论文中文题名: |
脱硫胶粉/SBS复合改性沥青及其混合料性能研究
|
姓名: |
杨法勇
|
学号: |
19204053024
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
081405
|
学科名称: |
工学 - 土木工程 - 防灾减灾工程及防护工程
|
学生类型: |
硕士
|
学位级别: |
工学硕士
|
学位年度: |
2022
|
培养单位: |
西安科技大学
|
院系: |
建筑与土木工程学院
|
专业: |
防灾减灾工程及防护工程
|
研究方向: |
废旧材料在道路沥青的循环再利用
|
第一导师姓名: |
李海滨
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2022-06-11
|
论文答辩日期: |
2022-06-05
|
论文外文题名: |
Study on the Properties of Desulfurized Rubber Powder/SBS Composite Modified Asphalt and the Performance of Its Mixture
|
论文中文关键词: |
橡胶沥青 ; 脱硫胶粉/SBS复合改性 ; 贮存稳定性 ; 改性机理 ; 路用性能
|
论文外文关键词: |
Asphalt rubber ; Desulfurized rubber powder/SBS compound modification ; Storage stability ; Modification mechanism ; Road performance
|
论文中文摘要: |
︿
橡胶沥青贮存稳定性差、施工烟气大,严重影响其进一步推广使用;SBS改性沥青应用广泛,但存在易老化及造价高等限制。为解决此难点痛点问题,本文综合胶粉脱硫以及胶粉/SBS复合等举措,以脱硫胶粉和SBS作为沥青改性剂材料,进行脱硫胶粉/SBS复合改性沥青及其混合料性能研究工作,主要内容如下:
(1)结合针入度、延度、软化点及黏度等指标,研究了脱硫胶粉/SBS复合改性沥青制备工艺及掺配比例,确定了复合改性沥青最佳掺配比:25%脱硫胶粉+2%SBS,最佳制备工艺:先加入SBS剪切后加入脱硫胶粉,制备温度175℃,剪切时间为50min。并对复合改性沥青基本性能、黏温特性、抗老化性能、贮存稳定性、流变性能及烟气排放进行对比研究,结果表明其具备优异的黏温特性、抗老化耐久性及流变性能,贮存稳定性得到进一步提升,SO2释放量较SBS改性沥青降低25%左右,NO2、NOX释放量降低超50%。
(2)对比分析复合改性沥青官能团变化和微观形态,结合胶粉表面形态,阐明其改性机理。复合改性沥青中脱硫胶粉与SBS改性剂均匀分散并相互交联,脱硫胶粉-SBS-沥青三相间界面模糊,发生溶胶-凝胶的变化,存在化学键变化与接枝反应,形成更为稳定的三维网状结构,其改性过程为物理共混与化学反应共存的相容稳定改性。
(3)验证了复合改性沥青AC-13和SMA-13混合料路用性能。结果表明复合改性沥青满足现行规范要求,具有优异高温抗车辙性,且在间断级配中更为显著,低温抗裂性略低于SBS改性沥青,水稳定性与SBS改性沥青相当,均达到90%以上。
﹀
|
论文外文摘要: |
︿
Rubber asphalt has poor storage stability and large construction smoke, which seriously affects its further promotion and use; SBS modified asphalt is widely used, but it has limitations such as easy aging and high cost. In order to solve this difficult and painful problem, combined with rubber powder desulfurization and rubber powder/SBS compounding measures, desulfurized rubber powder and SBS were adopted for the purpose of asphalt modification, and the performance of desulfurized rubber powder/SBS composite modified asphalt and its mixture was tested and analyzed. The main research contents were as follows:
(1) Combining penetration, ductility, softening point, and viscosity other indicators, these tests were combined to determine the preparation parameters of the desulfurized rubber powder/SBS composite modified asphalt as follows: desulfurized rubber crumb content of 25%, SBS content of 2%, the method of adding SBS for shearing and then adding desulfurized rubber powder, preparation temperature of 175℃, and shear time of about 50min. The basic performance, viscosity-temperature characteristics, anti-aging performance, storage stability, rheological properties and smoke emission of composite modified asphalt were compared and studied. The results showed that it had excellent viscosity-temperature characteristics, anti-aging durability and rheological properties. The storage stability was further improved, the SO2 emission was reduced by about 25% compared with the SBS modified asphalt, and the NO2 and NOX emissions were reduced by more than 50%.
(2) Comparative analysis results of the microscopic morphology and chemical distribution of functional groups of the composite modified asphalt, combined with the analysis of the surface morphology of the rubber powder and clarified its modification mechanism. In the composite modified asphalt, the desulfurization rubber powder and SBS modifier were uniformly dispersed and cross-linked with each other. The interface between the desulfurization rubber powder-SBS-asphalt was blurred, sol-gel changes occur, chemical bond changed and grafting reactions existed, and a more stable three-dimensional network structure was formed. The modification process was a compatible and stable modification in which physical blending and chemical reaction coexist.
(3) The road performance of the composite modified asphalt AC-13 and SMA-13 graded mixture was verified. The results showed that the composite modified asphalt met the current specifications, had excellent high-temperature rutting resistance, and was more prominent in the discontinuous gradation. The low-temperature crack resistance was slightly lower than that of the SBS modified asphalt, and the water stability was equivalent to that of the SBS modified asphalt, both reaching more than 90%.
﹀
|
参考文献: |
︿
[1] 交通运输部. 2021年交通运输行业发展统计公报[R]. 2022-05-25. [2] 崔新壮, 黄丹, 刘磊, 蓝日彦, 吕海波, 赵艳林, 曹卫东, 常成利. 沥青路面病害力学研究进展[J]. 山东大学学报(工学版), 2016, 46(05): 68-87. [3] 于华洋, 马涛, 王大为, 王朝辉, 吕松涛, 朱兴一, 刘鹏飞, 李峰, 肖月, 张久鹏, 罗雪, 金娇, 郑健龙, 侯越, 徐慧宁, 郭猛, 蒋玮. 中国路面工程学术研究综述·2020[J]. 中国公路学报, 2020, 33(10): 1-66. [4] 张健, 季正军, 李彬, 张军华, 胡家波. 橡胶沥青在道路工程中的应用综述[J]. 公路交通科技(应用技术版), 2019, 15(06): 21-23. [5] 鲁玉莹, 余黎明, 方洁, 云庆庆, 陆江银. 聚合物改性沥青的研究进展[J]. 化工新型材料, 2020, 48(04): 222-225+230. [6] 张恒龙, 徐国庆, 朱崇政, 吴超凡, 黄立葵. 长期老化对基质沥青与SBS改性沥青化学组成、形貌及流变性能的影响[J]. 长安大学学报(自然科学版), 2019, 39(02): 10-18+56. [7] 梁海文. SBS改性沥青老化行为研究进展及展望[J]. 合成材料老化与应用, 2018, 47 (05): 110-113. [8] 付彪. 让废旧轮胎变“黑色黄金”需多方给力[N]. 中国质量报, 2020-07-29(004). [9] 过震文, 琚利平, 于晓晓, 徐斌, 王仕峰. 干法直投胶粉改性沥青混合料的研究和应用进展[J]. 石油沥青, 2020, 34(04): 1-8. [10] Israel Rodríguez-Fernández, Farrokh Tarpoudi Baheri, Maria Chiara Cavalli, et al. Microstructure analysis and mechanical performance of crumb rubber modified asphalt concrete using the dry process[J]. Construction and Building Materials, 2020, 259. [11] 张晓亮, 陈华鑫, 张奔, 况栋梁. 不同来源橡胶粉对橡胶沥青性能影响[J]. 长安大学学报(自然科学版), 2018, 38(05): 1-8. [12] 何亮, 马育, 凌天清, 马涛, 黄晓明. 橡胶改性沥青及老化特征微观尺度分析[J]. 功能材料, 2015, 46(21): 21093-21098. [13] 肖飞鹏, 王涛, 王嘉宇, 苏宁义, 侯向导, 陈军, 刘继. 橡胶沥青路面降噪技术原理与研究进展[J]. 中国公路学报, 2019, 32(04): 73-91. [14] 房斌, 吴奇峰, 张争奇. 橡胶改性沥青存储稳定性及改善措施研究[J]. 公路, 2012 (03): 203-207. [15] 刘克非, 邓林飞, 郑佳宇, 蒋康. 废旧轮胎橡胶粉改性沥青结合料相容性评价研究[J]. 新型建筑材料, 2017, 44(05): 13-16. [16] 张琛, 汪海年, 尤占平, 李廉. 橡胶沥青混合料和易性与压实特性的相关性[J]. 东南大学学报(自然科学版), 2016, 46(01): 202-208. [17] 李澳. 橡胶沥青净味机理及性能评价[D]. 哈尔滨: 哈尔滨工业大学, 2020. [18] 习近平谈碳达峰碳中和[J]. 中国经济评论, 2021(05): 6-7. [19] 李洪斌. 橡胶粉复合改性沥青SBS改性剂及橡胶粉掺量的确定[A]. 中国公路学会养护与管理分会、中交公路规划设计院有限公司、中交第三公路工程局有限公司. 中国公路学会养护与管理分会第十届学术年会论文集[C]. 中国公路学会养护与管理分会、中交公路规划设计院有限公司、中交第三公路工程局有限公司: 中国公路学会养护与管理分会, 2020:6. [20] 熊伟, 王宏. TB(Terminal Blend)胶粉与SBS复合改性沥青混合料性能及改性机理[J]. 公路, 2017, 62(02): 192-200. [21] 董博. 脱硫胶粉改性沥青特性及其混合料性能研究[D]. 西安: 西安科技大学, 2020. [22] 宋亮, 王朝辉, 舒诚, 刘鲁清. SBS/胶粉复合改性沥青研究进展与性能评价[J]. 中国公路学报, 2021, 34(10): 17-33. [23] 韦大川, 王云鹏, 李世武, 邱雪鹏, 冉祥海, 姬相玲. 橡胶粉与SBS复合改性沥青路用性能与微观结构[J]. 吉林大学学报(工学版), 2008(03): 525-529. [24] Kyu-Dong Jeong, Soon-Jae Lee, Serji N. Amirkhanian, et al. Interaction effects of crumb rubber modified asphalt binders[J]. Construction and Building Materials, 2010, 24:824-831. [25] Ghavibazoo A, Abdelrahman M, Ragab M. Effect of crumb rubber modifier dissolution on storage stability of crumb rubber modified asphalt[J]. Transportation research record, 2013, 2370(1): 109-115. [26] Navarro F J, Partal P, Martınez-Boza F, et al. Thermo-rheological behaviour and storage stability of ground tire rubber modified bitumens[J]. Fuel, 2004, 83(14-15): 2041-2049. [27] Wang H, Apostolidis P, Zhu J, et al. The role of thermodynamics and kinetics in rubber–bitumen systems: a theoretical overview[J]. International Journal of Pavement Engineering, 2020: 1-16. [28] Ge D, Yan K, You Z, et al. Modification mechanism of asphalt binder with waste tire rubber and recycled polyethylene[J]. Construction and Building Materials, 2016, 126:66-76. [29] Kedarisetty S, Biligiri K P, Sousa J B. Advanced rheological characterization of reacted and activated rubber (RAR) modified asphalt binders[J]. Construction and Building Materials, 2016, 122: 12-22. [30] Xu M, Liu J, Li W, et al. Novel method to prepare activated crumb rubber used for synthesis of activated crumb rubber modified asphalt[J]. Journal of Materials in Civil Engineering, 2015, 27(5): 04014173. [31] Yu R, Gong Z, Guo W, et al. A novel grafting modified waste rubber powder as filler in natural rubber vulcanizates[J]. Journal of Applied Polymer Science, 2016, 133(6). [32] Tatangelo V, Mangili I, Caracino P, et al. Microbial desulfurization of ground tire rubber (GTR): Characterization of microbial communities and rheological and mechanical properties of GTR and natural rubber composites (GTR/NR)[J]. Polymer Degradation and Stability, 2019, 160: 102-109. [33] Asaro L, Gratton M, Poirot N, et al. Devulcanization of natural rubber industry waste in supercritical carbon dioxide combined with diphenyl disulfide[J]. Waste Management, 2020, 118: 647-654. [34] Filippelli L, Antunes F E, Gentile L, et al. Rheological performance and NMR structure investigation of ultrasound crumb rubber modified bitumen[J]. Technical Proceedings of the 2014, 2014: 214-217. [35] Kabir S F, Zheng R, Delgado A G, et al. Use of microbially desulfurized rubber to produce sustainable rubberized bitumen[J]. Resources, Conservation and Recycling, 2021, 164: 105144. [36] Presti D L, Izquierdo M A, del Barco Carrión A J. Towards storage-stable high-content recycled tyre rubber modified bitumen[J]. Construction and Building Materials, 2018, 172: 106-111. [37] I.M. Ibrahim, E.S. Fathy, M. El-Shafie, et al. Impact of incorporated gamma irradiated crumb rubber on theshort-term aging resistance and rheological properties of asphalt binder [J]. Construction and Building Materials, 2015, 81: 42-46. [38] Singh B., Kumarl., Gupta M., Chauhan M., et al. Effect of activated crumb rubber on the properties of crumb rubber modified bitumen [J]. Journal of Applied Polymer Science. 2013, 129(5): 2821-2831. [39] Sheng Y, Li H, Geng J, et al. Production and performance of desulfurized rubber asphalt binder[J]. International Journal of Pavement Research and Technology, 2017,10(3):262-273. [40] Shatanawi K., Biro S., Thodesen C. And Amirkhanian S. Effects of water activation of crumb rubber on the properties of crumb rubber modified binders [J]. International Journal of Pavement Engineering, 2009, 10(4): 289-297. [41] 关庆文, 王仕峰, 张勇, 张隐西. 脱硫胶粉改性沥青的研究[J]. 特种橡胶制品, 2009, 30(01): 28-30. [42] 何亮, 黄晓明, 马育, 庄大新, 马涛. 橡胶改性沥青储存稳定性试验研究[J].东南大学学报(自然科学版), 2011, 41(05): 1086-1091. [43] He L, Ma Y, Huang X, et al. Research on performance and microstructure of desulfurized rubber asphalt [J]. Journal of Building Materials, 2012, 02, 015. [44] 何青蓬, 陈辉强, 方源仁. 脱硫橡胶改性沥青的制备与性能研究[J]. 土木工程, 2017, 6(6): 7. [45] 董瑞琨, 戚昌鹏, 郑凯军, 赵梦珍. 高温裂解胶粉改性沥青的低温性能试验[J]. 中国公路学报, 2017, 30(10): 32-38. [46] 董瑞琨, 梁文兵, 唐乃膨, 赵梦珍. 废食用油预脱硫胶粉改性沥青组分与黏弹性研究[J]. 中国公路学报, 2019, 32(04): 226-234. [47] Zhao M, Dong R. Reaction mechanism and rheological properties of waste cooking oil pre-desulfurized crumb tire rubber/SBS composite modified asphalt[J]. Construction and Building Materials, 2021, 274: 122083. [48] Zhao M, Dong R, Chi Z, et al. Effect of process variables on the chemical characteristics of crumb rubber desulfurized by waste cooking oil and its desulfurization mechanism[J]. Construction and Building Materials, 2021, 311: 125361. [49] 况栋梁, 康秉铎, 刘文昌, 张洪刚. 脱硫工艺对胶粉改性沥青路用性能影响研究[J]. 公路, 2021, 66(11): 305-310. [50] Ma T, Zhao Y, Huang X, et al. Characteristics of desulfurized rubber asphalt and mixture [J]. KSCE Journal of Civil Engineering, 2016, 20(4): 1347-1355. [51] Ma T, Wang H, He L, et al. Property characterization of asphalt binders and mixtures modified by different crumb rubbers. Journal of Materials in Civil Engineering, 2017, 29(7): 04017036 [52] Wang C, Wang F, Zhang W. Research on road performance of desulfurized rubber asphalt and mixture[J]. Science Technology and Engineering, 2014, 525: 546-551. [53] 朱德滨. 脱硫胶粉沥青胶浆试验研究[J]. 公路工程, 2013, 38(04): 111-114. [54] 李海滨, 盛燕萍. 脱硫橡胶沥青试验研究[J]. 武汉理工大学学报, 2013, 35(05): 50-54. [55] Li H, Dong B, Zhao D, et al. Physical, rheological and stability properties of desulfurized rubber asphalt and crumb rubber asphalt[J]. Arabian Journal for Science and Engineering, 2019, 44(5): 5043-5056. [56] 张小利, 张文刚, 杜旭斌. 脱硫橡胶沥青及其混合料性能研究[J]. 科学技术与工程, 2013 (17): 284-287. [57] 李红, 王守斌. 活化橡胶粉改性沥青性能评价[J]. 公路, 2015(7): 247-251. [58] Qian C, Fan W, Yang G, et al. Influence of crumb rubber particle size and SBS structure on properties of CR/SBS composite modified asphalt[J]. Construction and Building Materials, 2020, 235: 117517. [59] Qian C, Fan W, Liang M, et al. Rheological properties, storage stability and morphology of CR/SBS composite modified asphalt by high-cured method[J]. Construction and Building Materials, 2018, 193: 312-322. [60] Fu Q, Xu G, Chen X, et al. Rheological properties of SBS/CR-C composite modified asphalt binders in different aging conditions[J]. Construction and Building Materials,2019,215:1-8. [61] Mao Y, Liu Y, Hao P W, et al. Process parameters of rubber powder particles modified asphalt[C]// Advanced Materials Research. Trans Tech Publications Ltd, 2014, 900:491-498. [62] 向丽. 废橡胶粉/SBS复合改性沥青的机理和性能研究[D]. 青岛: 中国石油大学(华东), 2011. [63] 姚鸿儒, 王仕峰, 曹亚东, 张勇, 张隐西. 基于等密度法的胶粉稳定SBS改性沥青[J]. 弹性体, 2015, 25(02): 1-6. [64] 姚鸿儒, 王仕峰, 张勇. SBS/胶粉复合改性中海沥青的热储存稳定性[J]. 高分子材料科学与工程, 2015, 31(06): 102-106+111. [65] 王笑风, 吕小武, 褚付克, 冯明林, 胡光胜. 不同类型橡胶粉与SBS复合改性沥青的性能特征分析[J]. 硅酸盐通报, 2019, 38(11): 3695-3702. [66] Zhang F, Hu C. The research for structural characteristics and modification mechanism of crumb rubber compound modified asphalts[J]. Construction and Building Materials, 2015, 76: 330-342. [67] 王仕峰, 吴晓羽, 杨思远, 姚鸿儒. 嵌入式胶粉复合SBS改性沥青的结构与性能[J]. 建筑材料学报, 2016, 19(03): 534-538. [68] Zhang J, Yao Z, Yu T, et al. Experimental evaluation of crumb rubber and polyethylene integrated modified asphalt mixture upon related properties[J]. Road materials and pavement design, 2019, 20(5-6):1413-1428. [69] Qian C, Fan W, Yang G, et al. Influence of crumb rubber particle size and SBS structure on properties of CR/SBS composite modified asphalt[J]. Construction and Building Materials, 2020, 235: 117517. [70] Lei Y, Wang H, Fini E H, et al. Evaluation of the effect of bio-oil on the high-temperature performance of rubber modified asphalt[J]. Construction and Building Materials, 2018, 191: 692-701. [71] Jin J, Tan Y, Liu R, et al. Synergy effect of attapulgite, rubber, and diatomite on organic montmorillonite modified asphalt[J]. Journal of Materials in Civil Engineering, 2019, 31(2):04018388.1-04018388.8. [72] Kim H H, Mazumder M, Lee M S, et al. Evaluation of high-performance asphalt binders modified with SBS, SIS, and GTR[J]. Advances in Civil Engineering, 2019, 2019. [73] Kim H H, Mazumder M, Lee M S, et al. Laboratory evaluation of SBS modified asphalt binder containing GTR, SIS, and PE[J]. Advances in Civil Engineering, 2020, 2020. [74] Behnood A, Olek J. Rheological properties of asphalt binders modified with styrene-butadiene-styrene (SBS), ground tire rubber (GTR), or polyphosphoric acid (PPA)[J]. Construction and Building Materials, 2017. [75] Ameri M, Reza Seif M, Abbasi M, et al. Viscoelastic fatigue resistance of asphalt binders modified with crumb rubber and styrene butadiene polymer[J]. Petroleum Science and Technology, 2017, 35(1): 30-36. [76] Rasool R T, Wang S, Zhang Y, et al. Improving the aging resistance of SBS modified asphalt with the addition of highly reclaimed rubber[J]. Construction & Building Materials, 2017, 145(AUG.1): 126-134. [77] Rasool R T, Song P, Wang S. Thermal analysis on the interactions among asphalt modified with SBS and different degraded tire rubber[J]. Construction and Building Materials, 2018, 182 (SEP.10): 134-143. [78] 李关龙, 王枫, 匡民明, 周晓龙. SBS/废胶粉复合改性沥青的性能[J]. 华东理工大学学报(自然科学版), 2016, 42(01): 21-27. [79] Wang Y, Zhan B C, Cheng J. Study on preparation process of SBS/crumb rubber composite modified asphalt[C]// Advanced Materials Research. Trans Tech Publications Ltd, 2012, 450: 417-422. [80] Tan Y, Guo M, Cao L, et al. Performance optimization of composite modified asphalt sealant based on rheological behavior[J]. Construction and Building Materials, 2013, 47: 799-805. [81] Tan Y, Guo M, Zhang L, et al. Performance optimization method of composite modified asphalt sealant[J]. Journal of Highway and Transportation Research and Development (English Edition), 2013, 7(2): 1-7. [82] Dong F, Yu X, Liu S, et al. Rheological behaviors and microstructure of SBS/CR composite modified hard asphalt[J]. Construction and Building Materials, 2016, 115: 285-293. [83] Meng G, Yiqiu T. Effects of various modifiers on rheological property of asphalt[M]// Multi-Scale Modeling and Characterization of Infrastructure Materials. Springer, Dordrecht, 2013: 343-356. [84] 刘勇, 顾兴宇, 李志刚, 武宝军. 胶粉/SBS复合改性沥青性能评价及改性机理[J]. 江苏大学学报(自然科学版), 2019, 40(01): 108-113. [85] 黄卫东, 颜川奇, 刘少鹏, 鄯增平, 肖飞鹏. 溶解性胶粉/SBS复合改性沥青低温性能评价[J]. 建筑材料学报, 2016, 19(06): 1088-1091. [86] Liu L, Liu Z, Li S. The preparation technology and performance study of SBS and rubber powder composite modified asphalt[C]// Applied Mechanics and Materials. Trans Tech Publications Ltd, 2013, 361: 1617-1620. [87] He R, Wu S, Wang X, et al. Temperature sensitivity characteristics of SBS/CRP modified bitumen after different aging processes[J]. Materials, 2018, 11(11): 2136. [88] Xiang L, Wang Z, Du Y, et al. Preparation technology and performance analysis of crumb rubber and sbs composite modified asphalt binder[C]//Advanced Materials Research. Trans Tech Publications Ltd, 2011, 160: 1320-1324. [89] Xiang L, Cheng J, Kang S. Thermal oxidative aging mechanism of crumb rubber/SBS composite modified asphalt[J]. Construction and Building Materials, 2015, 75: 169-175. [90] Qu L, Gao Y, Yao H, et al. Preparation and performance analysis of high-viscosity and elastic recovery modified asphalt binder[J]. Advances in Civil Engineering, 2019, 2019. [91] 刘斌, 胡省. 废橡胶粉/SBS复合改性沥青技术性能研究[J]. 公路工程, 2019, 44(06): 257-260. [92] Wu S, He R, Chen H, et al. Rheological properties of SBS/CRP composite modified asphalt under different aging treatments[J]. Materials, 2020, 13(21): 4921. [93] Zhou J, Chen X, Xu G, et al. Evaluation of low temperature performance for SBS/CR compound modified asphalt binders based on fractional viscoelastic model[J]. Construction and Building Materials, 2019, 214: 326-336. [94] Wang L, Xing Y, Chang C. Experamental study on temperature characteristic of compound crumb rubber modified asphalt and mixture[C]// Advanced Materials Research. Trans Tech Publications Ltd, 2012, 446: 3647-3651. [95] Qiao X, Li X, Wei D. Research on rubber/SBS modified asphalt by MSCR test[C]// Advanced Materials Research. Trans Tech Publications Ltd, 2012, 557: 1066-1069. [96] LI Y. Application of waste rubber powder/SBS double compound modified asphalt in xining south beltway[J]. DEStech Transactions on Environment, Energy and Earth Sciences, 2019 (peems). [97] 于丽梅, 陈志国. 废旧胶粉与SBS复合改性沥青稳定性分析[J]. 公路, 2019, 64 (07): 267-270. [98] 包建业. 胶粉对SBS改性沥青流变特性及微观结构的影响[J]. 中外公路, 2019, 39(03): 251-255. [99] Zhao W, Xie X, Li G, et al. Research on the influence of nanocarbon / copolymer SBS / rubber powder composite modification on the properties of asphalt and mixtures[J]. Advances in Materials Science and Engineering, 2020. [100] Wang S, Cheng D, Xiao F. Recent developments in the application of chemical approaches to rubberized asphalt[J]. Construction and Building Materials, 2017, 131: 101-113. [101] Wang L, Hu J, Chen G. Microstructure and temperature characterization of compound crumb rubber modified asphalt[C]// Advanced Materials Research. Trans Tech Publications Ltd, 2014, 1052: 382-386. [102] 才洪美, 王鹏, 王涛, 张玉贞. 沥青中潜在的有害组分环境污染研究综述[J]. 石油沥青, 2009, 23(02):1-8. [103] 吴晓颖, 刘树华, 张建峰, 李志军, 宁爱民. 沥青烟气治理技术研究现状与进展[J]. 石油沥青, 2021, 35(01):1-5. [104] 王鹏飞, 王亚萍, 孙吉书. 不同添加剂对沥青抑烟效果影响的试验研究[J/OL]. 安全与环境学报:1-10[2022-03-29]. DOI:10.13637/j.issn.1009-6094.2021.0301. [105] Wen Y, Wang Y, Zhao K, et al. The engineering, economic, and environmental performance of terminal blend rubberized asphalt binders with wax-based warm mix additives[J]. Journal of Cleaner Production, 2018:985-1001. [106] Almeida Costa A, Benta A. Economic and environmental impact study of warm mix asphalt compared to hot mix asphalt[J]. Journal of Cleaner Production, 2016, 112 (JAN.20PT.4) :2308-2317. [107] Pouranian M R, Notani M A, Tabesh M T, et al. Rheological and environmental characteristics of crumb rubber asphalt binders containing non-foaming warm mix asphalt additives[J]. Construction and Building Materials, 2020, 238: 117707. [108] 贺海, 王朝辉, 刘志胜, 王新岐. 新型无机阻燃改性沥青的制备与路用性能研究[J]. 公路交通科技, 2014, 31(07):45-52. [109] 周凯, 刘洪磊, 王海赞, 杨慧丽, 牛小虎. 一种易融无臭废旧轮胎橡胶粉改性剂[P]. 河南:CN106009725A, 2016-10-12. [110] 李晓琛. 橡胶沥青加工设备与环保橡胶沥青研发[D]. 广州: 华南理工大学, 2016. [111] Espinoza J, Medina C, Calabi-Floody A, et al. Evaluation of reductions in fume emissions (VOCs and SVOCs) from warm mix asphalt incorporating natural zeolite and reclaimed asphalt pavement for sustainable pavements[J]. Sustainability, 2020, 12(22): 9546. [112] 李立平. 橡胶沥青VOCs的释放特性及抑制方法研究[D]. 武汉: 武汉理工大学, 2017. [113] JTG F40-2004, 公路沥青路面施工技术规范[S]. 北京, 人民交通出版社, 2004. [114] JTG E20-2011, 公路工程沥青及沥青混合料试验规程[S]. 北京, 人民交通出版社, 2011. [115] DB61 T1021-2016, 橡胶沥青路面施工技术规范[S]. 陕西, 陕西省质量技术监督局, 2016. [116] DB61 T1302-2019, SBS-胶粉复合改性沥青路面施工技术规范[S]. 陕西, 陕西省质量技术监督局, 2019. [117] Q/320281ZHHB05-2019, 速溶高胶合金沥青改性材料[S]. 江苏, 江苏中宏环保科技有限公司, 2019. [118] JTG E42-2005, 公路工程集料试验规程[S]. 北京, 人民交通出版社, 2005. [119] 杨光. 季冻区工厂化废橡胶粉/SBS复合改性沥青(CR/SBSCMA)及混合料性能研究[D]. 西安: 长安大学, 2016.
﹀
|
中图分类号: |
U414
|
开放日期: |
2022-06-13
|