- 无标题文档
查看论文信息

论文中文题名:

 鄂尔多斯盆地东北缘火烧岩成因分类及物性演变    

姓名:

 王少飞    

学号:

 18109071007    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0818    

学科名称:

 工学 - 地质资源与地质工程    

学生类型:

 博士    

学位级别:

 工学博士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质资源与地质工程    

研究方向:

 岩土体稳定与地质灾害防治    

第一导师姓名:

 王念秦    

第一导师单位:

 西安科技大学    

第二导师姓名:

 孙强    

论文提交日期:

 2022-06-20    

论文答辩日期:

 2022-06-02    

论文外文题名:

 Genetic classification and physical property evolution of burnt rock in northeast margin of Ordos Basin    

论文中文关键词:

 火烧岩 ; 成因分类 ; 温度识别 ; 物性演变 ; 水工环效应    

论文外文关键词:

 Burnt rock ; Genetic classification ; Temperature identification ; Physical evolution ; Hydrogeological - engineering - environmental geological effect    

论文中文摘要:

火烧岩作为煤层自燃的重要产物,在中国西北地区广泛分布,其内部丰富的孔裂隙不仅影响地下水运移和生态环境变迁,还会加剧地质灾害的发生。本文以鄂尔多斯盆地东北缘火烧岩为研究对象,在野外地质调查的基础上,结合典型火烧岩地层剖面特征,划定火烧岩分布范围,分析火烧岩成因及其演化过程,建立火烧岩成岩模式。对火烧岩色度、孔隙结构、磁化率、导热性、强度等物理力学特征进行研究,同时根据火烧岩烧变温度和微观结构损伤识别方法,明确火烧岩类型,并揭示其岩体质量特征,进而阐明火烧岩区地质灾害效应与生态环境效应问题。

通过研究取得以下主要结论与认识:

(1)阐明了鄂尔多斯盆地东北缘火烧岩分布规律及地质成因。基于煤系地层特征和现场地质调查,将研究区火烧岩划分为侏罗系火烧岩和石炭-二叠系火烧岩2个区。侏罗系火烧岩区西部边界与萨拉乌苏组含水层界限相吻合,北部边界位于伊盟隆起南翼,南部主要处于陕北斜坡东北角的黄土梁峁地貌区;石炭-二叠系火烧岩区主要处于研究区内黄河两岸的石炭-二叠系地层上部,地貌形态为中山、中低山。研究区主要构造有陕北斜坡、晋西挠褶带和伊盟隆起,燕山运动与喜马拉雅造山运动的强烈作用使研究区东部褶皱形成和伊盟隆起快速抬升,在黄河及其支流水系下切、剥蚀作用下,侏罗系上部煤层和石炭-二叠煤层出露地表,煤层发生多期燃烧,形成火烧岩。

(2)利用声发射热Kaiser效应对研究区火烧岩曾经历的历史最高温度进行了识别,提出了鄂尔多斯盆地东北缘火烧岩分类及成岩模式,将火烧岩分为烘烤岩、烘变岩、烧结岩和烧熔岩4类,其中烘烤岩的形成温度小于300℃,烘变岩的形成温度为300℃~1000℃,烧结岩和烧熔岩的形成温度高于1000℃;烘烤岩与烘变岩距火源大于5m,岩石结构构造与成分等变化较小,烧结岩的成岩模式包括“垮落-粘结式”和“断层-粘结式”2种成岩模式,烧熔岩具有“接触面烧熔”和“裂隙带烧熔”2种成岩模式。

(3)结合7处野外典型剖面地质调查,通过鄂尔多斯盆地东北缘火烧岩物理力学特性分析,得到明确结论:鄂尔多斯盆地东北缘火烧岩色度随着烧变程度的增加,岩体色度逐渐加深,磁化率逐渐升高,而导热系数则显著降低;从烘烤岩到烘变岩,岩石的有效孔隙增多,渗透率增大,岩石的密度降低,抗拉强度和抗压强度有所提高;火烧岩随着水岩作用循环次数的增加而质损率较小且变化较小。

(4)根据火烧岩岩体质量特征,揭示了鄂尔多斯盆地东北缘火烧岩区地质灾害效应。随着烧变程度的加深,火烧岩岩体的节理裂隙发育程度加强,岩体结构从层状变成碎裂状,岩体质量降低,易于产生滑坡、崩塌、地面沉降与塌陷,采用离散元方法进行了验证。且侏罗系火烧岩区地质灾害、生态环境破坏和矿井水害效应更加明显。

论文外文摘要:

As an important product of coal seam spontaneous combustion, burnt rock is widely distributed in northwestern China. Its rich pores and fissures not only affect groundwater migration and ecological environment change, but also exacerbate geological disasters. In this paper, the burnt rock in the northeastern margin of Ordos Basin is taken as the research object. On the basis of field geological survey, combined with the characteristics of typical burnt rock stratigraphic section, the distribution range of burnt rock is delineated, the genesis and evolution process of burnt rock are analyzed, and the diagenetic model of burnt rock is established. Through laboratory tests, the physical and mechanical characteristics of burnt rock, such as chromaticity, pore structure, magnetic susceptibility, thermal conductivity and strength, are studied. At the same time, according to the burnt temperature and microstructure damage identification method of burnt rock, the types of burnt rock are clarified, and the quality characteristics of rock mass are revealed, so as to clarify the geological disaster effect and ecological environment effect in burnt rock area.

The main conclusions and understandings are as follows :

(1) The distribution law and geological origin of burnt rock in the northeastern margin of Ordos Basin are clarified. Based on the characteristics of coal measures strata and field geological survey, the study area is divided into Jurassic and Carboniferous-Permian burnt rocks. The western boundary of Jurassic burnt rock area coincides with the boundary of Salawusu aquifer. The northern boundary is located in the south wing of Yimeng uplift, and the southern boundary is mainly located in the loess hilly landform area in the northeast corner of northern Shaanxi slope. The Carboniferous-Permian burnt rock area is mainly located in the upper part of the Carboniferous-Permian strata on both sides of the Yellow River in the study area, and the landforms are medium mountains and medium-low mountains. The main structures in the study area are northern Shaanxi slope, western Shanxi flexure zone and Yimeng uplift. The strong action of Yanshan movement and Himalayan orogenic movement makes the fold formation in the eastern part of the study area and the rapid uplift of Yimeng uplift. Under the cutting and denudation of the Yellow River and its tributaries, the upper Jurassic coal seam and the Carboniferous-Permian coal seam are exposed to the surface, and the coal seam is multi-stage combustion, forming burnt rock.

(2) The Kaiser effect of acoustic emission heat was used to identify the historical maximum temperature experienced by the burnt rock in the study area, and the classification and diagenetic model of burnt rock in the northeastern margin of Ordos Basin were proposed.The burnt rocks are divided into four categories : baked rock, baked metamorphic rock, sintered rock and burnt lava. The formation temperature of baked rocks is less than 300 °C, the formation temperature of baked metamorphic rocks is 300°C~1000°C, and the formation temperature of sintered rock and burnt lava is higher than 1000°C.When the distance between the baked rock and baked metamorphic rocks is greater than 5m from the fire source, the change of rock structure and composition is small. The diagenetic models of sintered rocks include two types of diagenetic models: “caving-bonding” and “fault-bonding”. The burnt lava has two diagenetic models of “contact surface melting” and “fracture zone melting”.

(3) Combined with the geological survey of seven typical field profiles, through the analysis of physical and mechanical properties of pyroclastic rocks in the northeastern margin of Ordos Basin, it is concluded that : With the increase of the degree of burnt rock in the northeastern margin of Ordos Basin, the color of the rock gradually deepened, the magnetic susceptibility gradually increased, and the thermal conductivity significantly decreased. From roasted rock to roasted rock, the effective porosity of rock increases, the permeability increases, the density of rock decreases, and the tensile strength and compressive strength increase. With the increase of water-rock interaction cycles, the mass loss rate of burnt rock is small and the change is small.

(4) According to the quality characteristics of burnt rock mass, the geological disaster effect of burnt rock area in the northeastern margin of Ordos Basin is revealed. With the deepening of the degree of burnt rock, the degree of joint fracture development of burnt rock mass is strengthened, the rock mass structure changes from layered to fragmented, the rock mass quality is reduced, and it is easy to produce landslide, collapse, land subsidence and collapse. The discrete element method is used to verify. The geological disasters, ecological environment damage and mine water damage effect in Jurassic burnt rock area are more obvious.

参考文献:

[1] 王双明. 鄂尔多斯盆地构造演化规律和构造控煤分析; 全国矿田构造与地质找矿理论方法研讨会, F, 2010 [C].

[2] 杜中宁, 党学亚, 卢娜. 陕北能源化工基地烧变岩的分布特征及水文地质意义 [J]. 地质通报, 2008, 27(8): 1168-1172.

[3] 金之钧. 中国前中生代海相烃源岩发育的构造—沉积条件 [J]. 沉积学报, 2010, 28(5): 875-883.

[4] 周扬, 吴文祥, 胡莹, 等. 西北地区太阳能资源空间分布特征及资源潜力评估 [J]. 自然资源学报, 2010, 25(10): 1738-1749.

[5] 刘海燕, 方创琳, 蔺雪芹. 西北地区风能资源开发与大规模并网及非并网风电产业基地建设 [D], 2008.

[6] 王双明. 鄂尔多斯盆地构造演化和构造控煤作用 [J]. 地质通报, 2011, (04): 544-552.

[7] 邓军, 徐精彩, 陈晓坤. 煤自燃机理及预测理论研究进展 [J]. 辽宁工程技术大学学报, 2003, 22(4): 455-459.

[8] 孙云博. 神华神木引水隧洞火烧岩的工程地质特性及工程地质问题 [J]. 地下水, 2004, 26(2): 149.

[9] 范立民. 论陕北煤炭资源的适度开发问题 [J]. 中国煤田地质, 2004, 16(2): 5-7.

[10] 孙云博, 孙文植, 焦振华. 陕北烧变岩的工程地质特征 [J]. 三峡大学学报(自然科学版), 2019, 41(51): 71-73.

[11] 陈彬. 中国西北地区侏罗系中烧变岩的特征, 形成时代及地质意义 [D]. 成都: 成都理工大学, 2021.

[12] 刘鹏. 煤火区烧变岩火山灰活性及浆液流变性能研究 [D]. 徐州: 中国矿业大学, 2020.

[13] 王念秦, 王永锋, 王得楷. 甘肃矿山生态地质环境现状综合评价分区研究 [J]. 水土保持研究, 2009, 016(005): 225-228,232.

[14] 张跃恒, 李斌, 王一霖, 等. 大柳塔煤矿活鸡兔井束鸡沟小窑延安组烧变岩地质特征及地质灾害防治 [J]. 中国煤炭地质, 2020, 32(10): 47-45.

[15] 侯恩科, 张萌, 孙学阳, 等. 浅埋煤层开采覆岩破坏与导水裂隙带发育高度研究 [J]. 煤炭工程, 2021, 53(11): 102-107.

[16] Stracher GB, Prakash A, Rein G. Coal and Peat Fires: A Global Perspective [J]. Coal & Peat Fires A Global Perspective, 2013, 115(5): 537–540.

[17] Glass GB. Wyoming's Powder River Basin — Geology and geography of the nation's largest coal field [J]. Fuel & Energy Abstracts, 1994, 36(3): 173.

[18] Severding WH, Pence TC. Geology and reservoir characteristics of Moran field, Powder River basin, Wyoming [J]. Am Assoc Pet Geol, Bull; (United States), 1986, 70:8(8): 1055-1056.

[19] Oparin VN, Cheskidov VI, Bobyl’sky AS, et al. The sound subsoil management in surface coal mining in terms of the Kansk-Achinsk coal basin [J]. Journal of Mining Science, 2012, 48(3): 585-594.

[20] Kruk NN, Plotnikov AV, Vladimirov AG, et al. Geochemistry and geodynamic conditions of the trap rock formation in the Kuznetsk Basin [J]. Doklady Earth Sciences, 1999, 369: 1387-1390.

[21] Radan SC, Maria R. Rock magnetism and paleomagnetism of porcelanites/clinkers from the western Dacic Basin (Romania) [J]. Geologica Carpathica, 1998, 49(3): 209-211.

[22] F., C., Loughnan, et al. The natural conversion of ordered kaolinite to halloysite (10A degrees ) at Burning Mountain near Wingen, New South Wales [J]. American Mineralogist, 1981, 66(9-10): 997-1005.

[23] Singh TN, Pradhan SP, Vishal V. Stability of slopes in a fire-prone mine in Jharia Coalfield, India [J]. Arabian Journal of Geoences, 2013, 6(2): 419-427.

[24] Eijk PV, Leenman P, Wibisono I, et al. Regeneration and restoration of degraded peat swamp forest in Berbak NP, Jambi, Sumatra, Indonesia [J]. Malayan Nature Journal, 2009, 61(3): 223-241.

[25] Novikova SA, Murzintsev NG, Travin AV, et al. A New Approach to 40Ar/39Ar Dating of Combustion Events: A Case Study from the Late Pleistocene Coal Fires in Goose Lake Depression (Transbaikalia) [J]. Doklady Earth Sciences, 2018, 483(2): 1567-1570.

[26] Sharygin VV, Sokol EV, Belakovskii DI. Fayalite-sekaninaite paralava from the Ravat coal fire ( central Tajikistan) [J]. Russian Geology & Geophysics, 2009, 50(8): 703-721.

[27] Center GA. Spaceborne remote sensing for detection and impact assessment of coal fires in North China [J]. Acta Astronautica, 2002, 51(1/9): 569-578.

[28] 令伟伟. 准噶尔盆地东部火烧山地区平地泉组方沸石特征及成因分析 [D]. 西安: 西北大学, 2017.

[29] 李旭. 准噶尔盆地火烧山地区平地泉组凝灰质烃源岩初步研究 [D]. 西安: 西北大学, 2016.

[30] 黄雷, 刘池洋. 鄂尔多斯盆地北部地区延安组煤层自燃烧变产物及其特征 [J]. 地质学报, 2014, 88(9): 1753-1761.

[31] 黄雷. 鄂尔多斯盆地北部延安组烧变岩特征及其形成环境 [D]. 西安: 西北大学, 2008.

[32] 杨伟. 某烧变岩场地的工程特性分析 [J]. 内蒙古煤炭经济, 2017, (14): 157-158,160.

[33] 赵宇, 闫飞. 霍林河一、二号露天区烧变岩的形成 [J]. 煤炭技术, 2005, 24(4): 99-100.

[34] 李明星. 塔里木盆地北缘侏罗系烧变岩富水性精细探测 [J]. 煤矿开采, 2018, 23(5): 15-17,19.

[35] 业渝光, 蒋炳南. 塔里木盆地库车河烧变岩的形成年龄 [J]. 海洋地质与第四纪地质, 1998, 18(4): 116-120.

[36] 韩冬梅, 曹国亮, 宋献方. 新疆大南湖煤田烧变岩水文地质参数研究 [J]. 工程勘察, 2015, 43(11): 32-38.

[37] 杨时元, 许绍群, 杨芳洁. 新疆烧变岩开发天然轻集料初探 [J]. 砖瓦世界, 2008, (10): 41-42.

[38] 夏斐, 关汝清, 魏捐鹏. 柠条塔井田烧变岩的地质特征 [J]. 陕西煤炭, 2008, 27(2): 7-10.

[39] 贾文凯, 梁小山, 张萌. 李家沟煤矿烧变岩的分布规律研究及其水文地质意义 [J]. 科学技术创新, 2018, (10): 13-14.

[40] 朱颜彬. 浅埋煤层区烧变岩水文地质特征研究 [J]. 煤炭与化工, 2019, 42(8): 57-59,62.

[41] 安妮·莱弗·西顿. 火烧岩 [M]. 火烧岩, 2015.

[42] 时志强, 王美玲, 陈彬. 中国北方烧变岩的分布,特征及研究意义 [J]. 古地理学报, 2021, 23(6): 1067-1081.

[43] 巩泊. 火烧岩煤层的物性特征 [J]. 煤田地质与勘探, 1987, (06): 54-57.

[44] Heffern EL, Coates DA. Geologic history of natural coal-bed fires, Powder River basin, USA [J]. International Journal of Coal Geology, 2004, 59(1/2): 25-47.

[45] Masalehdani NN, Black PM, Kobe HW. Mineralogy and petrography of iron-rich slags and paralavas formed by spontaneous coal combustion, Rotowaro coalfield, North Island, New Zealand [J]. Reviews in Engineering Geology, 2015: 117-131.

[46] Popov Y, Beardsmore G, Clauser C, et al. ISRM Suggested Methods for Determining Thermal Properties of Rocks from Laboratory Tests at Atmospheric Pressure [J]. Rock Mechanics & Rock Engineering, 2016, 49(10): 4179-4207.

[47] Sýkorová I, Kříbek B, Havelcová M, et al. Hydrocarbon condensates and argillites in the Eliška Mine burnt coal waste heap of the Žacléř coal district (Czech Republic): Products of high-and low-temperature stages of self-ignition [J]. International Journal of Coal Geology, 2018, 190: 146-165.

[48] 刘志坚. 论烧变岩的特征、成因及地下火燃烧的规律性 [J]. 地质论评, 1959, (05): 209-211.

[49] Foit FF, Hooper RL, Rosenberg PE. An unusual pyroxene, melilite, and iron oxide mineral assemblage in a coal-fire buchite from Buffalo, Wyoming [J]. American Mineralogist, 1987, 72(1-2): 137-147.

[50] Cosca MA, Essene EJ, Geissman JW, et al. Pyrometamorphic rocks associated with naturally burned coal beds, Powder River Basin, Wyoming [J]. American Mineralogist, 1989, 74(1-2): 85-100.

[51] Sokol EV, Volkova NI, Lepezin GG. Mineralogy of pyrometamorphic rocks associated with naturally burned coal-bearing spoil-heaps of the Chelyabinsk coal basin, Russia [J]. European Journal of Mineralogy, 1998, 10(5): 1003-1014.

[52] 王志宇, 史波波, 刘鹏. 煤田火区烧变岩成岩机理与利用 [J]. 科学技术与工程, 2020, 20(15): 6004-6010.

[53] 王双明, 李锋莉. 鄂尔多斯盆地含煤地层延安组孢粉组合及其地质意义 [J]. 中国煤田地质, 1997, 9(1): 27-31.

[54] 孙家齐, 马瑞士, 舒良树. 新疆乌鲁木齐煤田自燃烧变岩岩石特征 [J]. 南京建筑工程学院学报, 2001, (4): 15-19.

[55] 刘志伟. 陕北地区烧变岩的地质特性与工程性能分析 [J]. 电力勘测设计, 2005, (2): 27-30.

[56] 陈练武, 冯富成. 陕西神府煤田新民区煤层自燃及其烧变特征 [J]. 西安矿业学院学报, 1991, 11(3): 53-58.

[57] 黄雷, 刘池洋. 烧变岩岩石学及稀土元素地球化学特征 [J]. 地球科学: 中国地质大学学报, 2008, 33(4): 515-522.

[58] Yavuz H, Demirdag S, Caran S. Thermal effect on the physical properties of carbonate rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47(1): 94-103.

[59] 杜池庆. 陕西大柳塔地区烧变岩工程特性研究 [J]. 文摘版:自然科学, 2016, (04): 156.

[60] 吴杨, 梁冰, 夏冬, 等. 白砺滩露天矿二采区烧变岩边坡稳定性研究 [J]. 煤矿安全, 2019, 50(2): 237-240.

[61] 王振华, 阎旭亮, 贺粉萍, 等. 杨伙盘煤矿烧变岩及其对工作面布设的影响 [J]. 地下水, 2014, 20(S1): 268-269.

[62] 韩树青. 陕北萨拉乌苏组的地下水 [J]. 煤田地质与勘探, 1989, (1): 45-46,71.

[63] Dragovich D. Fire-accelerated boulder weathering in the Pilbara, Western Australia [J]. Zeitschrift für Geomorphologie, 1993: 295-307.

[64] 牛建国. 神府矿区活鸡兔矿井烧变岩水文地质特征 [J]. 煤田地质与勘探, 2001, 29(1): 37-39.

[65] Deng J, Ren S-J, Xiao Y, et al. Thermal properties of coals with different metamorphic levels in air atmosphere [J]. Applied Thermal Engineering, 2018, 143: 542-549.

[66] De Boer CB, Dekkers MJ, Van Hoof TA. Rock-magnetic properties of TRM carrying baked and molten rocks straddling burnt coal seams [J]. Physics of the Earth and Planetary Interiors, 2001, 126(1-2): 93-108.

[67] 赵德乾, 王振伟, 赵雪, 等. 烧变岩剪切特性试验研究 [J]. 露天采矿技术, 2013, (9): 5-7.

[68] 姜建海. 神木北部矿区烧变岩水文地质特征 [J]. 中国煤田地质, 1990, (03): 63-63.

[69] 凯 陈, 王文科, 商跃翰, 等. 生态脆弱矿区烧变岩研究现状及展望 [J]. 中国矿业, 29(3): 171-176.

[70] 李仁伟. 神木市地质环境承载力评价研究 [D]. 西安: 西安科技大学, 2020.

[71] 徐友宁, 李智佩, 陈华清, 等. 生态环境脆弱区煤炭资源开发诱发的环境地质问题——以陕西省神木县大柳塔煤矿区为例 [J]. 地质通报, 2008, 27(8): 1344-1350.

[72] 王德潜, 刘祖植, 尹立河. 鄂尔多斯盆地水文地质特征及地下水系统分析 [J]. 第四纪研究, 2005, 25(1): 6-14.

[73] 范立民. 生态脆弱区烧变岩研究现状及方向 [J]. 西北地质, 2010, 43(3): 58-65.

[74] 杨磊. 陕北煤矿沉陷区边坡土壤因子分析及质量评价 [D]. 西安: 西安科技大学, 2019.

[75] 王艳伟. 鄂尔多斯内蒙能源基地水体、植被演化特征 [D]. 北京: 中国地质大学(北京), 2009.

[76] 高毅平, 汤国安, 周毅, 等. 陕北黄土地貌正负地形坡度组合研究 [J]. 南京师大学报:自然科学版, 2009, 32(2): 135-140.

[77] 康博文, 刘建军, 孙建华, 等. 陕北毛乌素沙漠黑沙蒿根系分布特征研究 [J]. 水土保持研究, 2010, 17(4): 119-123.

[78] 宋志杰. 内蒙古自治区鄂尔多斯市东胜国家规划矿区万利川核查区煤炭资源储量核查报告 [R]. 内蒙古自治区鄂尔多斯市.

[79] 刘杰. "印支运动"对鄂尔多斯地区构造应力的影响分析 [J]. 科技信息, 2013, (9): 429-430.

[80] 赵越, 徐刚, 张拴宏, 等. 燕山运动与东亚构造体制的转变 [J]. 地学前缘, 2004, 11(3): 319-328.

[81] 陈国达. "燕山运动"的历史意义 [J]. 大地构造与成矿学, 1992, (2): 111-112.

[82] 贾承造, 何登发, 陆洁民. 中国喜马拉雅运动的期次及其动力学背景 [J]. 石油与天然气地质, 2004, 25(2): 121-125,169.

[83] 铁连军, 李恒娟, 李旭日, 等. 试论鄂尔多斯盆地地层划分与对比 [J]. 石化技术, 2015, 22(3): 115.

[84] 刘大锰, 杨起. 鄂尔多斯盆地煤的灰分和硫,磷,氯含量研究 [J]. 地学前缘, 1999, 6(B05): 53-59.

[85] 杨俊杰. 鄂尔多斯盆地构造演化与油气分布规律 [M]. 石油工业出版社, 2002.

[86] 王明健, 何登发, 包洪平, 等. 鄂尔多斯盆地伊盟隆起上古生界天然气成藏条件 [J]. 石油勘探与开发, 2011, 38(1): 30-39.

[87] 赵靖舟, 王永东, 孟祥振, 等. 鄂尔多斯盆地陕北斜坡东部三叠系长2油藏分布规律 [J]. 石油勘探与开发, 2007, 34(1): 23-27.

[88] 李榕, 米磊, 刘卫丽, 等. 晋西挠褶带南部地区上古生界天然气成藏特征 [J]. 石油地质与工程, 2021, 35(5): 7-12.

[89] 李云峰, 李金荣, 侯光才, 等. 从水文地球化学角度研究鄂尔多斯盆地南区白垩系地下水的排泄途径 [J]. 西北地质, 2004, 37(003): 91-95.

[90] 范立民. 神府矿区活鸡兔井田烧变岩地下水资源初步评价 [J]. 陕西煤炭技术, 1996, (1): 14-16.

[91] 范立民, 贺卫中, 彭捷, 等. 高强度煤炭开采对烧变岩泉的影响 [J]. Coal Science & Technology (0253-2336), 2017, 45(7): 127-131.

[92] 范立民, 仵拨云, 向茂西, 等. 我国西部保水采煤区受保护烧变岩含水层研究 [J]. 煤炭科学技术, 2016, 44(8): 1-6.

[93] 侯恩科, 童仁剑, 冯洁, 等. 烧变岩富水特征与采动水量损失预计 [J]. 煤炭学报, 2017, 42(1): 175-182.

[94] 刘晓玲, 魏奥林, 王毅, 等. 浅析陕北煤矿矿区地质灾害发育特征及其成灾过程 [J]. 中国地质灾害与防治学报, 2016, 27(4): 70-73.

[95] 韩铭哲. 煤田火区烧变岩光谱特征分析及其信息提取 [J]. 生态学报, 1988, (4): 54-58.

[96] 蒋泽泉. 榆神府矿区烧变岩及地下水资源特征 [J]. 陕西煤炭, 2005, (4): 21-22,17.

[97] 谷德振. 岩体工程地质力学基础 [M]. 科学出版社, 1979.

[98] 张倬元. 工程地质分析原理 [M]. 地质出版社, 1981.

[99] Černý J, Melichar R, Všianský D, et al. Magnetic anisotropy of rocks: A new classification of inverse magnetic fabrics to help geological interpretations [J]. Journal of Geophysical Research: Solid Earth, 2020, 125(11): e2020JB020426.

[100] 邓晋福, 赵国春, 赵海玲, 等. 中国东部燕山期火成岩构造组合与造山-深部过程 [J]. 地质论评, 2000, 46(1): 41-48.

[101] 兰昌益. 对海相成煤的浅说 [J]. 淮南矿业学院学报, 1982, (01): 84-86.

[102] 韩杰, 周建波, 张兴洲, 等. 内蒙古林西地区上二叠统林西组砂岩碎屑锆石的年龄及其大地构造意义 [J]. 地质通报, 2011, 31(2): 258-269.

[103] 赵国春. Metamorphic evolution of major tectonic units in the basement of the North China Craton: Key issues and discussion [J]. 岩石学报, 2009, 25(8): 1772-1792.

[104] 汪啸风, 陈孝红. 中国各地质时代地层划分与对比 [M]. 海洋油气地质, 2006.

[105] 邓起东, 张培震, 冉勇康, 等. 中国活动构造基本特征 [J]. 中国科学:D辑, 2002, 32(12): 1020-1030,1057.

[106] 时志强 杨, 王艳艳等. . 含煤盆地表生热液铀成矿理论及证据:以伊犁盆地南缘及鄂尔多斯盆地东北部侏罗系为例 [J]. 成都理工大学学报:自然科学版, 2016, 43(6): 703-718.

[107] 岳乐平, 李建星, 郑国璋, 等. 鄂尔多斯高原演化及环境效应 [J]. 中国科学, 2007, (S1): 16-22.

[108] 邓晋福, 苏尚国, 刘翠, 等. 关于华北克拉通燕山期岩石圈减薄的机制与过程的讨论:是拆沉,还是热侵蚀和化学交代? [J]. 地学前缘, 2006, 13(2): 105-119.

[109] Shuwen D, Yueqiao Z, Changxing L, et al. Jurassic tectonic revolution in China and new interpretation of the “Yanshan Movement” [J]. Acta Geologica Sinica‐English Edition, 2008, 82(2): 334-347.

[110] Zhang H, Zhang Y, Cai X, et al. The triggering of Yanshan movement: Yanshan event [J]. Acta Geologica Sinica, 2013, 87(12): 1779-1790.

[111] 代世峰, 任德贻, 李生盛, 等. 鄂尔多斯盆地东北缘准格尔煤田煤中超常富集勃姆石的发现 [J]. 地质学报, 2006, (02): 294-300,315-316.

[112] Sinvhal H, Agrawal PN, King G, et al. Interpretation of Measured Movement at a Himalayan (Nahan) Thrust [J]. Geophysical Journal of the Royal Astronomical Society, 2010, 34(2): 203-210.

[113] Bai Z. Effect of Yanshan movement and Himalayan orogeny on hydrocarbon migration and accumulation in Junggar Basin [J]. Xinjiang Petroleum Geology, 2004, 25(5): 468.

[114] Chengzao J. The characteristics of intra-continental deformation and hydrocarbon distribution controlled by the Himalayan tectonic movements in China [J]. Earth Science Frontiers, 2007, 14(4): 96-104.

[115] 程绍平, 邓起东, 李传友, 等. 流水下切的动力学机制、物理侵蚀过程和影响因素:评述和展望 [J]. 第四纪研究, 2004, 24(4): 421-429.

[116] 席道瑛, 程经毅, 黄建华. 声发射在研究岩石古温度中的应用 [J]. 中国科学技术大学学报, 1996, 26(1): 97-101.

[117] Ge Z, Sun Q. Acoustic emission characteristics of gabbro after microwave heating [J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 138: 104616.

[118] Ge Z, Sun Q, Xue L, et al. The influence of microwave treatment on the mode I fracture toughness of granite [J]. Engineering Fracture Mechanics, 2021, 249(1–4): 107768.

[119] Farhidzadeh A, Salamone S, Luna B, et al. Acoustic emission monitoring of a reinforced concrete shear wall by b-value–based outlier analysis [J]. Structural Health Monitoring, 2013, 12(1): 3-13.

[120] Kersten, Sander. Integrated physiology and systems biology of PPARα [J]. Molecular Metabolism, 2014, 3(4): 354-371.

[121] 葛振龙, 孙强, 王苗苗, 等. 基于RA/AF的高温后砂岩破裂特征识别研究 [J]. 煤田地质与勘探, 2021, 49(2): 176-183.

[122] 戎虎仁, 白海波, 王占盛. 不同温度后红砂岩力学性质及微观结构变化规律试验研究 [J]. 岩土力学, 2015, 36(2): 463-469.

[123] 苏海健, 靖洪文, 赵洪辉, 等. 高温处理后红砂岩抗拉强度及其尺寸效应研究 [J]. 岩石力学与工程学报, 2015, 34(2): 2879-2887.

[124] 赵亚永, 魏凯, 周佳庆, 等. 三类岩石热损伤力学特性的试验研究与细观力学分析 [J]. 岩石力学与工程学报, 2017, 36(1): 142-151.

[125] 邓琼伟, 杨录胜, 刘正和, 等. 水平应力差对砂岩起裂破坏规律的声发射试验研究 [J]. 矿业研究与开发, 2018, 38(12): 72-76.

[126] 尚桂林, 蒋新民. 神木北部侏罗纪煤层自燃因素及其烧变特征 [J]. 中国煤炭地质, 1: 25-29.

[127] 侯恩科, 陈培亨. 神府煤田煤层自燃研究 [J]. 西安科技大学学报, 1993, 000(002): 137-142.

[128] Zhang H, Sun Q, Jia H, et al. Effects of high-temperature thermal treatment on the porosity of red sandstone: an NMR analysis [J]. Acta Geophysica, 2021, 69(1): 113-124.

[129] Mamtani MA, Chakraborty R, Biswas S, et al. SEM-EBSD Analysis of Broad Ion Beam Polished Rock Thin Sections — The MFAL Protocol [J]. Journal of the Geological Society of India, 2020, 95(4): 337-342.

[130] 孔立, 戴霜, 刘学, 等. 六盘山群火石寨剖面沉积物色度纪录的128.10~115.30 Ma气候变化 [J]. 兰州大学学报(自然科学版), 2010, 46(5): 44-49.

[131] 董志浩. 煤炭地下气化覆岩高温损伤与评估研究 [D]. 徐州: 中国矿业大学, 2020.

[132] Yang T, Sun Q, Li D, et al. Study on the change of physical properties of Organic-rich shale after heat treatment [J]. Journal of Thermal Analysis and Calorimetry, 2021: 1-11.

[133] 徐琛琛. 烧变作用下砂岩的物理特性研究 [D]. 徐州: 中国矿业大学(徐州), 2019.

[134] Kennedy M. Petrophysical Properties [J]. Developments in Petroleum Science, 2015, 62: 21-72.

[135] Slater L. Near Surface Electrical Characterization of Hydraulic Conductivity: From Petrophysical Properties to Aquifer Geometries—A Review [J]. Surveys in Geophysics, 2007, 28(2-3): 169-197.

[136] Yunlai, Yang. Permeability and petrophysical properties of 30 natural mudstones [J]. Journal of Geophysical Research Solid Earth, 2007, 112: 1-14.

[137] Wang S, Sun Q, Wang N, et al. High-temperature response characteristics of loess porosity and strength [J]. Environmental Earth Sciences, 2021, 80(17): 1-11.

[138] Jya B, Xu HB, Sz B, et al. Sensitive parameters of NMR T2 spectrum and their application to pore structure characterization and evaluation in logging profile: A case study from Chang 7 in the Yanchang Formation, Heshui area, Ordos Basin, NW China [J]. Marine and Petroleum Geology, 2020, 111: 230-239.

[139] Li Xa, Li L. Quantification of the pore structures of Malan loess and the effects on loess permeability and environmental significance, Shaanxi Province, China: an experimental study [J]. Environmental Earth Sciences, 2017, 76(15): 1-14.

[140] Perkins EL, Lowe JP, Edler KJ, et al. Determination of the percolation properties and pore connectivity for mesoporous solids using NMR cryodiffusometry [J]. Chemical Engineering Science, 2008, 63(7): 1929-1940.

[141] Zhang H, Li G, Guo H, et al. Applications of nuclear magnetic resonance (NMR) logging in tight sandstone reservoir pore structure characterization [J]. Arabian Journal of Geosciences, 2020, 13(13): 1-8.

[142] Kuang Y, Zhang L, Song Y, et al. Quantitative determination of pore‐structure change and permeability estimation under hydrate phase transition by NMR [J]. AIChE Journal, 2020, 66(4): e16859.

[143] Yang L, Wang S, Jiang Q, et al. Effects of Microstructure and Rock Mineralogy on Movable Fluid Saturation in Tight Reservoirs [J]. Energy And Fuels, 2020, 34(11): 14515-14526.

[144] Zhang X, Wei B, You J, et al. Characterizing Pore-level Oil Mobilization Processes in Unconventional Reservoirs assisted by State-of-the-Art Nuclear Magnetic Resonance Technique [J]. Energy, 2021, (24): 121549.

[145] Wang S, Sun Q, Wang N, et al. Variation in the dielectric constant of limestone with temperature [J]. Bulletin of Engineering Geology and the Environment, 2019, 79(3): 1349-1355.

[146] Gao G, Cao J, Hu K, et al. Application of Nuclear Magnetic Resonance (NMR) Spectroscopy to Lacustrine Kerogen Geochemistry: Paleogene Dongpu Sag, China [J]. Energy & Fuels, 2021, 35(2): 1234-1247.

[147] Devreux F, Boilot JP, Chaput F, et al. NMR determination of the fractal dimension in silica aerogels [J]. Physical Review Letters, 1990, 65(5): 614-617.

[148] Xie W, Yin Q, Wang G, et al. Variable Dimension Fractal-Based Conversion Method between the Nuclear Magnetic Resonance T 2 Spectrum and Capillary Pressure Curve [J]. Energy & Fuels, 2020, 35(1): 351-357.

[149] 肖亮, 肖忠祥. 核磁共振测井T2cutoff确定方法及适用性分析 [J]. 地球物理学进展, 2008, (01): 167-172.

[150] 闫子旺, 张红玲, 周晓峰, 等. 鄂尔多斯盆地西南部长8超低渗透砂岩核磁共振T2截止值研究 [J]. 石油地质与工程, 2015, 29(5): 128-131.

[151] Garum M, Glover P, Lorinczi P, et al. Micro- and nano-scale pore structure in gas shale using X-CT and FIB-SEM techniques [J]. Energy & Fuels, 2020, 34(10): 12340-12353.

[152] Zhao Y, Zhu G, Dong Y, et al. Comparison of low-field NMR and microfocus X-ray computed tomography in fractal characterization of pores in artificial cores [J]. Fuel, 2017, 210(dec.15): 217-226.

[153] Fazio M, Ibemesi P, Benson P, et al. The Role of Rock Matrix Permeability in Controlling Hydraulic Fracturing in Sandstones [J]. Rock Mechanics and Rock Engineering, 2021, 54(10): 5269-5294.

[154] Zhang L, Scholtès L, Donzé F. Discrete Element Modeling of Permeability Evolution During Progressive Failure of a Low-Permeable Rock Under Triaxial Compression [J]. Rock Mechanics and Rock Engineering, 2021, 54(12): 6351-6372.

[155] Wang S, Sun Q, Wang N, et al. Responses of the magnetic susceptibility and chromaticity of loess to temperature in a coal fire area [J]. Acta Geodaetica et Geophysica, 2021, 56(3): 425-437.

[156] 祁瑞军, 唐海燕, 周越. 磁法勘探在确定煤田火烧区域的应用 [J]. 内蒙古煤炭经济, 2012, (1): 19-20.

[157] Stylianou II, A ST, B PC, et al. Measurement and analysis of thermal properties of rocks for the compilation of geothermal maps of Cyprus [J]. Renewable Energy, 2016, 88(3): 418-429.

[158] Zhou M, Li J, Luo Z, et al. Impact of water–rock interaction on the pore structures of red-bed soft rock [J]. Scientific Reports, 2021, 11(1): 1-15.

[159] Qw A, Qh A, Cl A, et al. Microfracture-pore structure characterization and water-rock interaction in three lithofacies of the Lower Eagle Ford Formation [J]. Engineering Geology, 2021, 292: 106276.

[160] 王建洪, 邬爱清, 盛谦等. 工程岩体试验方法标准 [M]. 中国计划出版社, 2013.

[161] Zhao Y, Liu B. Deformation Field and Acoustic Emission Characteristics of Weakly Cemented Rock under Brazilian Splitting Test [J]. Natural Resources Research, 2021, 30(2): 1925-1939.

[162] Li S, Xie Q, Liu X, et al. Study on the Acoustic Emission Characteristics of Different Rock Types and Its Fracture Mechanism in Brazilian Splitting Test [J]. Frontiers in Physics, 2021, 9: 591651.

[163] Zhou S, Zhuang X, Zhou J, et al. Phase Field Characterization of Rock Fractures in Brazilian Splitting Test Specimens Containing Voids and Inclusions [J]. International Journal of Geomechanics, 2021, 21(3): 04021006.

[164] Ren M, Zhao G. Prediction of compressive strength of the welded matrix-rock mixture by meso-inclusion theory [J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 139(2): 104612.

[165] Davarpanah SM, Sharghi M, Tarifard A, et al. The Brittle-Ductile Transition Stress of Different Rock Types and Its Relationship with Uniaxial Compressive Strength and Hoek-Brown Material Constant (mi) [J]. JGR Solid Earth, 2021: 1-18.

[166] Liu E, Liu F, Xiong Y, et al. Study on the Effect of Precrack on Specimen Failure Characteristics under Static and Dynamic Loads by Brazilian Split Test [J]. Mathematical Problems in Engineering, 2021, 2021: 1-8.

[167] Xue J, Chen Z, Li Y, et al. Failure characteristics of coal-rock combined bodies based on acoustic emission signals [J]. Arabian Journal of Geosciences, 2022, 15(2).

[168] Chen D, Liu X, He W, et al. Effect of attenuation on amplitude distribution and b value in rock acoustic emission tests [J]. Geophysical Journal International, 2021, 229(2): 933-947.

[169] Tang JH, Chen XD, Dai F. Experimental study on the crack propagation and acoustic emission characteristics of notched rock beams under post-peak cyclic loading [J]. Engineering Fracture Mechanics, 2020, 226(6): 106890.

[170] Yuan Y, Liu ZH, Zhu C, et al. The effect of burnt rock on inclined shaft in shallow coal seam and its control technology [J]. Energyence and Engineering, 2019, 7(5): 1882-1895.

[171] 邵新风, 宋一民, 王少峰, 等. 方家畔煤矿开采对香水水库影响分析及应对措施研究; proceedings of the 煤炭绿色开发地质保障技术研究——陕西省煤炭学会学术年会(2019)暨第三届“绿色勘查科技论坛”, F].

[172] 王小端. 东胜神山沟烧变岩:从干旱到湿润气候变化的反映? [D]. 成都: 成都理工大学.

[173] 孙亚军, 张梦飞, 高尚, 等. 典型高强度开采矿区保水采煤关键技术与实践 [J]. 煤炭学报, 2017, 42(1): 56-65.

[174] 王宏科, 蒋泽泉. 神南矿区地下水资源及采煤影响分析 [J]. 陕西煤炭, 2011, 30(5): 1-4.

[175] 段中会. 榆神府矿区煤矿水害及其防治研究 [J]. 中国煤田地质, 1998, 10(a09): 61-62.

[176] 郭守泉, 宋业杰. 榆神矿区浅埋煤层多重水体下大采高综采水害影响评价 [J]. 煤矿开采, 2018, 23(6): 117-121.

[177] 苗彦平, 姬中奎, 李军, 等. 待采工作面上覆烧变岩注浆帷幕建造技术 [J]. 煤矿安全, 2019, 50(7): 108-111.

[178] 宋业杰, 甘志超. 榆神矿区烧变岩水害防治技术 [J]. 煤矿安全, 2019, (8): 92-96,99.

[179] 吴正飞, 邢修举, 代凤强. 综采工作面顶板上覆烧变岩富水性的精细探测研究 [J]. 能源与环保, 2018, 40(5): 140-143.

[180] 王伟, 王少锋. 河兴梁井田保水采煤方法浅析 [J]. 陕西水利, 2019, (7): 124-125.

[181] 曲秋扬, 张亮. 超大采高工作面顶板基岩含水层富水性探测与处理技术 [J]. 中国煤炭, 2018, 44(12): 25-29.

[182] 王碧清, 姬中奎, 郑永飞, 等. 火烧区完整烧变岩断面的帷幕注浆技术 [J]. 煤炭技术, 2019, 38(4): 99-102.

[183] 闫鑫. 神南矿区烧变岩水防治方法探讨 [J]. 内蒙古煤炭经济, 2018, (17): 58,89.

[184] 闫朝波. 张家峁煤矿煤层顶板涌(突)水危险性分区预测研究 [D]. 西安: 西安科技大学, 2013.

[185] 姬中奎. 柠条塔矿S1210工作面突水条件分析 [J]. 煤矿安全, 45(8): 4.

[186] 翟勤, 王英, 姬亚东. 何家塔井田烧变岩水赋存特征及其防治 [J]. 煤炭技术, 2017, 36(12): 156-158.

中图分类号:

 P642.2    

开放日期:

 2022-06-22    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式