱影响区的光纤监测及强矿压控制技术。研究成果为近距离煤层开采工作面过斜交煤柱矿压显现规律及现场调控提供技术支撑和理论依据,获得的主要成果如下: (1)对神东矿区2023年生产中过煤柱工作面的实际情况进行统计分析,预计2024~2025年,神东矿区共计11个煤矿48个工作面将涉及到过不同煤柱的开采情况,总结不同角度斜交煤柱影响下的工作面矿压显现特征及强矿压特征。顶板结构的垮落引起煤柱上覆岩层铰接结构迅速失稳,二者产生的载荷共同作用于工作面支架及煤壁,导致了强矿压的显现。其中下煤层工作面顶板出现贯通裂隙以及下行张拉裂缝带是顶板破碎与切落的直接原因,工作面过煤柱时对上下端头的支架压力影响较大。 (2)采用三维数值计算方法,模拟不同层间岩性、层间距、工作面位置与遗留煤柱夹角等开采条件下的顶板破断特征、与过斜交煤柱开采的倾角效应。揭示过煤柱阶段的覆岩移动特征及强矿压显现机理,其中遗留煤柱及其覆岩结构的自稳能力决定了工作面过遗留煤柱的危险程度,定义倾覆位移差用以描述遗留煤柱及其覆岩结构的运动形式和倾覆程度。研究随层间岩性的强度及间距变化,遗留煤柱的倾覆速率变化关系。得出斜交角度越小,其稳定性越弱,回转/切落动载强度愈强,危险性越大,斜交角度为0时,危险程度最大。 (3)开展几何相似比为1:100的5m平面物理相似模型实验,通过分布式光纤(BOTDA)、光纤布拉格光栅(FBG)、压力传感器、数字散斑、百分表记录地表下沉等,研究覆岩垮落特征及载荷传递,对过25 m和35 m遗留煤柱的覆岩结构形态、应力应变和位移进行研究。正常来压情况下,平均来压强度为16215kN,动载系数平均为1.18;在“进-过-出”煤柱时的平均来压强度及动载系数分别为16767 kN、1.23,15824 kN、1.12,18455kN、1.44。出煤柱时来压强度普遍大于进、过煤柱时的来压强度。遗留煤柱宽度对覆岩造成的破坏程度影响相对较低,工作面过35 m和25 m遗留煤柱时,来压期间的工作面支架平均增载系数分别为1.51、1.63。 (4)建立底板应力分布的理论解析,研究斜交煤柱影响下工作面载荷形式及斜交角度对顶板载荷形式的影响规律。斜交煤柱影响下,下工作面顶板应力在走向方向,以倾向为轴呈180°对称分布,载荷形式为局部单峰形态,峰值大小基本一致,影响范围随斜交角度的增大而减小。随着斜交角度增大,工作面倾向方向受上覆遗留煤柱影响程度逐渐减小;而走向方向的顶板受影响程度逐渐增大,直至与工作面控顶距相同。 (5)借鉴典型浅埋煤层顶板结构理论,层间单一关键层周期破断形成台阶岩梁结构,研究过斜交煤柱强矿压机理及顶板结构模型。根据相似模拟实验中岩层的垮落结构,建立过遗留煤柱时单关键层近距离煤层顶板形成的台阶岩梁结构模型,给出下煤层工作面不同煤柱载荷条件下的支架载荷计算方法,以及工作面过斜交煤柱时的支架载荷计算公式。与现场实测的22208工作面中部进斜交煤柱来压时的支架载荷进行对比分析,验证其计算方法。 (6)创新性的将光纤传感技术用于煤柱监测,将分布式光纤、光栅植入煤岩体内部,获取工作面有无遗留煤柱条件下的煤柱内部变形实测数据,对比分析有无遗留煤柱下的煤柱内部变形和分区特征。研究重复采动影响下过煤柱阶段的巷道区段煤柱内部变形特征、有无遗留煤柱下煤柱内部变形特征。工作面过煤柱时,上覆遗留煤柱下方区段煤柱弹性区宽度占比20%,采空区下方区段煤柱弹性区宽度占比40%。通过光纤现场实测,获得了区段煤柱内部水平应变和变形规律,煤柱内部水平应变呈现明显的分区变形特征。在工作面过测点时,采动侧水平应变呈指数增长,靠近采动侧煤柱变形量最大,约为未采动侧的5倍。 (7)通过分布式光纤传感技术,揭示重复采动影响下的过煤柱阶段区段煤柱内部塑性区分布规律。初次采动时,区段煤柱的现场监测距离为180m,二次采动时,现场监测距离为500m,对工作面“进-过-出”遗留煤柱的过程进行了完整监测。初次采动后煤柱内部塑性区占比36%,重复采动影响下的进煤柱阶段,煤柱塑性区占比达到67%,局部位置煤柱进入破碎阶段;过煤柱阶段,煤柱受应力叠加影响,水平变形显著增大,其中塑性区范围相比初次采动增大57%,破碎区宽度增大3.6倍,峰值水平应变达到2326 με,煤柱塑性区和破碎区占比达到83%。 (8)针对活鸡兔井22206和22208工作面回采期间工作面过煤柱时,发现上部测区矿压显现正常,而下部测区靠近机尾处来压强度最高,其对工作面正常推进会产生较大影响。提出采用巷道顶帮补强支护和加快“进-过-出”煤柱时的工作面推进速度两种方法,此外对间隔岩层提出顶板定向长钻孔分段压裂弱化技术,即工作面布置1个钻场,每个钻场布置3个钻孔,通过卸压弱化和应力转移及均布化来降低工作面的来压强度。 |
外文摘要: |
Under the conditions of close-distance coal seam mining with oblique residual coal pillars in the goaf, the working face exhibits significant strong ground pressure characteristics. The laws of ground pressure manifestation during traditional single-seam mining and the conventional methods for controlling ground pressure when passing through coal pillars cannot effectively solve the on-site ground pressure problems. This paper addresses the technical challenges encountered during the mining of close-distance coal seams overlying oblique residual coal pillars in the Shendong mining area, including roof fragmentation and spalling, rib failure, and support crushing.Using the typical close-distance coal seam mining face at Huojitu Shaft of Daliuta Coal Mine in the Shendong area as a case study, an integrated research approach was adopted, including theoretical analysis, physical simulation, numerical modeling, in-situ measurement, and industrial application. This approach enabled a thorough investigation into the influence of coal pillars at various inclination angles on ground pressure manifestations, the fracture patterns and influencing factors of the roof when passing over obliquely placed upper coal pillars, the collapse characteristics and load transfer mechanisms of overburden, and the stress distribution beneath the residual coal pillars. A structural model for the roof passing over oblique coal pillars and a distributed fiber optic characterization method for coal pillar deformation zones were established. Additionally, a fiber optic monitoring system for deformation within the impact zone of the working face passing through oblique coal pillars, along with strong ground pressure control techniques, was developed. The research outcomes provide technical support and theoretical foundations for understanding and managing the ground pressure manifestations and their regulation in the working faces of close-distance coal seam mining that pass through oblique residual coal pillars. The main achievements obtained from this research are as follows: (1) A statistical analysis was conducted on the actual situation of coal pillar passing in the Shendong mining area during production in 2023. It is estimated that from 2024 to 2025, a total of 48 working faces in 11 coal mines in the Shendong mining area will be involved in the mining of coal pillars of different types. The characteristics of mining pressure manifestation under the influence of coal pillars at different oblique angles were summarized, as well as the characteristics of strong mining pressure. The collapse of the roof structure causes the overlying rock layer of the coal pillar to lose stability rapidly, and the loads produced by both contribute to the strong mining pressure manifestation at the working face supports and coal walls. The appearance of through-going fractures and downward tensile crack zones in the roof of the lower coal seam working face is the direct cause of roof fragmentation and falling, and the passage of the working face through the coal pillar significantly affects the pressure on the upper and lower end supports. (2) Using three-dimensional numerical calculation methods, the simulation of roof fracturing characteristics under various mining conditions, such as different interlayer rock properties, layer spacing, and the angle between the working face and the legacy coal pillars, as well as the inclination effect of mining through oblique coal pillars, was conducted. The study reveals the movement characteristics of the overlying rock during the coal pillar passing stage and the mechanism of strong mining pressure manifestation. The self-stability of the legacy coal pillars and their overlying rock structures determines the degree of danger when the working face passes through the legacy coal pillars. The tipping displacement difference δ is defined to describe the movement form and tipping degree of the legacy coal pillars and their overlying rock structures. The research investigates the relationship between the tipping rate of the legacy coal pillars and the changes in interlayer rock strength and spacing. It is concluded that the smaller the oblique angle, the weaker the stability, the stronger the rotation/fall dynamic load intensity, and the greater the danger. When the oblique angle is 0 degrees, the degree of danger is the greatest. (3) A 5m planar physical similarity model experiment with a geometric similarity ratio of 1:100 was conducted. Using distributed fiber optic (BOTDA), fiber Bragg grating (FBG), pressure sensors, digital speckle, and vernier calipers to record surface subsidence, the study investigated the characteristics of overlying rock collapse and load transfer, as well as the structural morphology, stress-strain, and displacement of the overlying rock when passing through 25m and 35m legacy coal pillars. Under normal pressure conditions, the average pressure intensity is 16,215 kN, with an average dynamic load coefficient of 1.18; the average pressure intensity and dynamic load coefficients during "entering-passing-leaving" the coal pillar are 16,767 kN, 1.23; 15,824 kN, 1.12; and 18,455 kN, 1.44, respectively. The pressure intensity when leaving the coal pillar is generally greater than when entering and passing through the coal pillar. The influence of the width of the legacy coal pillar on the degree of damage to the overlying rock is relatively low. When the working face passes through 35m and 25m legacy coal pillars, the average load increase coefficient of the working face support during the pressure period is 1.51 and 1.63, respectively. (4) Establish a theoretical analysis of the stress distribution on the floor, and study the influence of the load form on the working face and the fluence of the impact of the oblique angle on the load form of the roof under the influence of oblique coal pillars. Under the influence of oblique coal pillars, the stress on the roof of the lower working face is symmetrically distributed in the strike direction, taking the dip as the axis for 180° symmetry, with the load form being a local single-peak shape, and the peak value is essentially consistent, with the range of influence decreasing as the oblique angle increases. As the oblique angle increases, the range of influence of the overlying legacy coal pillars on the working face dip gradually decreases; the range of influence on the roof in the strike direction gradually increases until it is the same as the working face's roof control distance. (5) Drawing on the typical theory of roof structure in shallow-buried coal seams, where a single key layer between layers periodically fractures to form a stepped rock beam structure, this study investigates the mechanism of strong mining pressure and the roof structure model when passing through oblique coal pillars. Based on the collapse structure of rock layers from similar simulation experiments, a stepped rock beam structure model of the roof for closely spaced coal seams formed by a single key layer when passing through legacy coal pillars has been established. The study provides a method for calculating the support load under different coal pillar load conditions in the lower coal seam working face, as well as a formula for calculating the support load when the working face passes through an coal pillar. The calculated methods were verified by comparing the support loads during the approach of the oblique coal pillar in the middle section of the 22208 working face with actual on-site measurements. (6) For the first time, optical fiber sensing technology has been applied to the monitoring of coal pillars by implanting distributed fibers and gratings into the coal and rock mass to obtain actual measured data of internal deformation of coal pillars with and without legacy coal pillars underneath the working face, and to compare and analyze the internal deformation and zoning characteristics of coal pillars with and without legacy coal pillars. The study investigates the internal deformation characteristics of the roadway section coal pillars during the stage of passing through coal pillars under the influence of repeated mining activities, as well as the internal deformation characteristics of coal pillars with and without legacy coal pillars. When the working face passes through the coal pillar, the width of the elastic zone of the coal pillar section below the overlying legacy coal pillar accounts for 20%, and the width of the elastic zone of the coal pillar section below the goaf accounts for 40%. Through on-site measurement with optical fibers, the rules of horizontal strain and deformation inside the section coal pillar were obtained, and the horizontal strain inside the coal pillar shows obvious zonal deformation characteristics. When the working face passes the measurement point, the horizontal strain on the mining side increases exponentially, and the deformation of the coal pillar close to the mining side is the largest, about 5 times that of the unmined side. (7) Using distributed fiber optic sensing technology, the study reveals the distribution pattern of plastic zones within the section coal pillars during the stage of passing through coal pillars under the influence of repeated mining activities. During the initial mining activity, the on-site monitoring distance for the section coal pillar was 183 meters, and during the secondary mining activity, the monitoring distance was 500 meters, providing complete monitoring of the process as the working face "entered, passed through, and exited" the legacy coal pillars. After the initial mining activity, the plastic zone within the coal pillar accounted for 36%. Under the influence of repeated mining activities, the plastic zone of the coal pillar during the stage of entering the coal pillar reached 67%, with local areas of the coal pillar entering the fragmented stage. During the stage of passing through the coal pillar, the coal pillar was significantly affected by the superposition of stresses, leading to a marked increase in horizontal deformation. The range of the plastic zone increased by 57% compared to the initial mining activity, the width of the fragmented zone increased by 3.6 times, the peak horizontal strain reached 2326 με, and the combined proportion of the plastic zone and fragmented zone of the coal pillar reached 83%. (8) During the retreat mining period of the 22206 and 22208 working faces at the Huojitu well, the mining pressure manifestation in the upper measurement area is normal when the working face passes through the coal pillars, while the lower measurement area near the tailgate experiences the highest pressure intensity, which significantly affects the normal advancement of the working face. Two methods are proposed: reinforcing the support of the roadway roof and sides, and accelerating the working face advance speed during the "entry and passage" of the coal pillars. A directional long drilling hole fracturing technology is proposed for the interlayer rock to weaken it. One drilling site is arranged at the working face, with three drilling holes at each site, to relieve pressure, transfer stress, and distribute it evenly, thereby reducing the pressure intensity on the working face. |
参考文献: |
[1]中华人民共和国2023年国民经济和社会发展统计公报[J].中国统计,2024,(03):4-21. [2]王双明,申艳军,宋世杰,等.“双碳”目标下煤炭能源地位变化与绿色低碳开发[J].煤炭学报,2023,48(07):2599-2612. [3]袁亮.我国煤炭主体能源安全高质量发展的理论技术思考[J].中国科学院院刊,2023,38(01):11-22. [4]王国法,刘合,王丹丹,等.新形势下我国能源高质量发展与能源安全[J].中国科学院院刊,2023,38(01):23-37. [5]钱鸣高,石平五,许家林.矿山压力与岩层控制[M]. 徐州:中国矿业大学出版社,2010. [6]梁振琪.实用矿山压力控制[M]. 徐州:中国矿业大学出版社,1988. [7] 康红普.我国煤矿巷道围岩控制技术发展70年及展望[J].岩石力学与工程学报,2021,40(01):1-30. [14]钱鸣高.石平五.矿山压力与岩层控制[M].徐州:中国矿业大学出版社, 2003:373. [16]王成,杜泽生,钱德雨.孤岛工作面沿空掘巷煤柱宽度及其加固技术研究[J].河南理工大学学报(自然科学版), 2012, 06:655-659. [21]贾后省,王璐瑶,刘少伟,等.综放工作面煤柱巷道软岩底板非对称底臌机理与控制[J]. 煤炭学报,2019,44(4):1030-1040. [22]齐学元,邓广哲,黄康.近距离煤层房柱区煤柱底板应力传递规律[J]. 西安科技大学学报,2021,41(4):649-656. [23]冯国瑞,朱卫兵,李竹,等.浅埋深蹬空底板煤柱群动态失稳机理及防治[J]. 煤炭学报,2022,47(1):200-209. [24]王朋飞,刘佳男,冯国瑞.负煤柱长壁工作面底板应力分布及破坏特征[J]. 岩石力学与工程学报,2023,42(1):194-211. [27]史元伟,郭潘强,康立军,等.矿井多煤层开采围岩应力分析与设计优化[M].北京:煤炭工业出版社,1995. [28] 钱鸣高,缪协兴,黎良杰.采场底板岩层破断规律的理论研究[J].岩土工程学报,1995,(06):55-62. [29]曹胜根,刘文斌,袁文波,等.房式采煤工作面的底板岩层应力分析[J].湘潭矿业学院学报, 1998(3):14-19. [31]张学斌.近距离煤层群采动后底板应力分布及回采巷道布置方式研究[D].青岛:山东科技大学,2009. [32]屠世浩,王方田,窦凤金,等.上层煤柱下综放沿空回采巷道矿压规律研究[J].中国矿业大学学报,2010,39(01):1-5. [33]姜鹏飞,康红普,张剑,等.近距煤层群开采在不同宽度煤柱中的传力机制[J].采矿与安全工程学报,2011,28(03):345-349. [34]白庆升,屠世浩,王方田,等.浅埋近距离房式煤柱下采动应力演化及致灾机制[J].岩石力学与工程学报,2012,31(S2):3772-3778. [35]马瑞,来兴平,曹建涛,等.浅埋近距煤层采空区覆岩移动规律相似模拟[J].西安科技大学学报,2013,33(03):249-253. [36]许磊,魏海霞,肖祯雁,等.煤柱下底板偏应力区域特征及案例[J].岩土力学,2015,36(02):561-568. [37]李胜,周利峰,罗明坤,等.煤层群下行开采煤柱应力传递规律[J].辽宁工程技术大学学报(自然科学版),2015,34(06):661-667. [38]程志恒,齐庆新,李宏艳,等.近距离煤层群叠加开采采动应力-裂隙动态演化特征实验研究[J].煤炭学报,2016,41(02):367-375. [39]柴敬,彭钰博,马伟超,等.煤柱应力应变分布的光纤监测试验研究[J].地下空间与工程学报,2017,13(01):213-219. [40]黄庆享,杜君武.浅埋煤层群开采的区段煤柱应力与地表裂缝耦合控制研究[J].煤炭学报,2018,43(03):591-598. [41]黄庆享,曹健,杜君武,等.浅埋近距煤层开采三场演化规律与合理煤柱错距研究[J].煤炭学报,2019,44(03):681-689. [43]蒋力帅,马念杰,白浪,等.巷道复合顶板变形破坏特征与冒顶隐患分级[J].煤炭学报,2014,39(07):1205-1211. [44]王辉. 中厚多软弱夹层复合顶板巷道围岩破坏机理及支护研究[D].太原:太原理工大学,2018. [45]刘刚,龙景奎,刘学强,等.巷道稳定的协同学原理及应用技术[J].煤炭学报,2012,37(12):1975-1981. [46]史向东. 煤巷复合顶板变形破坏机理及支护技术研究[D].西安:西安科技大学,2015. [47]王辉,杨双锁,牛少卿.层状复合岩层巷道围岩耦合变形机制及控制研究[J].太原理工大学学报,2016,47(05):605-612. [48]吴德义,申法建.巷道复合顶板层间离层稳定性量化判据选择[J].岩石力学与工程学报,2014,33(10):2040-2046. [49]余伟健,王卫军,张农,等.深井煤巷厚层复合顶板整体变形机制及控制[J].中国矿业大学学报,2012,41(05):725-732. [50]姚再峰. 回采巷道层状复合顶板的离层机理及其控制技术研究[D].焦作:河南理工大学,2014. [51]王朋. 复合顶板煤巷围岩多次动压扰动失稳规律及控制[D].徐州:中国矿业大学,2019. [52]张亮,方新秋,郭辉.复合顶板松软煤层巷道变形破坏机理及合理支护设计[J].煤矿安全,2012,43(02):63-66. [53]吴文达,王天辰,柏建彪.煤柱下综采工作面矿压特征及水力压裂切顶控制[J].太原理工大学学报,2023,54(04):684-691. [54]钱鸣高.采场上覆岩层的平衡条件[J].中国矿业学院学报,1981(02):34-43. [56]钱鸣高.采场围岩控制理论与实践[J].矿山压力与顶板管理, 1999(Z1): 12-15. [57]钱鸣高,李鸿昌.采场上覆岩层活动规律及其对矿山压力的影响[J].煤炭学报, 1982(2):3-14. [58]钱鸣高,缪协兴.采场上覆岩层结构的形态与受力分析[J].岩石力学与工程学报,1995,(02):97-106. [59]黄庆享,周金龙.浅埋煤层大采高工作面矿压规律及顶板结构研究[J].煤炭学报,2016,41(S2):279-286. [60]宋振骐,蒋宇静.采场顶板控制设计理论与方法的基础研究[J].山东矿业学院学报, 1986(01):4-16. [61]姜福兴,宋振骐,宋扬,等.采场来压预测预报专家系统的基础研究[J].煤炭学报,1995(03):225-228. [62]贾喜荣,刘国利,徐林生.缓倾斜煤层长壁工作面顶板分类方案探讨[J].矿山压力与顶板管理,1992(01):53-55+102. [63]贾喜荣,刘国利,徐林生.采场矿压计算分析方法[J].煤炭学报,1993(05):13-19. [64]贾喜荣,翟英达,杨双锁.放顶煤工作面顶板岩层结构及顶板来压计算[J].煤炭学报,1998(04):32-36. [65]朱德仁,钱鸣高.长壁工作面老顶破断的计算机模拟[J].中国矿业学院学报,1987(03):4-12. [66]姜福兴.薄板力学解在坚硬顶板采场的适用范围[J].西安矿业学院学报,1991(02):12-19+28. [67]钱鸣高,茅献彪,缪协兴.采场覆岩中关键层上载荷的变化规律[J].煤炭学报,1998(02):25-29. [68]茅献彪,缪协兴,钱鸣高.采动覆岩中关键层的破断规律研究[J].中国矿业大学学报,1998(01):41-44. [69]黄庆享,石平五,钱鸣高.老顶岩块端角摩擦系数和挤压系数实验研究[J].岩土力学,2000(01):60-63. [71]高明中.关键层破断与厚松散层地表沉陷耦合关系研究[J].安徽理工大学学报(自然科学版),2004(03):24-27. [72]高明中.模型中应力测试耦合问题分析[J].矿山压力与顶板管理,2004(04):100-102+118. [73]陈忠辉,谢和平,李全生.长壁工作面采场围岩铰接薄板组力学模型研究[J].煤炭学报,2005(02):172-176. [74]王红卫,陈忠辉,杜泽超,等.弹性薄板理论在地下采场顶板变化规律研究中的应用[J].岩石力学与工程学报,2006(S2):3769-3774. [75]史红,姜福兴.综放采场上覆厚层坚硬岩层破断规律的分析及应用[J].岩土工程学报,2006(04):525-528. [76]姜福兴.采场覆岩空间结构观点及其应用研究[J].采矿与安全工程学报,2006(01):30-33. [77]陈义东,李英明.特厚煤层大采高综放工作面覆岩上层活动规律的相似模拟研究[J].矿业研究与开发,2011,31(02):8-10+70. [79]宁建国,刘学生,谭云亮,等.浅埋煤层工作面弱胶结顶板破断结构模型研究[J].采矿与安全工程学报,2014,31(04):569-574+579. [81]李化敏,蒋东杰,李东印.特厚煤层大采高综放工作面矿压及顶板破断特征[J].煤炭学报,2014,39(10):1956-1960. [82]刘长友,杨敬轩,于斌,等.多采空区下坚硬厚层破断顶板群结构的失稳规律[J].煤炭学报,2014,39(03):395-403. [86]于斌,杨敬轩,刘长友,等.大空间采场覆岩结构特征及其矿压作用机理[J].煤炭学报,2019,44(11):3295-3307. [87]姜福兴.采场覆岩空间结构观点及其应用研究[J].采矿与安全工程学报,2006,(01):30-33. [88]姜福兴,张兴民,杨淑华,等.长壁采场覆岩空间结构探讨[J].岩石力学与工程学报,2006,25(5):979-979. [89]姜福兴,杨淑华.微地震监测揭示的采场围岩空间破裂形态[J].煤炭学报,2003,(04):357-360. [90]汪华君.四面采空采场"θ"型覆岩多层空间结构运动及控制研究[D].青岛:山东科技大学,2006. [91]马其华.长壁采场覆岩"O"型空间结构及相关矿山压力研究[D]. 青岛:山东科技大学,2005. [92]侯玮,霍海鹰.“C”型覆岩空间结构采场岩层运动规律及动压致灾机理[J].煤炭学报,2012,37(S2):269-274. [93]侯玮,姜福兴,王存文,等.三面采空综放采场“C”型覆岩空间结构及其矿压控制[J].煤炭学报,2009,34(03):310-314. [94]史红,王存文,孔令海,等.“S”型覆岩空间结构煤柱导致冲击失稳的力学机制探讨[J].岩石力学与工程学报,2012,31(S2):3508-3513. [95]窦林名,贺虎.煤矿覆岩空间结构OX-F-T演化规律研究[J].岩石力学与工程学报,2012,31(3):453-460. [98][1]杨俊哲,郑凯歌,王振荣,等.坚硬顶板动力灾害超前弱化治理技术[J].煤炭学报,2020,45(10):3371-3379. [99]李振雷.厚煤层综放开采的降载减冲原理及其工程实践[D].徐州:中国矿业大学,2016. [100]娄金福.采场覆岩破断与应力演化的梁拱二元结构及岩层特性影响机制[J].采矿与安全工程学报,2021,38(04):678-686. [101]刘全明,于雷.浅埋深综放采场覆岩结构对矿压显现规律的影响[J].煤炭科学技术,2017,45(03):20-25. [102]刘全明.浅埋薄基岩综放面矿压显现规律的基岩厚度效应[J].煤矿开采,2016,21(03):98-100. [103]赵杰.沟谷区域浅埋特厚煤层开采覆岩破断失稳规律及控制研究[D].徐州:中国矿业大学,2018. [104]李化敏,蒋东杰,李东印.特厚煤层大采高综放工作面矿压及顶板破断特征[J].煤炭学报,2014,39(10):1956-1960. [105]樊克松.特厚煤层综放开采矿压显现与地表变形时空关系研究[D].北京:煤炭科学研究总院,2023. [106]于斌,朱卫兵,高瑞,等.特厚煤层综放开采大空间采场覆岩结构及作用机制[J].煤炭学报,2016,41(03):571-580. [107]于雷,闫少宏.特厚煤层综放开采顶板运动形式及矿压规律研究[J].煤炭科学技术,2015,43(8):40-44. [108]孔令海.特厚煤层大空间综放采场覆岩运动及其来压规律研究[J].采矿与安全工程学报,2020,37(05):943-950. [109]郭军.火成岩层状侵入区特厚煤层综放采场覆岩结构演化及支架围岩协同作用机理[D].太原:太原理工大学,2023. [110]鞠金峰,许家林,朱卫兵,等.近距离煤层工作面出倾向煤柱动载矿压机理研究[J].煤炭学报,2010,35(01):15-20. [111]朱卫兵.浅埋近距离煤层重复采动关键层结构失稳机理研究[D].徐州:中国矿业大学,2010. [112]鞠金峰,许家林.浅埋近距离煤层出煤柱开采压架防治对策[J].采矿与安全工程学报,2013,30(03):323-330. [113]田臣,刘英杰,周海丰.综采工作面回采过上覆集中煤柱及采空区技术[J].煤炭科学技术,2014,42(08):125-128+124. [114]陈苏社.综采工作面过上层煤集中煤柱动载矿压控制技术[J].煤炭科学技术,2014,42(06):140-143. [115]于斌,刘长友,杨敬轩,等.大同矿区双系煤层开采煤柱影响下的强矿压显现机理[J].煤炭学报,2014,39(01):40-46. [116]杨俊哲.浅埋近距离煤层过上覆采空区及煤柱动压防治技术[J].煤炭科学技术,2015,43(06):9-13+40. [117]彭海兵,李瑞群.近距离煤层综采面过上层煤柱矿压规律及顶板控制研究[J].煤炭工程,2015,47(08):84-87. [118]李行能,高奎英.近距离煤层出上层煤柱期间工作面底鼓压架原因及处理技术[J].陕西煤炭,2016,35(S1):73-76+82. [119]李浩荡,张彬.浅埋深综采工作面过集中煤柱压架机理分析[J].煤炭科学技术,2016,44(09):54-60+82. [120]高瑞,于斌,孟祥斌.工作面过煤柱强矿压显现机理及地面压裂控制研究[J].采矿与安全工程学报,2018,35(02):324-331. [121]秦凯,王健达,李宏艳,等.集中煤柱诱发下伏近距离煤层异常矿压及机理研究[J].煤炭科学技术,2019,47(08):102-107. [122]黄庆享,刘佳鑫,蔚保宁.浅埋近距离下煤层工作面过倾向煤柱矿压规律[J].陕西煤炭,2021,40(02):1-5+24. [123]杨欢,郑凯歌,李彬刚,等.工作面过上覆遗留煤柱致灾机理及超前区域防治技术研究[J].煤炭科学技术,2023,51(09):46-54. [124]郑铁华,李金刚.补连塔煤矿浅埋近距离煤层过上覆煤柱强矿压灾害防治机理及应用[J].煤炭科学技术,2022,50(S1):71-80. [125]许兴亮,田素川,李俊生,等.小纪汗煤矿工作面顶板破断结构对巷道矿压影响规律研究[J].煤炭学报,2017,42(02):308-314. [126]周海丰,黄庆享.大采高工作面过空巷群顶板破断及矿压规律研究[J].煤炭科学技术,2020,48(02):70-79. [127]史新帅,宁建国,王俊,等.煤层群底部巷道围岩破坏机理及控制技术[J].煤矿安全,2016,47(07):84-87. [128]王襄禹,张科学,赵锋,等.煤柱下煤层巷道围岩变形破坏机理[J].煤炭技术,2017,36(01):1-3. [129]袁越,王卫军,袁超,等.深部矿井动压回采巷道围岩大变形破坏机理[J].煤炭学报,2016,41(12):2940-2950. [130]赵红超,张东升,刘洪林,等.构造应力场中巷道围岩破坏机理研究[J].煤矿开采,2014,19(02):13-16+50. [131]刘增辉,高谦,华心祝,等.沿空掘巷围岩控制的时效特征[J].采矿与安全工程学报.2009,26(4):465-469. [132]熊志朋.采空区及煤柱下回采巷道布置位置优化研究[D].焦作:河南理工大学, 2018. [133]张百胜,杨双锁,康立勋,等.极近距离煤层回采巷道合理位置确定方法探讨[J].岩石力学与工程学报,2008(01):97-101. [134]康继忠.煤柱下巷道的应力敏感性分区特征及响应机制[D].徐州:中国矿业大学, 2016. [135]董宇,谢文兵,荆升国.近距离煤层采空区下回采巷道高强稳定型支护技术[J].煤炭科学技术,2013,(2):19-23. [136]林健,范明建,司林坡.近距离采空区下松软破碎煤层巷道锚杆锚索支护技术研究[J].煤矿开采,2010,(4):45-50+62. [137]武文浩,刘爱卿,李挺.近距离煤层采空区下巷道支护技术研究[J].煤炭工程,2013,(8):44-46. [143]柴敬, 赵文华, 李毅,等.光纤光栅检测的锚杆拉拔实验研究[J]. 中国矿业大学学报, 2012, 41(5):719-724. [144]李丽君,张旭,唐斌,等.一种微型光纤光栅矿压传感器[J]. 煤炭学报, 2013, 38(11):2084-2088. [145]苏军,王治宇,袁子清,等.光纤光栅(FBG)传感器在尾矿库在线监测中的应用[J].中国安全生产科学技术, 2014(7):65-70. [150]柴敬,袁强,李毅,等.采场覆岩变形的分布式光纤检测试验研究[J].岩石力学与工程学报, 2016(a02):3589-3596. [151]柴敬,刘永亮,王梓旭,等.保护层开采下伏煤岩卸压效应及其光纤监测[J].煤炭学报,2022,47(08):2896-2906. [152]柴敬,韩志成,雷武林,等.回采巷道底鼓演化过程的分布式光纤实测研究[J].煤炭科学技术,2023,51(01):146-156. [153]张丁丁,柴敬,李毅,等.松散层沉降光纤光栅监测的应变传递及其工程应用[J].岩石力学与工程学报,2015(s1):3289-3297. [156]朴春德,施斌,魏广庆,等.采动覆岩变形BOTDA分布式测量及离层分析[J].采矿与安全工程学报,2015,32(3):376-381. [157]黄庆享,周金龙,马龙涛,等.近浅埋煤层大采高工作面双关键层结构分析[J].煤炭学报,2017,42(10):2504-2510. [158]黄庆享,张谦,贺雁鹏,等.浅埋近距离煤层过平行煤柱开采强矿压机理研究[J].采矿与岩层控制工程学报,2024,6(05):4-15. |
中图分类号: | TD323 |
开放日期: | 2029-01-03 |