论文中文题名: | 基于深度学习的认知物联网频谱感知算法研究 |
姓名: | |
学号: | 21207223061 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085400 |
学科名称: | 工学 - 电子信息 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2024 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 无线通信 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2024-12-19 |
论文答辩日期: | 2024-12-05 |
论文外文题名: | Research on Spectrum Sensing Algorithm of Cognitive Internet of Things based on Deep Learning |
论文中文关键词: | |
论文外文关键词: | Spectrum sensing ; Deep Learning ; ResNeXt ; Reliability ; Node selection |
论文中文摘要: |
5G技术的广泛应用、通信业务不断的发展以及物联网设备呈现爆炸式增长,导致频谱资源严重匮乏,无法满足目前对频谱资源的需求。频谱感知是认知无线电执行所有功能的基础,在认知物联网中,智能设备可以动态调整频谱使用策略以提高资源利用率。针对现有的物联网中频谱感知方法存在着在低信噪比检测性能差、协作软融合感知传输的数据量大以及硬融合检测性能不足等问题。开展的主要工作和创新点总结如下: (1)针对认知物联网传统频谱感知方法在低信噪比环境下的频谱检测性能差以及协作频谱感知中传统硬融合感知判断误差大、软融合处理复杂等问题,本文提出基于深度学习的协作频谱感知算法,算法可分为三个模块:数据预处理、单节点频谱感知和多节点频谱感知。数据预处理模块先将次用户接收到的信号转成二维矩阵,使用归一化灰度化操作生成灰度图加快特征提取及模型的收敛速度,并减少模型学习量,降低了模型复杂度。单节点频谱感知将改进ResNeXt网络模块作为主干网络,利用其分组卷积特性和模块化设计特性,快速准确的提取频谱灰度图像特征,提高单节点在低信噪比下的检测性能。多节点频谱感知用SCN神经网络代替传统的融合中心,融合各个次用户单节点感知得到的评分向量矩阵获得最优全局判决感知结果。仿真结果显示,在信噪比为-19 dB环境下本文算法的检测性能至少提升10%,在低信噪比环境下能实现低虚警概率和高检测概率,且解决了传统硬融合误差大,软融合处理数据量大的问题。 (2)针对协作频谱感知中次用户数量增加造成的能量消耗增加以及接收信息量少的次用户参与协作频谱感知降低协作检测性能等问题,本文提出基于可靠性原则的协作频谱感知节点选择算法,同时考虑了在能量消耗和感知性能双重条件下选择感知节点,并建立节点选择系统,及时剔除可靠性下降的感知节点并筛选出可靠度高的节点参与频谱感知。通过融合中心与外界环境的信息交流得到各个次用户的性能反馈和能耗反馈,对节点进行实时评估,动态选择高可靠性节点进行协作感知,保持感知系统的高可靠性平衡。仿真结果显示,感知性能在虚警概率为0.1时检测概率高达0.99,该算法能量消耗仅为传统方法的25%。 |
论文外文摘要: |
The rapid proliferation of 5G technology, the continuous evolution of communication services, and the exponential growth of IoT devices have resulted in a severe shortage of spectrum resources, falling short of meeting current demand. Spectrum sensing serves as the cornerstone for cognitive radio to execute its functions. In the context of cognitive IoT, smart devices can dynamically adapt their spectrum utilization strategies to enhance resource efficiency. However, existing spectrum sensing methods in IoT face several challenges, including poor detection performance under low signal-to-noise ratio (SNR) conditions, excessive data transmission requirements in collaborative soft fusion sensing, and inadequate detection performance in hard fusion sensing. The primary contributions and innovations of this work are summarized as follows: (1) To address the low performance of cognitive IoT for spectrum sensing at low Signal to Noise Ratio as well as the problems of large judgment error of traditional hard fusion methods and complex soft fusion processing in collaborative spectrum sensing. In this thesis, a collaborative spectrum sensing algorithm based on deep learning is proposed, The algorithm can be divided into three modules: data preprocessing, single-node spectrum sensing and multi-node spectrum sensing. The data preprocessing module first converts the signal received by the sub-user into a two-dimensional matrix; uses the normalization operation to reduce the gradient difference between the two-dimensional matrix data to accelerate the convergence speed of the feature extraction model; and finally utilizes the grayscaling operation to reduce the amount of model learning and reduce the complexity of the model. Single-node spectrum spectrum sensing uses the improved ResNeXt network as the backbone network to extract single-node spectrum grayscale image features quickly and accurately at a deep level using its group convolutional property and modular design feature. Multi-node spectrum sensing replaces the traditional fusion center with SCN neural network, which fuses the scoring vector matrices obtained from the single-node sensing results of each sub-user to obtain the optimal global verdict sensing results. Simulation results demonstrate that the proposed algorithm achieves a detection performance improvement of at least 10% in environments with a signal-to-noise ratio (SNR) of -19 dB. It effectively ensures low false alarm probability and high detection probability under low SNR conditions, addressing the significant error associated with traditional hard fusion methods and the extensive data processing requirements of soft fusion approaches. (2) Aiming at the problems of increased energy consumption caused by the increase in the number of sub-users in collaborative spectrum sensing and the degradation of collaborative sensing performance caused by the participation of sub-users who receive less information in collaborative spectrum sensing. a reinforcement learning-based node selection algorithm for collaborative spectrum sensing is proposed in this thesis, which evaluates the reliability of each sub-user and filters out the nodes with high reliability to participate in collaborative spectrum sensing. Mainly through the fusion center and the external environment of continuous information interaction to obtain the performance of each sub-user feedback and energy feedback, real-time evaluation of nodes, dynamic selection of high reliability nodes to participate in collaborative perception, to maintain a dynamic balance of high-reliability perception. The experimental results show that the energy consumption is as low as 4 energy units while the detection probability is as high as 0.99 when the false alarm probability is 0.1, Which consumes only 25% of the energy of conventional methods. |
参考文献: |
[4] FCC Notice of Proposed Rulemaking FCC 04-113[R], Federal Communications Commission, May 2005. [21] 张孟伯, 王伦文, 冯彦卿. 基于卷积神经网络的OFDM频谱感知方法[J]. 系统工程与电子技术, 2019, 41(1): 178-186. [26] 石新, 刘顺兰. 基于随机矩阵和能量双联合的协作频谱感知[J]. 杭州电子科技大学学报(自然科学版), 2021, 41(04): 1-6. [27] 许炜阳, 李有均, 徐宏乾, 等. 基于随机矩阵非渐近谱理论的协作频谱感知算法研究[J]. 电子与信息学报, 2018, 40(1): 123-129. [33] 盖建新, 薛宪峰, 吴静谊, 等. 基于深度卷积神经网络的协作频谱感知方法[J]. 电子与信息学报, 2021, 43(10): 2911-2919. [46] 刘俊奇, 涂文轩, 祝恩. 图卷积神经网络综述[J]. 计算机工程与科学, 2023, 45(08): 1472-1481. [47] 高玉鹏, 闫伟红, 潘新. 基于卷积神经网络与注意力机制的高光谱图像分类[J]. 光电子·激光, 2024, 35(05): 483-489. [50] 陈思吉, 王欣, 申滨. 一种基于支持向量机的认知无线电频谱感知方案[J]. 重庆邮电大学学报(自然科学版), 2019, 31(03): 313-322. [56] 马永涛, 王煜东. 基于概率向量和机器学习的协作频谱感知[J]. 传感技术学报, 2019, 32(12): 1809-1815. [57] 鲁华超, 赵知劲, 尚俊娜,等. 利用卷积神经网络和协方差的协作频谱感知算法[J]. 信号处理, 2019, 35(10): 1700-1707. |
中图分类号: | TN925 |
开放日期: | 2024-12-19 |