- 无标题文档
查看论文信息

论文中文题名:

 寒区裂隙砂岩未冻水演化机理及THM耦合方程研究    

姓名:

 张君    

学号:

 20204228118    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0852    

学科名称:

 工学 - 工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 土木水利    

研究方向:

 岩土力学与工程应用    

第一导师姓名:

 宋勇军    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-12    

论文答辩日期:

 2023-06-05    

论文外文题名:

 Study on the Evolution Mechanism of Unfrozen Water in Fractured Sandstone in Cold Regionsand and the THM Coupling Equation    

论文中文关键词:

 冻融循环 ; 裂隙砂岩 ; 核磁共振 ; 未冻水含量 ; 水热力耦合    

论文外文关键词:

 Freeze-thaw cycles ; Fractured sandstone ; NMR ; Unfrozen water content ; Moisture-heat-stress coupling    

论文中文摘要:

孔隙水的冻结是寒区岩体发生冻胀损伤的根源,研究未冻水含量演化规律对于了解孔隙水的冻结过程,揭示冻结岩体的损伤机理具有重要意义。本文以陕北某工程岩体中完整与双裂隙砂岩为研究对象,基于试验研究,采用理论分析和数值计算相结合的方法。通过分析冻结温度、冻融次数、裂隙对未冻水的影响,探究未冻水含量与砂岩细观结构损伤、宏观力学参数劣化的关联。建立适用于砂岩的水热力耦合控制方程组,结合双孔隙介质模型和相场损伤模型进行辨识,并将其嵌入COMSOL有限元分析软件中,完成数值模型的改进。本文主要研究工作如下:

(1)开展饱水状态下完整及裂隙砂岩核磁共振试验,分析冻融环境下未冻水演化特征及影响因素。试验结果表明:温度对未冻水含量的影响显著,且当冻结温度低于-20℃时,会削弱冻融次数对未冻水含量的影响,但裂隙的存在会加快孔隙水的冻结,相比完整岩样,裂隙岩样未冻水含量减少5%;

(2)基于未冻水含量演化规律,具体研究了水冰相变过程对岩石孔隙结构特征的影响规律。岩石孔隙体积和渗透率均与冰含量呈正相关,自由水原位冻胀、毛细水水分迁移以及结合水持续冻结三者共同作用导致岩石产生不可逆的冻融损伤。饱水裂隙的存在会引发更为剧烈的冻害,裂隙岩样孔隙体积高于完整岩样18%,渗透率大于完整岩样267%以上。

(3)根据裂隙砂岩未冻水及孔隙结构演化更为剧烈的特点,开展裂隙砂岩低温单轴压缩试验,研究不同冻融条件下裂隙砂岩的力学特性,以及水对岩石强度、弹性模量的影响。砂岩强度及弹性模量均随着温度的降低而增大,随着冻融循环次数的增加而减小,说明水冰相变过程对砂岩强度和变形的影响显著,冰对岩体具有冻胀与支撑双重作用,孔隙水凝结成冰产生的冻胀力削弱了岩石颗粒间联系,致使岩石强度、弹性模量损伤严重,另一方面冰为岩石提供了支撑和胶结作用,冻结状态下可与岩石骨架共同抵抗外荷载作用。

(4)利用COMSOL软件中的PDE模块,在温度场、水分场、应力场控制方程基础上,推导水热力耦合控制方程组,将相场损伤模型嵌套到固体力学模块中,采用双重孔隙介质模型对冻融裂隙岩体进行研究,并将未冻水含量模拟值与试验值进行了对比,验证了本文建立的数值计算方法的正确性。

(5)基于所建立的冻融岩体水热力耦合模型,分析岩石内部温度、水分、及位移的分布规律。根据有限元计算结果进行二维绘图,裂隙水由于水传热较快先发生冻结,裂隙水的快速冻结引发裂隙尖端起裂,并呈现向岩桥处扩展的趋势,融化过程中裂隙水又会沿冻胀产生的裂纹渗流进入岩石内部造成二次起裂、扩展;孔隙水冻结速率受岩石对外界温度响应程度的影响,靠近岩石上边界处对降温/升温的响应较快,未冻水表现出快速的冻结/融化现象,岩石中部由于对温度的响应较慢,导致岩石在融化过程中夹冰层的出现。而岩石内部在冻结区与未冻区边界由于冰晶体的吸引,使水向冻结区边界迁移,造成岩石中位移变形区域略大于冻结区域。在融化过程中,受初始未冻水含量的影响以及岩石中部冰的阻滞作用,岩石下面层位移变形小于上面层。

论文外文摘要:

The freezing of pore water is the source of frost heaving damage of rock mass in cold regions. Studying the evolution of unfrozen water content is of great significance for understanding the freezing process of pore water and revealing the damage mechanism of frozen rock mass.In this paper, the complete and double-fractured sandstone is taken as the research object. Based on the experimental study, the method of combining theoretical analysis and numerical calculation is adopted.By analyzing the influence of freezing temperature, freezing and thawing times and cracks on unfrozen water, the relationship between unfrozen water content and sandstone mesostructure damage and macroscopic mechanical parameter deterioration is explored.Establish the hydro-thermal coupling control equations applicable to sandstone, identify it by combining the dual-pore medium model and the phase-field damage model, and embed it into the COMSOL finite element analysis software to complete the secondary development of the numerical model.The main research work of this paper is as follows:

(1) The nuclear magnetic resonance test of intact and fractured sandstone under saturated state was carried out to analyze the evolution characteristics of unfrozen water under different freezing and thawing environments, and also provided a test basis for the correlation study of rock water ice phase change and macro and micro damage.The test results show that temperature has a significant effect on unfrozen water content, and when the freezing temperature is lower than - 20 ℃, the influence of freezing and thawing times on unfrozen water content will be weakened, but the existence of cracks will accelerate the freezing of pore water, and the unfrozen water content of fractured rock samples will be reduced by 5% compared with intact rock samples;

(2) Based on the evolution law of unfrozen water content, the influence law of water ice phase change process on rock pore structure characteristics is studied in detail.The pore volume and permeability of rock are positively correlated with the ice content. The joint action of free water in situ frost heaving, capillary water migration and combined water continuous freezing leads to irreversible freeze-thaw damage of rock.The existence of water-saturated fractures will cause more severe frost damage. The pore volume of fractured rock samples is 18% higher than that of intact rock samples, and the permeability is more than 267% higher than that of intact rock samples.

(3) According to the characteristics of unfrozen water and more violent pore structure evolution of fractured sandstone, low-temperature uniaxial compression test of fractured sandstone was carried out to study the mechanical properties of fractured sandstone under different freezing and thawing conditions, and the effect of water on rock strength and elastic modulus.The strength and elastic modulus of sandstone increase with the decrease of temperature, and decrease with the increase of the number of freeze-thaw cycles, which indicates that the water-ice phase change process has a significant impact on the strength and deformation of sandstone, and ice has a dual role of frost heave and support on rock mass. The frost heave force generated by the condensation of pore water into ice weakens the relationship between rock particles, causing serious damage to the strength and elastic modulus of rock. On the other hand, ice provides support and cementation for rock, It can resist external load together with rock skeleton under freezing state.

(4) The PDE module in COMSOL software is used for secondary development. Based on the control equations of temperature field, water component field and stress field, the hydro-thermal coupling control equations are derived, the phase field damage model is nested into the solid mechanics module, the freeze-thaw fractured rock body is studied by using the dual pore medium model, and the simulated value of unfrozen water content is compared with the test value, which verifies the correctness of the numerical calculation method established in this paper.

(5) Based on the established hydro-thermal coupling model of freeze-thaw rock mass, the distribution of temperature, moisture and displacement in rock mass is analyzed.According to the two-dimensional drawing of the finite element calculation results, the fracture water freezes first due to the fast heat transfer of water, and the rapid freezing of the fracture water causes the crack tip to crack,and shows a trend of expansion towards the rock bridge, and the fracture water will seep into the rock along the crack generated by frost heave during the melting process, causing secondary crack initiation and expansion;The freezing rate of pore water is affected by the response of the rock to the external temperature. The response to the temperature drop/temperature rise is faster near the upper boundary of the rock. The unfrozen water shows a fast freezing/melting phenomenon. The slow response to the temperature in the middle of the rock leads to the appearance of ice layer in the rock during the melting process.However, due to the attraction of ice crystals at the boundary of frozen and unfrozen areas inside the rock, the water migrates to the boundary of frozen areas, causing the displacement and deformation area in the rock to be slightly larger than the frozen area.During the melting process, due to the influence of the initial unfrozen water content and the blocking effect of ice in the middle of the rock, the displacement and deformation of the lower layer of the rock is smaller than that of the upper layer.

参考文献:

[1]Deprez M, De Kock T, De Schutter G, et al. A review on freeze-thaw action and weathering of rocks[J]. Earth-Science Reviews, 2020, 203: 103143.

[2]南卓铜. 中国1:1000万冻土区划及类型图[EB]. 国家冰川冻土沙漠科学数据中心, 2019.

[3]周科平, 许玉娟, 李杰林, 等. 冻融循环对风化花岗岩物理特性影响的实验研究[J]. 煤炭学报, 2012, 37(S1): 70-74.

[4]刘泉声, 黄诗冰, 康永水, 等. 低温冻结岩体单裂隙冻胀力与数值计算研究[J]. 岩土工程学报, 2015, 37(9): 1572-1580.

[5]夏才初, 李强, 吕志涛, 等. 各向均匀与单向冻结条件下饱和岩石冻胀变形特性对比试验研究[J]. 岩石力学与工程学报, 2018, 37(2): 274-281.

[6]Cao P, Liu T, Pu C, et al. Crack propagation and coalescence of brittle rock-like specimens with pre-existing cracks in compression[J]. Engineering Geology, 2015, 187: 113-121.

[7]Zhou X P, Zhang J Z, Wong L N Y. Experimental study on the growth, coalescence and wrapping behaviors of 3D cross-embedded flaws under uniaxial compression[J]. Rock Mechanics and Rock Engineering, 2018, 51(5): 1379-1400.

[8]南卓铜. 中国1:1000万冻土区划及类型图[EB]. 国家冰川冻土沙漠科学数据中心, 2019.

[9]翟成, 董若蔚. 低温冻结石门揭煤煤体未冻水含量变化特征[J]. 煤炭科学技术, 2019, 47(01): 132-138.

[10]程桦, 陈汉青, 曹广勇, 等. 多孔岩石冻融水分迁移损伤机制及试验验证[J]. 岩石力学与工程学报, 2020, 39(9): 1739-1749.

[11]Hallet B. Why do freezing rocks break?[J]. Science, 2006, 314(5802): 1092-1093.

[12]Akagawa S, Fukuda M. Frost heave mechanism in welded tuff[J]. Permafrost and Periglacial Processes, 1991, 2(4): 301-309.

[13]Prick A. Dilatometrical behaviour of porous calcareous rock samples subjected to freeze-thaw cycles[J]. Catena, 1995, 25(1-4): 7-20.

[14]刘泉声, 黄诗冰, 康永水, 等.低温饱和岩石未冻水含量与冻胀变形模型研究[J].岩石力学与工程学报, 2016, 35(10): 2000-2012.

[15]徐拴海, 李宁, 袁克阔, 等.融化作用下含冰裂隙冻岩强度特性及寒区边坡失稳研究现状[J]. 冰川冻土, 2016, 38(4): 1106-1120.

[16]黄诗冰, 刘泉声, 刘艳章, 等. 低温热力耦合下岩体椭圆孔 (裂) 隙中冻胀力与冻胀开裂特征研究[J]. 岩土工程学报, 2018, 40(3): 459-467.

[17]Winkler E M. Frost damage to stone and concrete:geological considerations[J]. Engineering Geology,1968,2(5):315-323.

[18]Martínez-Martínez J,Benavente D,Gomez-Heras M,et al. Non-linear decay of building stones during freeze-thaw weathering processes[J]. Construction and Building Materials,2013,38:443-454.

[19]Matsuoka N. Mechanisms of rock breakdown by frost action:an experimental approach[J]. Cold Regions Science and Technology,1990,17(3):253-270.

[20]裴向军,蒙明辉,袁进科,等. 干燥及饱水状态下裂隙岩石冻融特征研究[J]. 岩土力学,2017,38(7):1 999-2 006.

[21]高峰,曹善鹏,熊信,等. 冻融循环作用下受荷青砂岩的脆性演化特征[J]. 岩土力学,2020,41(2):445-452.

[22]韩铁林,师俊平,陈蕴生. 砂岩在化学腐蚀和冻融循环共同作用下力学特征劣化的试验研究[J]. 水利学报,2016,47(5):644-655.

[23]贾海梁,项伟,谭龙,等. 砂岩冻融损伤机制的理论分析和试验验证[J]. 岩石力学与工程学报,2016,35(5):879-895.

[24]Zhang H,Yuan C,Yang G,et al. A novel constitutive modelling approach measured under simulated freeze-thaw cycles for the rock failure[J]. Engineering with Computers,2019:1-14.

[25]谭贤君,陈卫忠,伍国军,等. 低温冻融条件下岩体温度–渗流–应力–损伤(THMD)耦合模型研究及其在寒区隧道中的应用[J]. 岩石力学与工程学报,2013,32(2):239-250.

[26]王震,朱珍德,陈会官,等. 冻融作用下岩石力–热–水耦合本构模型研究[J]. 岩土力学,2019,40(7):2 608-2 616.

[27]吕志涛,夏才初,李强,等. 单向冻结时开放条件下饱和砂岩冻胀试验及THM耦合冻胀模型[J]. 岩土工程学报,2019,41(8):1 435-1 444.

[28]Yang S Q,Huang Y H,Tian W L,et al. An experimental investigation on strength,deformation and crack evolution behavior of sandstone containing two oval flaws under uniaxial compression[J]. Engineering Geology,2017,217:35-48.

[29]Gratchev I,Kim D H,Yeung C K. Strength of rock-like specimens with pre-existing cracks of different length and width[J]. Rock Mechanics and Rock Engineering,2016,49(11):4 491-4 496.

[30]Bobet A,Einstein H H. Fracture coalescence in rock-type materials under uniaxial and biaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences,1998,35(7):863-888.

[31]Wang Y,Feng W K,Wang H J,et al. Rock bridge fracturing characteristics in granite induced by freeze-thaw and uniaxial deformation revealed by AE monitoring and post-test CT scanning[J]. Cold Regions Science and Technology,2020:103115.

[32]杨圣奇,戴永浩,韩立军,等. 断续预制裂隙脆性大理岩变形破坏特性单轴压缩试验研究[J].岩石力学与工程学报,2009,28(12):2 391-2 404.

[33]蒲成志,曹平,赵延林,等. 单轴压缩下多裂隙类岩石材料强度试验与数值分析[J]. 岩土力学,2010,31(11):3 661-3 666.

[34]肖维民,邓荣贵,付小敏,等. 单轴压缩条件下柱状节理岩体变形和强度各向异性模型试验研究[J]. 岩石力学与工程学报,2014,33(5):957-963.

[35]邓华锋,潘登,许晓亮,等. 三轴压缩作用下断续节理砂岩力学特性研究[J]. 岩土工程学报,2019,41(11):2 133-2 141.

[36]Zhou X P,Wang Y T,Zhang J Z,et al. Fracturing behavior study of three-flawed specimens by uniaxial compression and 3D digital image correlation: sensitivity to brittleness[J]. Rock Mechanics and Rock Engineering,2019,52(3):691-718.

[37]Niu Y,Zhou X P,Zhang J Z,et al. Experimental study on crack coalescence behavior of double unparallel fissure-contained sandstone specimens subjected to freeze-thaw cycles under uniaxial compression[J]. Cold Regions Science and Technology,2019,158:166-181.

[38]Lu Y,Li X,Chan A. Damage constitutive model of single flaw sandstone under freeze-thaw and load[J]. Cold Regions Science and Technology,2019,159:20-28.

[39]Wang Y,Feng W K,Wang H J,et al. Rock bridge fracturing characteristics in granite induced by freeze-thaw and uniaxial deformation revealed by AE monitoring and post-test CT scanning[J]. Cold Regions Science and Technology,2020,177:103115.

[40]单仁亮,白瑶,孙鹏飞,等. 裂隙红砂岩冻胀力特性试验研究[J]. 煤炭学报,2019,44(6):1 742-1 752.

[41]乔趁,李长洪,王宇,等. 冻融循环作用下中部锁固岩桥破坏试验研究[J]. 岩石力学与工程学报,2020,39(6):1 094-1 103.

[42]Bouyoucos G J, Mc Cool M M (1916).Further Studies on the Freezing Point Lowering of Soils[M].Michigan Agricultural College, Experiment Station.

[43]Tsytovich N (1960). Bases and Foundations on Frozen Soil [M]. National Academy of Sciences, National Research Council.

[44]谭龙, 韦昌富, 田慧会, 等. 冻土未冻水含量的低场核磁共振试验研究[J]. 岩土力学, 2015, 36(06): 1566-1572.

[45]Azmatch T F, Sego D C, Arenson L U, et al. Using soil freezing characteristic curve to estimate the hydraulic conductivity function of partially frozen soils[J]. Cold Regions Science and Technology, 2012, 83: 103-109.

[46]冷毅飞, 张喜发, 杨凤学, 等.冻土未冻水含量的量热法试验研究[J].岩土力学, 2010, 31(12): 3758-3764.

[47]徐光苗. 寒区岩体低温、冻融损伤力学特性及多场耦合研究[D]. 武汉: 中国科学院武汉岩土力学研究所, 2006.

[48]Howard J J. Porosimetry measurement of shale fabric and its relationship to illite/smectite diagenesis[J]. Clays and Clay Minerals, 1991, 39(4): 355-361.

[49]Watanabe K, Wake T. Measurement of unfrozen water content and relative permittivity of frozen unsaturated soil using NMR and TDR[J]. Cold Regions Science and Technology, 2009, 59(1): 34-41.

[50]Chen T C, Yeung M R, Mori N. Effect of water saturation on deterioration of welded tuff due to freeze-thaw action[J]. Cold Regions Science and Technology, 2004, 38(2-3): 127-136.

[51]Jia H L, Ding S, Wang Y, et al. An NMR-based investigation of pore water freezing process in sandstone[J]. Cold Regions Science and Technology, 2019, 168: 102893.

[52]Li B, Huang L, Lv X, et al. Variation features of unfrozen water content of water-saturated coal under low freezing temperature[J]. Scientific Reports, 2021, 11(1): 1-12.

[53]Neaupane. K.M. and T. Yamabe. A fully coupled thermo-hydro-mechanical nolinear model for a frozen medium[J]. Computers and Geotechnics.2001.28(8):p.613-637.

[54]赖远明、寒区隧道温度场、渗流场和应力场耦合问题的非线性分析[D][博士学位论文].1999.中国科学院兰州冰川冻土研究所:兰州.

[55]徐光苗. 寒区岩体低温、冻融损伤力学特性及多场耦合研究[D]. 武汉: 中国科学院武汉岩土力学研究所, 2006.

[56]谭贤君,陈卫忠,伍国军,等. 低温冻融条件下岩体温度–渗流–应力–损伤(THMD)耦合模型研究及其在寒区隧道中的应用[J]. 岩石力学与工程学报,2013,32(2):239-250.

[57]王震,朱珍德,陈会官,等. 冻融作用下岩石力–热–水耦合本构模型研究[J]. 岩土力学,2019,40(7):2 608-2 616.

[58]吕志涛,夏才初,李强,等. 单向冻结时开放条件下饱和砂岩冻胀试验及THM耦合冻胀模型[J]. 岩土工程学报,2019,41(8):1 435-1 444.

[59]朱元勋. 软土地区深基坑变形的有限差分法研究[D].同济大学,2007.

[60]Noorishad J,Ayatollahi M S,Witherspoon P A. A finite-element method for coupled stressand fluid flow analysis in fractured rock masses[J]. International Journal of the RockMechanics and Mining Sciences &Geomechanics Abstracts,1982,19(4):185-193.

[61]Jaswon M A,Poter A R.An integral equation solution of the torsion problem[J]. Proc R SocLondon Ser A,1963,273(1353): 237-246.

[62]Scholtes Luc, Donzé Frederic-Vicor. Modelling progressive failue in fractured rock massesusing a 3D discrete element method[J]. International Journal of the Rock Mechanics andMining Sciences,2012,52:18-30.

[63]Shi G H.Discontinuous Deformation A nalysis for Jointed Rock Masses and Other Dynamicsof Block System [D].Berkeley: University of California,1988.

[64]Yan B Q,RenF H,et al. Influence of new hydrophobic agent on the mechanical properties ofmodified cemented paste backfi1l1[J].Jounal of Materials Research and Technology,2019,8(6):5716-5727.

[65]刘泉声,刘学伟.多场耦合作用下岩体裂隙扩展演化关键问题研究[J].岩土力学,2014,35(2): 305-320.

[66]杨冰.水―岩相互作用对储层渗透性影响的数值模拟研究—以鄂尔多斯盆地东北部上古生界为例[J].吉林大学学报(地球科学版),2019,49(02):526-538.

[67]Yan B,Guo Q,RenF,et al. Modified Nishihara model and experimental verification of deeprock mass under the water-rock interaction[J ]. International Journal of Rock Mechanics andMining Sciences,2020,128:104250.

[68]王晓.深部巷道在温度和地下水影响下的变形特征[J].煤炭科技,2018(1):22-25.

[69]Nardi A,Idiant A,Trinchero P, et al. Interface COMSOL-PHREEQC (ICP), an efficientnumerical framework for the solution of coupled multiphysics and geochemistry[J].Computers and Geosciences,2014,69: 10-21.

[70]Nasir O,Fall M,Evgin E.A simulator for modeling of porosity and permeability changes innear field sedimentary host rocks for nuclear waste under climate change infuences[J].Tunnell Underground space Technol,2014,42: 122-135.

[71]翟成, 董若蔚. 低温冻结石门揭煤煤体未冻水含量变化特征[J]. 煤炭科学技术, 2019, 47(01): 132-138.

[72]VALIULLIN R,FURO I. The morphology of coexisting liquid and frozen phases in porous materials as revealed by exchange of nuclear spin magnetization followed by 1 H nuclear magnetic resonance[J]. The Journal of Chemical Physics,2002,117(5):2307-2316.

[73]Yang S Q, Huang Y H, Tian W L, et al. An experimental investigation on strength, deformation and crack evolution behavior of sandstone containing two oval flaws under uniaxial compression[J]. Engineering Geology, 2017, 217: 35-48.

[74]路亚妮. 裂隙岩体冻融损伤力学特性试验及破坏机制研究[D]. 武汉: 武汉理工大学, 2013.

[75]宋勇军,郭玺玺,谭皓等.饱水冻结裂隙砂岩力学特性试验研究[J].煤炭工程,2022,54(02):147-152.

[76]宋勇军, 杨慧敏, 谭皓, 等. 冻融环境下不同饱和度砂岩损伤演化特征研究[J]. 岩石力学与工程学报, 2021, 40(08): 1513-1524. ( SONG Yongjun, YANG Huimin, TAN Hao, et al. Study on damage evolution characteristics of sandstone with different saturations in freeze-thaw environment[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(08): 1513-1524. (in Chinese))

[77]张金亮, 司学强, 梁杰, 等. 陕甘宁盆地庆阳地区长 8 油层砂岩成岩作用及其对储层性质的影响[J].沉积学报, 2004, 22(2): 225-233.(ZHANG Jinliang, SI Xueqiang, LIANG Jie, et al. Diagenesis of lacustrine deltaic sandstones and its impact on reservoir quality[J]. Acta Sedimentologica Sinica, 2004, 22(2): 225-233.(in Chinese))

[78]刘杰, 雷岚, 王瑞红, 等. 冻融循环中低应力水平加卸载作用下砂岩动力特性研究[J]. 岩土力学, 2017, 38(9): 2539-2550.(LIU Jie, LEI Lan, WANG Ruihong, et al. Dynamic characteristics of sandstone under low-stress level conditions in freezing-thawing cycles[J]. Rock and Soil Mechanics, 2017, 38(9): 2539-2550.(in Chinese))

[79]李杰林, 周科平, 张亚民, 等. 基于核磁共振技术的岩石孔隙结构冻融损伤试验研究[J]. 岩石力学与工程学报, 2012, 31(06): 1208-1214.(LI Jieling, ZHOU Keping, ZHANG Yaming, et al. Experimental study of rock porous structure damage characteristics under condition of freezing-thawing cycles based on nuclear magnetic resonance technique[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(06): 1208-1214. (in Chinese))

[80]聂晶. 复杂岩性储层核磁共振渗透率模型研究[D]. 北京: 中国石油大学, 2018.(NIE Jing. Study on NMR permeability models of complex lithology reservoir - case study of y reservoir in bohai bay[D]. Beijing: China University of petroleum, 2018.( in Chinese))

[81]贾志刚, 齐平, 李科, 等. 岩石毛细吸水试验新方法[J]. 长江科学院院报, 2015, 32(05): 95-99+104.(JIA Zhigang, qI Ping, LI Ke, et al. New approach in measuring capillary water absorption of rock[J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(05): 95-99+104.(in Chinese))

[82]Wu H, Zhou F, Wu Y. Intelligent identification system of flow regime of oil–gas–water multiphase flow[J]. International Journal of Multiphase Flow, 2001, 27(3): 459-475.

[83]Cieslinski J T, Mosdorf R. Gas bubble dynamics—experiment and fractal analysis[J]. International journal of heat and mass transfer, 2005, 48(9): 1808-1818.

[84]Fairhurst C E Hudson J.A.单轴压缩试验测定完整岩石应力—应变全曲线 ISRM建议方法草案[J].岩石力学与工程学报.2000,19(6):802-808.

中图分类号:

 TU458    

开放日期:

 2023-06-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式