论文中文题名: | 复杂地质条件下多导洞暗挖施工通风控尘优化研究 |
姓名: | |
学号: | 19203053002 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 081404 |
学科名称: | 工学 - 土木工程 - 供热、供燃气、通风及空调工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 通风除尘技术 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-06-25 |
论文答辩日期: | 2023-06-06 |
论文外文题名: | Optimization study of ventilation and dust control for concealed construction of multiple guide holes under complex geological conditions |
论文中文关键词: | |
论文外文关键词: | Concealed excavation method ; Environmental quality ; Hierarchical analysis ; ; Fuzzy integrated evaluation ; Numerical simulation |
论文中文摘要: |
洞桩法多导洞暗挖属于浅埋暗挖工法之一,因其具有适应性好、对地面交通影响小以及良好的经济和社会效益等特点,被广泛应用于地铁车站的修建。在多导洞开挖过程中,仅依靠几个竖井完成通风控尘极为困难,导洞空气中粉尘浓度超标,会直接威胁作业人员的健康及工程设备的正常运行,因此开展多导洞施工过程通风控尘技术研究具有重要的意义。本文以暗挖法地铁车站为研究对象,对施工现场粉尘进行监测,使用层次分析法及模糊综合评价法对施工作业空气环境质量进行评价,并采用Fluent软件对通风过程中风流场及粉尘浓度场进行数值模拟,主要研究内容及结论如下: 通过现场取样分析发现,粉尘主要来自于施工工作面,在重力、浮力及曳力的混合作用下在隧道中发生运移及沉降。使用粉尘监测仪对施工过程中重要的三个工序进行监测,通过监测结果可以反映出喷射混凝土阶段的粉尘浓度最高可到7.1 mg/m³,开挖过程粉尘浓度峰值为5.8 mg/m³,出渣过程粉尘浓度最高时为2.3 mg/m³,均超过了标准2 mg/m³的要求。 基于现场监测数据,首先分析不同施工阶段中粉尘的含量。其次通过对比不同评估方式的优劣,使用层次分析法(AHP)与模糊综合评价法(FAHP)相结合的方法,选取粉尘浓度、一氧化碳浓度、环境噪声、光环境四个要素,建立暗挖法隧道施工期环境评价体系,对隧道施工时的空气环境进行定性与定量分析,结果表明,在隧道施工环境空气质量指标中,粉尘浓度的综合评价值为0.360,一氧化碳浓度的综合评价值为0.296,环境噪声的综合评价值为0.193,光环境的综合评价值为0.151,从而得出粉尘浓度对施工空气环境的影响最为重要。 在隧道实际通风过程中,风流场及粉尘场均存在流动轨迹的不确定性,因此建立暗挖隧道群通风的数值模拟模型,根据评价结果对隧道施工过程中的粉尘进行数值模拟分析。首先对隧道群风流场进行模拟,风流从风口至工作面,呈现出明显的贴壁绕流现象,随着时间的推移,风流从导洞向横通道及竖井逐渐运移直到基本维持稳定。其次对隧道粉尘场的模拟可以看出,工作面附近的高风速导致粉尘浓度较低,相反离工作面越远,粉尘浓度相对较高。最后在现有通风系统的基础上,增加粉尘堆积处的风口数量,加速粒子向洞外运移。模拟结果表明,隧道整体浓度由平均的2.207 mg/m3降低至1.196 mg/m3,粉尘粒子停留时间从160s减少至25s。经过现场对比验证,最高浓度由3.96mg/m³降低至2.99mg/m³,平均浓度从3.44 mg/m3降低至2.63 mg/m3,总体降低了23.55%,有效改善了暗挖施工时导洞内空气环境质量。 利用对多导洞暗挖段施工作业过程中粉尘的监测、评价及数值模拟,得出现有通风控尘方案下风流场及粉尘场的分布规律,找出了现有方案中存在的不足,针对其中所存在的问题进行优化改进,为同等工程施工控尘提供了参考依据。 |
论文外文摘要: |
Cave pile method is one of the shallow buried concealed excavation methods, which is widely used in the construction of subway stations because of its good adaptability, low impact on ground traffic and good economic and social benefits. During the excavation of multi-conductor caverns, it is extremely difficult to complete the ventilation and dust control by only a few shafts, and the dust concentration in the air of the caverns exceeds the standard, which will directly threaten the health of operators and the normal operation of engineering equipment. This paper takes concealed excavation subway station as the research object, monitors the dust at the construction site, evaluates the air environment quality of construction operation using hierarchical analysis and fuzzy comprehensive evaluation method, and uses Fluent software to numerically simulate the wind flow field and dust concentration field in the ventilation process, the main research contents and conclusions are as follows: Through on-site sampling and analysis, it was found that the dust mainly came from the construction work surface and was transported and settled in the tunnel under the mixed action of gravity, buoyancy and traction. The dust monitor was used to monitor three important processes during the construction process. The monitoring results reflected that the dust concentration in the shotcrete stage could reach up to 7.1 mg/m³, the peak dust concentration in the excavation process was 5.8 mg/m³, and the dust concentration in the slagging process was 2.3 mg/m³ at the highest, which in general exceeded the standard requirement of 2 mg/m³. Based on the site monitoring data, the dust content in different construction stages was firstly analyzed. Secondly, by comparing the advantages and disadvantages of different assessment methods and using the combination of hierarchical analysis (AHP) and fuzzy integrated evaluation (FAHP), four elements of dust concentration, carbon monoxide concentration, ambient noise, and light environment were selected to establish the environmental evaluation index system during the construction period of the concealed tunnel, and to analyze the air environment of tunnel construction qualitatively and quantitatively. The final results show that the comprehensive evaluation value of dust concentration is 0.360, the comprehensive evaluation value of carbon monoxide concentration is 0.296, the comprehensive evaluation value of ambient noise is 0.193, and the comprehensive evaluation value of light environment is 0.151, which indicates that the dust concentration has the most important influence on the construction air environment. In the actual tunnel ventilation process, there are uncertainties in the flow trajectories of both the wind flow field and the dust field. Therefore, a numerical simulation model of the ventilation of the concealed tunnel group is established, and the numerical simulation analysis of the dust in the tunnel construction process is carried out according to the evaluation results. Firstly, the wind flow field of the tunnel group was simulated. The wind flow from the wind entrance to the working face showed an obvious phenomenon of winding around the wall, and with the passage of time, the wind flow gradually moved from the guide tunnel to the cross passage and the shaft until it was basically maintained stable. Secondly, the simulation of the tunnel dust field shows that the high wind speed near the working face leads to low dust concentration, and on the contrary, the further away from the working face, the dust concentration is relatively high. Finally, based on the existing ventilation system, the number of air outlets at the dust accumulation is increased to accelerate the transport of dust particles to the outside of the tunnel. The simulation results show that the overall concentration in the tunnel is reduced from an average of 2.207 mg/m3 to 1.196 mg/m3, and the residence time of dust particles is reduced from 160 seconds to 25 seconds. After comparison and verification on site, the highest concentration was reduced from 3.96 mg/m³ to 2.99 mg/m³, and the average concentration was reduced from 3.44 mg/m3 to 2.63 mg/m3, with an overall reduction of 23.55%. Therefore, it effectively improves the quality of air environment in the guide tunnel during the concealed excavation construction. Using the monitoring, evaluation and numerical simulation of dust during the construction of the concealed excavation section of the multi-conductor hole, the distribution pattern of the wind flow field and dust field under the existing ventilation and dust removal scheme is obtained, the shortcomings of the existing scheme are identified, and the optimization and improvement are carried out for the existing problems, which provides a reference basis for dust removal in the construction of the same project. |
参考文献: |
[1] 高红军,罗刚,陈勇,贾航航.隧道施工通风效率及有害气体迁移规律试验研究[J].公路交通科技(应用技术版),2020,16(01):333-337. [2] TB 10304-2020.铁路隧道工程施工安全技术规程[S].北京:中国人民共和国铁道部,2020. [3] JTG/T 3660-2020.公路隧道施工技术规范[S].北京:中华人民共和国交通运输部,2020. [4] 康富军.湿式除尘技术在小断面巷道快速掘进系统中的应用[J].智能矿山,2021,2(02):65-69. [5] 吕茂尧.湿式旋流除尘器高效除尘机理及应用研究[J].煤矿机械,2018,39(05): 128-130. [6] 亓守臣.长大隧道施工期粉尘控制技术研究[J].建筑技术开发,2019,46(12):120-121. [8] 尚进,王有志,张雪等.基于模糊综合评判的斜拉桥索塔施工安全风险评估[J].筑路机械与施工机械化,2017,34(07):33-38. [9] 李剑.基于直觉模糊 TOPSIS 法的建设工程项目风险评价研究[D].河北:河北工程大学,2014. [10] 高云莉,王庆春,王楠楠.基于合作的工程项目风险模糊评价新方法[J].数学的实践与认识,2013,43(02):14-22. [11] 胡群芳,周博文,王飞等.基于模糊层次分析的公路隧道结构安全评估技术[J].自然灾害学报,2018,27(04):41-49. [12] 葛开国,王玉民,余朝阳等.铁路建设项目施工期环境保护考评体系建立—以新建川藏铁路拉萨至林芝段为例[J].环境保护,2017,(17). [13] 闫家庆.铁路建设项目施工期环境问题分析与评价[D].石家庄:石家庄铁道大学,2014. [14] 刘敦文,张聪,颜勇等.基于博弈论的隧道施工环境可拓评价模型研究[J].安全与环境学报,2014,(1). [15] 陈炜,路世昌,崔铁军. 基于AHP可拓综合方法的公路隧道安全等级判定研究[J]. 中国安全生产科学技术,2014,10(07):158-163. [16] 高丽萍.牛坪垭特长公路隧道安全风险评估研究[D].西安:长安大学,2017. [19] 张建刚.溪洛渡水电站通风模型试验与网络分析[D].重庆:重庆大学,2005. [22] 郑汝松,王红军,李飞等.地下洞室通风有害气体浓度变化分析[J].云南水力发电,2008,(03):65-68. [23] 罗汝洲.特长隧洞施工高强度运输尾气排放通风仿真分析[J].铁道建筑,2011,(01):56-57+62. [24] 刘建正.紫坪铺隧道通风系统施工技术[J].中国新技术新产品,2010,(03):56-58. [25] 李厚贤.糯扎渡水电站引水发电系统施工通风[J].湖北水力发电,2009,(06):46-50. [26] 杨建林.丰宁抽水蓄能电站地下洞室群散烟及通风系统研究[D].河北:华北科技学院,2019. [27] 童利红,孙为东,孙俊利.暗挖地铁车站通风系统的布置与风道的设计研究[J].隧道建设,2015,35(01):53-59. [28] 夏恩虎.地铁暗挖车站小断面多导洞快速通风技术[J].山东交通科技,2017,(01):113-114. [29] 张会伍.大断面地铁车站通风道暗挖施工技术[J].市政技术,2011,29(02):75-77. [30] 胡勇烽.暗挖地铁车站通风空调机房布置浅析[J].低碳世界,2014,(8):295-297. [31] 陈大忠.隧道工程中通风施工技术的应用[J].建筑技术开发,2019,46(01):36-37. [34] 吕辉. 高原区特长公路隧道施工通风技术研究[D].北京:北京交通大学,2017. [38] 刘钊春. 独头掘进隧道施工通风数值模拟[D].西安:西安理工大学,2010. [39] 王海桥,施式亮,刘荣华等.独头巷道附壁射流通风流场数值模拟研究[J].煤炭学报,2004,(04):425-428. [40] 李根,霍志红,许昌等.抽蓄电站地下施工洞室通风系统仿真与改进研究[J].可再生能源,2020,38(04):532-538. [41] 李艳玲,尹强,莫政宇等.基于动态仿真和数值模拟的向家坝地下洞室群施工通风方案优化[J].四川大学学报(工程科学版),2010,42(04):1-6. [42] 马德萍,李艳玲,莫政宇等.向家坝地下洞室群施工通风效果三维数值模拟[J].人民长江,2011,42(01):29-32+53. [43] 王军周.基于ANSYS Fluent的隧洞施工通风数值模拟研究[J].西北水电,2018,(03):85-90. [44] 王晓玲,陈红超,刘雪朋等.引水隧洞独头掘进工作边风流组织与 CO 扩散的模拟[J].水利学报,2008,39(1):121-127. [45] 朱红青,朱帅虎,贾国伟.大断面掘进压入式风筒最佳高度的数值模拟[J].安全与环境学报,2014,14(01):25-28. [46] 邓祥辉,刘钊,刘钊春.两河口长隧道独头掘进压入式施工通风三维数值模拟[J].土木建筑与环境工程,2014,36(02):35-41. [47] 李自强,谢文强,王明年等. 虹梯关特长公路隧道施工通风节能技术[J].铁道科学与工程学报,2016,13(04):760-766. [48] 李孜军,林晓光,李明等. 双洞隧道独头掘进 CO 扩散效应模拟分析[J].铁道科学与工程学报,2013,10(04):82-87. [49] 王文才,魏丁一 ,赵晓坤.基于FLUENT的矿井巷道活塞风效应研究 [J].中国煤炭,2016,42(09):91-95. [50] 张超.盾构施工抽出式通风方法研究[D].成都:西南交通大学,2018. [51] 何知思,曾鹏,钟勇奇等.壁板坡特长隧道施工通风的影响因素分析[J].铁道标准设计,2016,(5). [52] 吴瑾. 鹧鸪山高瓦斯隧道施工通风技术研究[D].成都:西南交通大学,2018. [53] 南春子.长距离复杂洞室联动通风与污染物扩散的数值模拟研究[D].北京:清华大学,2015. [54] 刘亚洲.某施工隧道长压短抽式通风粉尘运移规律研究[D].安徽:安徽建筑大学,2020. [55] 陆心怡,臧建彬.地铁隧道通风竖井突发污染物扩散研究[J].制冷,2020,39(02):1-7. [56] 黄艳国,房罡,李向邯等.关于长大隧道通风排污优化控制仿真设计[J].现代电子技术,2019,42(19):144-148 [57] 龚剑.高海拔矿山掘进面粉尘运移规律及通风除尘系统优化[D].北京:北京科技大学,2016. [60]张波,蒋仲安,段志博等.气水喷雾除尘效果实验研究[J].金属矿山,2019(08):173-178.DOI:10.19614/j.cnki.jsks.201908029. |
中图分类号: | U231.5 |
开放日期: | 2023-06-26 |