论文中文题名: | 冻融砂岩损伤演化与受载破裂特征细观模拟研究 |
姓名: | |
学号: | 21204228064 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085900 |
学科名称: | 工学 - 工程 - 土木水利 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2024 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 岩石力学与工程应用 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2024-06-14 |
论文答辩日期: | 2024-06-07 |
论文外文题名: | Microscopic Simulation Study on Damage Evolution and Load-induced Fracture Characteristics of Freeze-thaw Sandstone |
论文中文关键词: | |
论文外文关键词: | Freeze-thaw cycles ; uniaxial compression ; CT scanning ; particle flow ; mesoscopic damage ; fracture evolution |
论文中文摘要: |
随着寒区资源的不断开发与利用,岩体工程稳定性问题日益凸显,尤其是冻融作用诱发的岩石失稳给寒区工程带来了极大的危害。冻融循环造成的岩石破坏主要是受温度作用的影响,使得孔隙水发生反复相变导致体积胀缩,从而在岩石内部产生一定的冻胀压力,冻胀力的周期性作用使岩石内部孔隙增多,引起岩石疲劳损伤。因此,如何更好的认识冻融循环作用下岩石细观损伤演化与破坏行为至关重要。本文以砂岩为研究对象,在开展室内试验的基础上,借助颗粒流数值模拟手段,建立一种水冰颗粒相变耦合膨胀方法,通过构建冻融砂岩数值模型,实现岩石冻融过程模拟,揭示了冻融作用下岩石细观损伤累积发展过程,并对冻融砂岩受载过程进行模拟,深入研究了冻融岩石受载破裂演化行为。主要研究内容和结论如下: (1)开展饱水砂岩试样冻融试验,而后采用CT扫描技术对不同冻融循环次数处理后的试样进行测试,并通过单轴压缩试验获取不同冻融次数下试样力学参数。试验结果表明:受冻融循环影响,试样物理性质劣化显著,各力学参数均呈现不同程度衰减,冻融过程导致试样内部损伤累积逐渐增加;冻融全周期过程中细观损伤主要集中出现在试样外围,局部区域劣化严重,冻融损伤后期呈现加速劣化。 (2)借助颗粒流程序对平行黏结模型中的细观参数进行敏感性分析,并建立冻融砂岩数值模型,模拟岩石冻融循环过程。数值结果表明:冻融循环过程中,拉伸微裂纹占主导地位,细观微裂纹呈“先慢后快”趋势演化,且外围微裂纹密度大于内部。另外,随着冻融循环次数增加,微裂纹呈现由外部向内部发育趋势;试样外围岩石颗粒位移较内部更显著,局部区域损伤累积不断增加,从而导致试样承载能力大幅下降。模拟结果可以更直观的反映出岩石在冻融条件下的损伤累积过程,且与室内试验所观察到的一致,验证了数值结果的合理性。 (3)基于所建立的冻融砂岩数值模型,进行单轴压缩受载过程分析,结合数值得到的结果对冻融砂岩受载破裂机制简要探讨。研究结果表明:试样受载产生的细观微裂纹呈“慢→缓→陡”发展,冻融循环次数与受载产生的微裂纹数量呈正相关,但与微裂纹起裂应力却呈负相关;冻融砂岩受载过程中细观能量演化经历四个阶段:能量输入阶段、能量累积阶段、能量耗散阶段和能量释放阶段,且随着冻融循环次数增加,冻融砂岩边界能与总应变能不断降低,黏结能和颗粒应变能变化趋势基本一致,摩擦能与阻尼能均在失稳破坏前,出现突增现象;冻融砂岩受载破裂时,微裂纹分布、位移场、力链场均表现出明显的局部化特征,冻融作用致使试样内部微裂纹扩展发育路径形式多样,由拉伸机制主导破裂转变为拉剪或剪拉混合机制主导。 综上,本文在开展室内试验的基础上,借助颗粒流模拟手段从细观角度出发探究冻融砂岩损伤演化与受载破裂行为,研究方法与结论以期为探索冻融岩石破坏行为与失稳预测提供新的参考。 |
论文外文摘要: |
With the continuous development and utilization of resources in cold regions, the stability issues of rock engineering have become increasingly prominent, especially the instability of rocks induced by freeze-thaw actions, which poses great harm to engineering in cold regions. The damage to rocks caused by freeze-thaw cycles is mainly due to the influence of temperature changes, which cause the repeated phase changes of water in the pores, leading to volume expansion and contraction, thereby generating certain frost heave pressures within the rocks. The cyclical action of frost heave increases the internal pores of rocks, causing fatigue damage to the rocks. Therefore, it is crucial to better understand the microscopic damage evolution and failure behavior of rocks under freeze-thaw cycles in cold regions. This study focuses on sandstone. Based on laboratory experiments and using numerical simulation methods of particle flow to establish a method for simulating the phase change and coupling expansion of water-ice particles. By constructing a numerical model of freeze-thaw sandstone, the study simulates the freeze-thaw process of rocks. This method reveals the accumulation and development process of microscopic damage in rocks under freeze-thaw actions. Additionally, by simulating the loading process of freeze-thaw sandstone, the study delves into the evolution of fracture behavior in rocks under load. The main research contents and conclusions are as follows: (1) Conducting freeze-thaw tests on saturated sandstone samples, then using CT scanning technology to test the samples after different numbers of freeze-thaw cycles, and obtaining the mechanical parameters of the samples under different freeze-thaw cycles through uniaxial compression tests. The experimental results show that the physical properties of the samples deteriorate significantly under the influence of freeze-thaw cycles, and all mechanical parameters show varying degrees of attenuation. The freeze-thaw process leads to gradual accumulation of internal damage in the samples. Microscopic damage during the entire freeze-thaw cycle process mainly occurs at the periphery of the samples, where localized degradation is severe, and late-stage freeze-thaw damage shows accelerated weathering. (2) By using the particle flow program to perform sensitivity analysis of the microscopic parameters in the parallel bonding model, and establishing a numerical model of freeze-thaw sandstone to simulate the rock freeze-thaw cycle process. The numerical results show that during the freeze-thaw cycle process, tensile microcracks dominate, and the evolution of microscopic microcracks shows a "slow to fast" trend, with higher microcrack density at the periphery than the interior, and with an increase in the number of freeze-thaw cycles, microcracks tend to develop from the external to the internal; the displacement of rock particles at the periphery of the sample is more significant than that at the interior, and the accumulation of damage in local areas continues to increase, leading to a significant decrease in the bearing capacity of the sample. The simulation results vividly reveal the process of internal damage accumulation of rocks under freeze-thaw action, and are consistent with what is observed in indoor experiments, validating the rationality of the numerical results. (3) Based on the established numerical model of freeze-thawed sandstone, an analysis of the uniaxial compression loading process is conducted, and the mechanism of fracture under loading of freeze-thawed sandstone is briefly discussed based on the numerical results. The research results show that the development of microscopic microcracks generated by loading of the samples shows a "slow → gradual → steep" trend, and the number of microcracks generated by loading is positively correlated with the number of freeze-thaw cycles, but negatively correlated with the stress at which microcracks initiate. During the loading process of freeze-thawed sandstone, the evolution of microscopic energy undergoes four stages: energy input stage, energy accumulation stage, energy dissipation stage, and energy release stage. With the increase of freeze-thaw cycles, the boundary energy and total strain energy of freeze-thawed sandstone decrease continuously. The trends of bond energy and particle strain energy are basically the same, and the frictional energy and damping energy both exhibit a sudden increase before unstable failure. When freeze-thawed sandstone fails under loading, the distribution of microcracks, displacement field, and force chain field all exhibit obvious localization characteristics. Freeze-thaw actions cause various paths of internal microcrack extension and development in samples, transforming from a mechanism dominated by tensile fracture to one dominated by tensile-shear or shear-tensile hybrid mechanisms. In summary, based on indoor experiments, this study systematically analyzes the freeze-thaw cycle process and the evolution of fracture behavior under loading of sandstone from a microscopic perspective using particle flow simulation technology. The research methods and conclusions can provide new references for exploring the failure behavior and instability prediction of freeze-thaw rocks. |
参考文献: |
[1]周幼吾, 郭东信, 邱国庆, 等. 中国冻土[M]. 北京: 科学出版社, 2000: 1-10. [2]张立新, 徐学祖, 王家澄. 冻土物理学[M]. 北京: 科学出版社, 2001. [3]陈卫忠, 谭贤君, 于洪丹, 等. 低温及冻融循环下岩体热、水、力特性研究进展与思考[J]. 岩石力学与工程学报. 2011, 30(7): 1 318-1 336. [4]彭建兵, 崔鹏, 庄建琦. 川藏铁路对工程地质提出的挑战[J]. 岩石力学与工程学报, 2020, 39(12): 2377-2389. [5]汤明高, 许强, 邓文锋等. 冻融及加卸荷条件下川藏交通廊道典型岩石力学特性的劣化规律[J].地球科学, 2022, 47(06): 1917-1931. [7]邹雪晴. 高寒山区岩质边坡冻融孕灾时效特征研究[D]. 成都理工大学, 2017. [8]常治国. 力-温度场作用下裂隙岩体损伤机理及边坡时效稳定性分析[D]. 中国矿业大学, 2019. [13]郑广辉, 许金余, 王鹏, 等. 冻融循环作用下层理砂岩物理特性及劣化模型[J]. 岩土力学, 2019, 40(02): 632-641. [14]刘波, 马永君, 盛海龙, 等. 白垩系红砂岩冻结融化后的力学性质试验研究[J]. 岩土力学, 2019, 40(S1): 161-171. [22]乔趁, 李长洪, 王宇, 等. 冻融循环作用下中部锁固岩桥破坏试验研究[J]. 岩石力学与工程学报, 2020, 39(6): 1 094-1 103. [26]张慧梅, 杨更社. 冻融岩石损伤劣化及力学特性试验研究[J]. 煤炭学报, 2013, 38(10): 1756-1762. [27]奚家米, 付垒, 贾晓峰, 等. 不同冻融状态下白垩系常见岩层物理力学特性对比分析[J]. 西安科技大学学报, 2018, 38(02): 253-259. [28]郑广辉, 许金余, 王鹏, 等. 冻融循环作用下层理砂岩物理特性及劣化模型[J]. 岩土力学, 2019, 40(02): 632-641. [29]刘波, 马永君, 盛海龙, 等. 白垩系红砂岩冻结融化后的力学性质试验研究[J]. 岩土力学, 2019, 40(S1): 161-171. [30]宋彦琦, 马宏发, 刘济琛, 等. 冻融灰岩单轴声发射损伤特性试验研究[J]. 岩石力学与工程学报, 2022, 41(S1): 2603-2614. [32]陈国庆, 李阳, 陈亚烽, 等. 不同岩性的裂隙岩石破裂热-声敏感性分析[J]. 岩石力学与工程学报, 2022, 41(10): 1945-1957. [34]魏建平, 孙刘涛, 王登科, 等. 温度冲击作用下煤的渗透率变化规律与增透机制[J]. 煤炭学报, 2017, 42(08): 1919-1925. [37]张艳博, 徐跃东, 刘祥鑫, 等. 基于CT的岩石三维裂隙定量表征及扩展演化细观研究[J]. 岩土力学, 2021, 42(10): 2659-2671. [38]王宇, 杨浩男, 易雪枫, 等. 增幅疲劳荷载作用下含双裂隙花岗岩空心圆柱破裂演化试验研究[J]. 岩石力学与工程学报, 2022, 41(07): 1325-1337. [45]杨更社, 蒲毅彬. 冻融循环条件下岩石损伤扩展研究初探[J]. 煤炭学报, 2002(04): 357-360. [46]杨更社, 张全胜, 蒲毅彬. 冻结温度影响下岩石细观损伤演化CT扫描[J]. 长安大学学报(自然科学版), 2004(06): 40-42+46. [47]刘杰, 张瀚, 王瑞红, 等. 冻融循环作用下砂岩层进式损伤劣化规律研究[J]. 岩土力学, 2021, 42(05): 1381-1394. [48]张慧梅, 慕娜娜. 基于三维重构的冻融岩石细观损伤研究[J]. 力学与实践, 2021, 43(05): 687-694. [49]宋勇军, 杨慧敏, 谭皓, 等. 冻融环境下不同饱和度砂岩损伤演化特征研究[J]. 岩石力学与工程学报, 2021, 40(08): 1513-1524. [52]杨昊. 饱冰裂隙岩体力学特性及破坏形态试验研究[D]. 中国矿业大学(北京), 2015. [54]荣腾龙, 申艳军, 杨更社, 等. 冻融过程中岩石内部热传导弛豫特性研究[J]. 采矿与安全工程学报, 2019, 36(01): 207-214. [58]鲍硕超. 吉林西部季冻盐渍士冻胀特性及三维颗粒流数值模拟[D]. 吉林大学. 2015. [59]许珊. 水泥混凝土冻融机理的离散元分析[D]. 大连理工大学, 2020. [60]黄灵芝, 柯梅尉, 司政, 等. 冻融损伤混凝土单轴压缩细观破坏研究[J]. 应用力学学报, 2021, 38(04): 1400-1407. [68]周洋诗琦, 赵兰浩, 邵琳玉, 等. 可变形圆化多边形离散单元法[J]. 岩土力学, 2022, 43(7): 1961-1968, 1977. [71]国际岩石力学学会(ISRM)[J]. 岩石力学与工程学报, 1982,(01): 141-142. [72]陈仁升, 康尔泗, 吴立宗, 等. 中国寒区分布探讨[J]. 冰川冻土, 2005, (04): 469-475. [73]中国电力企业联合会. GB/T 50266―2013 工程岩体试验方法标准[S]. 北京: 中国计划出版社, 2013. [74]杨慧敏. 基于CT扫描的不同饱和度砂岩冻融损伤机理试验研究[D]. 西安科技大学, 2021. [75]FAIRHURST C E, HUDSON J A. 单轴压缩试验测定完整岩石应力-应变全曲线ISRM建议方法草案[J]. 岩石力学与工程学报, 2000, 19(6): 802-808. [76]谭皓. 冻融裂隙砂岩细观损伤机制及单轴破坏特征研究[D]. 西安科技大学, 2022. [78]吕全纲. 锦屏一级大理岩时效变形破裂规律及细观演化机理[D]. 长江科学院, 2014. [83]刘泉声, 黄诗冰, 康永水, 等. 低温饱和岩石未冻水含量与冻胀变形模型研究[J]. 岩石力学与工程学报, 2016, 35(10): 2000-2012. [84]严健, 何川, 曾艳华, 等. 高海拔特长隧道低温大风环境及对围岩-结构温度场的影响[J]. 中国公路学报, 2019, 32(11): 192-201. [85]邓树新, 郑永来, 冯利坡, 等. 试验设计法在硬岩PFC3D模型细观参数标定中的应用[J]. 岩土工程学报, 2019, 41(04): 655-664. [95]贾蓬, 毛松泽, 孙占阳, 等. 冻融损伤砂岩的能量演化及分段本构模型[J]. 中南大学学报(自然科学版), 2023, 54(03): 908-919. [96]王浩然. 静动荷载作用下大理岩力学特性及其损伤演化机理研究[D]. 合肥工业大学, 2022. [97]文兴祥. 非贯通节理砂岩能量损伤演化机制及自我抑制演化模型研究[D]. 重庆大学, 2020. [99]谭皓, 宋勇军, 郭玺玺, 等. 冻融裂隙砂岩细观损伤与应变局部化研究[J]. 岩石力学与工程学报, 2022, 41(12): 2485-2496. [104]刘慧, 杨更社, 申艳军, 等. 冻融–受荷协同作用下砂岩细观损伤演化CT可视化定量表征[J]. 岩石力学与工程学报, 2023, 42(05): 1136-1149. |
中图分类号: | TU458 |
开放日期: | 2024-06-14 |