论文中文题名: |
g-C3N4及其TiLiAl-LDHs/g-C3N4复合材料制备与光催化性能研究
|
姓名: |
段飞阳
|
学号: |
18213069011
|
保密级别: |
保密(2年后开放)
|
论文语种: |
chi
|
学科代码: |
081704
|
学科名称: |
工学 - 化学工程与技术 - 应用化学
|
学生类型: |
硕士
|
学位级别: |
工学硕士
|
学位年度: |
2021
|
培养单位: |
西安科技大学
|
院系: |
化学与化工学院
|
专业: |
应用化学
|
研究方向: |
光催化
|
第一导师姓名: |
周安宁
|
第一导师单位: |
西安科技大学
|
第二导师姓名: |
陈福欣
|
论文提交日期: |
2021-06-24
|
论文答辩日期: |
2021-06-05
|
论文外文题名: |
Preparation and photocatalytic performance of g-C3N4 and its TiLiAl-LDHs/g-C3N4 composite
|
论文中文关键词: |
g-C3N4纳米片 ; TiLiAl-LDHs ; TiLiAl-LDHs/g-C3N4 ; CO2光催化转化 ; 甲苯
|
论文外文关键词: |
g-C3N4 nanosheets ; TiLiAl-LDHs ; TiLiAl-LDHs/g-C3N4 ; CO2 photocatalytic conversion ; toluene.
|
论文中文摘要: |
︿
环境污染与碳排放问题是影响人类社会发展所面临的重大问题。突破绿色高效光催化技术瓶颈是破解上述两大难题的重要途径。目前,制约光催化技术发展的关键科学问题是设计制备太阳光捕获及利用率高、光生载流子传输分离效率高的光催化剂,阐明光催化剂作用机理及构效关系。因此,本文针对上述科学问题,开展厚度可控的g-C3N4纳米片及TiLiAl-LDHs/g-C3N4复合材料制备与光催化性能研究。在高效光催化剂设计与制备研究基础之上,首先开展了超薄g-C3N4纳米片光催化降解有机污染物机理研究,以阐明超薄g-C3N4纳米片的结构与光催化性能的关系;其次针对CO2光催化水还原制清洁燃料效率低的问题,以甲苯替代水,设计CO2-甲苯光催化协同反应体系,开展了TiLiAl-LDHs/g-C3N4结构与光催化性能关系研究。主要研究结果如下:
(1)采用简单热聚合法,以三聚氰胺(M)和尿素(U)混合物为原料,制备出厚度可控的g-C3N4纳米片。采用XRD、SEM、AFM、BET 、UV-Vis和PL等手段,研究了M/U比例变化对g-C3N4纳米片厚度和性能的调变规律。结果表明,随着尿素含量的增加g-C3N4纳米片逐渐变薄,当M/U为1:8时g-C3N4最薄(1:8-CN),厚度仅有3.518 nm,比表面积高达85.90 m2/g是三聚氰胺为原料的g-C3N4(M-CN)的7倍。光电学分析表明,超薄1:8-CN具有更高的光生载流子分离效率。
(2)采用静电自组装方法,通过改变TiLiAl-LDHs与g-C3N4的比例制备出具有虎皮兰花簇状和阵列结构LDHs/g-C3N4复合材料。首先采用简单水热法通过调控金属离子比例、甲酰胺浓度及反应温度制备出了一系列TiLiAl-LDHs,并筛选出性能最优的TiLiAl-LDHs与1:8-CN通过简单的静电自组装制备出不同比例的LDHs/g-C3N4。结果表明:由于抑制剂甲酰胺的存在,在一定程度上抑制了TiLiAl-LDHs的横向生长,从而制的得由条状的TiLiAl-LDHs组装而成的虎皮兰花簇结构,TiLiAl-LDHs吸收波长及强度也随之增加;在甲酰胺浓度为25%,反应温度为120℃时,金属离子比例为1:3:2,得到虎皮兰花簇状0.25-Ti1Li3Al2-LDHs-120,其光吸收性能最佳且比表面积最大。
进一步采用静电自组装法,将0.25-Ti1Li3Al2-LDHs-120组装在1:8-CN表面,成功制备出了TiLiAl-LDHs/g-C3N4复合材料(LDHs/g-C3N4)。结合组成结构表征,研究了0.25-Ti1Li3Al2-LDHs-120与1:8-CN比例对复合材料性能和结构的影响。结果表明, 在0.25-Ti1Li3Al2-LDHs-120与1:8-CN比例减小至5:3可制得0.25-Ti1Li3Al2-LDHs-120层片垂直于1:8-CN的阵列结构的LDHs/g-C3N4(5:3-LDHs/g-C3N4),在5:1-LDHs/g-C3N4和2:1-LDHs/g-C3N4复合材料中,由于0.25-Ti1Li3Al2-LDHs-120层片过量堆叠在1:8-CN表面,因此组装成虎皮兰花簇状结构的LDHs/g-C3N4。在LDHs/g-C3N4复合材料中,0.25-Ti1Li3Al2-LDHs-120与1:8-CN光吸收性能具有协同作用,提高了光生载流子分离效率。
(3)在可见光下,超薄1:8-CN对罗丹明B(RhB)具有最佳的降解效率,并揭示了其光催化降解机理。在CEL-SPH2N光催化活性评价系统上,以氙灯为光源,研究了g-C3N4纳米片厚度对光催化降解RhB反应的影响,通过自由基捕获实验研究了其光催化反应机理。结果表明:1:8-CN对RhB的光催化降解率可以达到96.2%,是M-CN的1.9倍。1:8-CN光催化降解RhB的反应机理表现为:1:8-CN光生电子-空穴对高效分离产生的电子与O2结合生成·O2-是提高RhB光催化降解的关键。
(4)在以LDHs/g-C3N4为光催化剂的CO2-甲苯光催化反应体系上,可实现光催化CO2弱氧化甲苯转化为精细化学品,并同时实现CO2光催转化。在高压光催化反应器上,以氙灯为光源,研究了LDHs/g-C3N4复合材料光催化剂组成变化对CO2-甲苯光催化反应产物转化率和选择性的影响规律。结果表明,在5:1-LDHs/g-C3N4光催化剂上,反应压力1MPa时,苯甲酸苄酯选择性最高,产量最大达至3.98 mmol/gcat;在2:1-LDHs/g-C3N4上,反应压力1.5MPa时,苯甲醛选择性最高,产量最高达到8.66 mmol/gcat。反应过程中,CO2同时被还原为CO等产物。光催化CO2-甲苯协同反应机理为:甲苯与CO2在光照下分别产生苯甲基和 ,再结合生成苯甲醛;苯甲醛通过Tishchenko反应生成苯甲酸苄酯。
﹀
|
论文外文摘要: |
︿
Environmental pollution and carbon emissions are major issues that affect the development of human society. Breaking through the bottleneck of green and efficient photocatalysis technology is an important way to solve the above two major problems. At present, the key scientific issue that restricts the development of photocatalysis technology is to design and prepare photocatalysts with higher solar light capture and utilization, and higher photogenerated carrier transport and separation efficiency. In addition, the structure-activity relationship and catalytic mechanism of the photocatalysts are worth in-depth study. In this work, novel g-C3N4 nanosheets with controllable thickness and corresponding TiLiAl-LDHs/g-C3N4 heterojunction were prepared, and their photocatalytic performance was investigated. by the degradation of and toluene oxidation by CO2 under visible light irradiation, respectively Based on the design and preparation of the high-efficiency photocatalysts, the photocatalytic degradation of Rhodamine B (RhB) on the ultra-thin g-C3N4 nanosheets was carried out, and the structure-activity relationship of the g-C3N4 was further studied to explore the photocatalytic mechanism. In view of the low efficiency of photocatalytic CO2 reduction with water to clean fuel, toluene was used to replace water and photocatalytic toluene oxidation by CO2-over the TiLiAl-LDHs/g-C3N4 catalyst was conducted. The relationship between the catalyst structure and photocatalytic performance was investigated. The main findings are as follows:
(1) The g-C3N4 nanosheets with controllable thickness were prepared via a simple thermal polymerization method, using a mixture of melamine (M) and urea (U) as raw materials. XRD, SEM, AFM, BET, UV-Vis and PL were used to study the regulation of the nanosheet thickness and the optical properties of the g-C3N4. The results show that with the increase of the content of urea, g-C3N4 nanosheets gradually become thinner. When the ratio of melamine to urea is 1:8, the thickness of the g-C3N4 nanosheet (1:8-CN) is only 3.518 nm, and the specific surface area is 85.90 m2/g, which is 7 times that of g-C3N4 (M-CN) made of melamine. Photoelectric analysis shows that ultra-thin 1:8-CN has a higher separation efficiency of photogenerated carriers.
(2) Using the electrostatic self-assembly method, the LDHs/g-C3N4 composite material with tiger skin orchid cluster and array structure was prepared by changing the ratio of TiLiAl-LDHs vs. g-C3N4. A series of TiLiAl-LDHs were prepared by a simple hydrothermal method with different ratios of metal ions, different concentrations of formamide and different treatment temperatures. TiLiAl-LDHs/g-C3N4 heterojunction was prepared by a simple electrostatic self-assembly method. The results showed that the lateral growth of TiLiAl-LDHs was inhibited to a certain extent, due to the presence of the inhibitor formamide, leading to the formation of a tiger skin orchid structure assembled from TiLiAl-LDHs strips. In this orchid structure, the light absorption wavelength and intensity of TiLiAl-LDHs also increase. When the concentration of formamide is 25%, the treatment temperature is 120℃ and the ratio of metal ions is 1:3:2, the resulting TiLiAl-LDHs (marked as 0.25-Ti1Li3Al2-LDHs-120) shows the best light absorption performance and the largest specific surface area. Then, 0.25-Ti1Li3Al2-LDHs-120 was assembled on the surface of 1:8-CN by a electrostatic self-assembly method, so TiLiAl-LDHs/g-C3N4 composite material was successfully synthesized. Combined with the characterization of the composition structure, the influence of the ratio of 0.25-Ti1Li3Al2-LDHs-120 and 1:8-CN on the properties and structure of the composite was studied. The results show that when the ratio of 0.25-Ti1Li3Al2-LDHs-120 to 1:8-CN is reduced to 5:3 (5:3-LDHs/g-C3N4), the 0.25-Ti1Li3Al2-LDHs-120 layer is perpendicular to the 1:8-CN array structure.When 5:1-LDHs/g-C3N4 and 2:1-LDHs/g-C3N4 are Over-stacked 0.25-Ti1Li3Al2-LDHs-120 layers were assembled on the surface of 1:8-CN to form LDHs/g-C3N4 with a tiger skin orchid cluster structure. In the composite material, the light absorption properties of 0.25-Ti1Li3Al2-LDHs-120 and 1:8-CN have a synergistic effect, which improves the separation efficiency of photogenerated carriers.
(3) The ultra-thin 1:8-CN has the best degradation efficiency for rhodamine B (RhB) under visible light, and its photocatalytic degradation mechanism was revealed. In the CEL-SPH2N photocatalysis evaluation system with a xenon lamp as a light source, the effect of the thickness of the g-C3N4 nanosheets on the photocatalytic degradation of RhB was studied, and the photocatalytic reaction mechanism was studied by free radical trapping experiments. The results show that the photocatalytic degradation rate of RhB by 1:8-CN can reach 96.2%, which is 1.9 times that of M-CN. The significantly improved photocatalytic activity is mainly attributed to the enhanced separation efficiency of photogenerated carriers, providing more electrons for the conversion of O2 to O2-.
(4) For CO2-toluene photocatalytic reaction system over the TiLiAl-LDHs/g-C3N4 photocatalyst, toluene can be weakly oxidized by CO2 into some fine chemicals. Using a high-pressure photocatalytic reactor with a xenon lamp as the light source, the effect of the composition of TiLiAl-LDHs and g-C3N4 on the activity and selectivity of the CO2-toluene photocatalytic reaction was studied. The results show that the selectivity of benzyl benzoate is the highest over 5:1-LDHs/g-C3N4 at 1MPa, and the maximum yield is 3.98 mmol/gcat. For 2:1-LDHs/g-C3N4, the selectivity of benzaldehyde reaches the highest at 1.5MPa with the yield of 8.66 mmol/gcat. The mechanism of the photocatalytic toluene oxidation by CO2 was also studied. Toluene and CO2 react with photogenerated holes and electrons to produce benzyl and species, respectively. Benzyl and further combine to form benzaldehyde. Then, benzaldehyde can be converted to benzyl benzoate through Tishchenko reaction.
﹀
|
参考文献: |
︿
[1] A,F.and H,K. Electrochemical photolysis of water at a semiconductor electrode.Nature,1972,238:37-38. [2] Ismail Issa Alkhatib, Corrado Garlisi, Mario Pagliaro, et al.Metal-organic frameworks for photocatalytic CO2 reduction under visible radiation: A review of strategies and applications,Catalysis Today,2020,209-224, [3] Zhang Q , Li Y , Ackerman E A , et al. Visible light responsive iodine-doped TiO2 for photocatalytic reduction of CO2 to fuels[J]. Applied Catalysis A General, 2011, 400(1-2):195-202. [4] Kumar S , Isaacs M A , Trofimovaite R , et al. P25@CoAl layered double hydroxide heterojunction nanocomposites for CO2 photocatalytic reduction[J]. Applied Catalysis B Environmental, 2017, 209(1):394. [5] 迟军,俞红梅.基于可再生能源的水电解制氢技术(英文)[J].催化学报,2018,39(03):390-394 [6] Iqbal M , Ali A , Nahyoon N A , et al. Photocatalytic degradation of organic pollutant with nanosized cadmium sulfide[J]. Materials Science for Energy Technologies, 2018. [7] Yu Y,Ding Y , Zuo S , et al. Photocatalytic Activity of Nanosized Cadmium Sulfides Synthesized by Complex Compound Thermolysis[J]. International Journal of Photoenergy,2011,(2010-08-18), 2010, 2011(12):1882-1889. [8] Kaouther Abderrazek, Frini Srasra Najoua, Ezzeddine Srasra,Synthesis and characterization of [Zn–Al] LDH: Study of the effect of calcination on the photocatalytic activity,Applied Clay Science,2016, 229-235, [9] Zhang L , Dai C H , Zhang X X , et al. Synthesis and highly efficient photocatalytic activity of mixed oxides derived from ZnNiAl layered double hydroxides[J]. 中国有色金属学报(英文版), 2016, 26(9):2380-2389. [10] Tahir M , Amin N A S . Indium-doped TiO2 nanoparticles for photocatalytic CO2 reduction with H2O vapors to CH4[J]. Applied Catalysis B: Environmental, 2015, 162:98-109 [11] 陈晋芳. 复合纳米ZnO光催化剂的制备、表征及性能应用研究[D]. 大连海洋大学, 2015. [12] 于一夫. CeO2多孔纳米片催化剂和纳米阵列催化剂的合成与催化性能[D]. 天津大学, 2014. [13] K. KOČÍ, K. ZATLOUKALOVÁ, L. OBALOVÁ, et al. Wavelength Effect on Photocatalytic Reduction of CO by Ag/TiO2 Catalyst[J]. Chinese Journal of Catalysis, 2011, 32(5):812-815. [14] Wang X, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1):76-80. [15] Han Q, Zhao F, Hu C G, et al. Facile production of ultrathin graphitic carbon nitride nanoplatelets for efficient visible-light water splitting[J]. Nano Research, 2015(5):1718-1728. [16] Wee-Jun O, Lling-Lling D, Yun Hau N, et al. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability?[J]. Chemical reviews, 2016, 116, 12, 7159–7329 [17] Li Y , Wu S , Huang L , et al. Synthesis of carbon-doped g-C3N4 composites with enhanced visible-light photocatalytic activity[J]. Materials Letters, 2014, 137(dec.15):281-284. [18] José Francisco Naime Filho,Fabrice Leroux,Vincent Verney, et al. Percolated non-Newtonian flow for silicone obtained from exfoliated bioinorganic layered double hydroxide intercalated with amino acid[J]. Applied Clay Science,2011,55. [19] Shoji Iguchi,Kentaro Teramura,Saburo Hosokawa, et al. Photocatalytic conversion of CO2 in an aqueous solution using various kinds of layered double hydroxides[J]. Catalysis Today,2015,251,140-144. [20] 李海金, 韩秋彤, 贾虎, 等. LDHs材料的制备及光催化应用研究进展[J]. 中国材料进展, 2019, 38(02):13-19+27. [21] 贺学智,李炳杰,吴志坚,等.层状双金属氢氧化物Zn(Cu)/Al-LDHs的制备及其光催化还原二氧化碳的研究[J].分子催化,2013,27(01):70-75. [22] Liebig J. Uber einige Stickstoff-Verbindungen[J]. European Journal of Organic Chemistry, 1834, 10(1):1-47. [23] Franklin E C. The Ammono Carbonic Acids[J]. Journal of the American Chemical Society,1922,44(3):486-509. [24] Kroke E, Schwarz M, et al. Tri-s-triazine derivatives. PartI. From trichloro-tri-s-triazine to graphitic C3N4 structures[J]. New Journal of Chemistry, 2002,26(5):508-512. [25] Chen Y, Shao G, Kong Y, et al. Facile preparation of cross-linked polyimide aerogels with carboxylic functionalization for CO2, capture[J]. Chemical Engineering Journal, 2017, 322:1-9. [26] Zhang Z H, Leinenweber K, Bauer M, et al. High-pressure bulk synthesis of crystalline C6N9H3 center dot hcl: A novel C3N4 graphitic derivative[J]. Journal of the American Chemical Society, 2001(32), 123:7788-7796. [27] Meyer M. Patent citation analysis in a novel field of technology: An exploration of nano-science and nano-technology[J]. Scientometrics, 2001, 51(1):163-183. [28] Groenewolt M, Antonietti M . Synthesis of g‐C3N4 Nanoparticles in Mesoporous Silica Host Matrices[J]. Advanced Materials, 2005, 17(14):1789-1792. [29] 郭雅容,陈志鸿,刘琼,等.石墨相氮化碳光催化剂研究进展[J].化工进展,2016,35(07):2063-2070. [30] Han K K , Wang C C, Li Y Y, et al. Facile template-free synthesis of porous g-C3N4 with high photocatalytic performance under visible light[J]. Rsc Advances, 2013, 3(24):9465-9469. [31] Kumar S, Surendar T, Kumar B, et al. Synthesis of highly efficient and recyclable visible-light responsive mesoporous g-C3N4 photocatalyst via facile template-free sonochemical route[J]. Rsc Advances, 2014, 4(16):8132-8137. [32] Shixiong Min, Gongxuan, et al. Enhanced Electron Transfer from the Excited Eosin Y to mpg-C3N4 for Highly Efficient Hydrogen Evolution under 550 nm Irradiation[J]. The Journal of Physical Chemistry C, 2012, 116(37):19644-19652. [33] Liu J, Huang J, Zhou H, et al. Uniform Graphitic Carbon Nitride Nanorod for Efficient Photocatalytic Hydrogen Evolution and Sustained Photoenzymatic Catalysis[J]. ACS Applied Materials & Interfaces, 2014, 6(11): 8434–8440 [34] Ansari M B, Min B H, Mo Y H, et al. CO2 activation and promotional effect in the oxidation of cyclic olefins over mesoporous carbon nitrides[J]. Green Chemistry, 2011, 13(6):1416-1421. [35] Zhang J H, Wei M J, Wei Z W, et al. Ultrathin Graphitic Carbon Nitride Nanosheets for Photocatalytic Hydrogen Evolution[J]. ACS Applied Nano Materials, 2020, 3(2):1010-1018. [36] Iqbal W, Dong C, Xing M, et al. Eco-friendly one-pot synthesis of well-adorned mesoporous g-C3N4 with efficiently enhanced visible light photocatalytic activity[J]. Catalysis Science & Technology, 2017, 7. 1726-1734 [37] Xing W, Tu W, Han Z, et al. Template-Induced High-Crystalline g-C3N4 Nanosheets for Enhanced Photocatalytic H2 Evolution[J]. ACS Energy Lett. 2018, 30:514–519. [38] Han Q, Zhao F, Hu C G, et al. Facile production of ultrathin graphitic carbon nitride nanoplatelets for efficient visible-light water splitting[J]. Nano Research, 2015(5):1718-1728. [39] 段贤扬,徐继红,何梦奇,等.二维石墨相氮化碳纳米片的制备及其光催化性能[J].精细化工,2021,38(01):83-90. [40] Aschebrenner O,Mcguire P,Alsamaq S,et al, Adsorption of carbon dioxide on hydrotalcite-like compounds of different compositions [J]. Chemical Engineering Researchand Design,2011,89(9):1711-1721. [41] Tomohito Kameda,Testu Shinmyou,To Shioka.Kinetc and equilibrium studies on the uptake of Nd3+ and Sr2+ by Li-Al layered double hydroxide intercalated with 1-hydroxyethane-1,1-diphonicacid[J]. Journal of Industrial and Engineering Chemistry.2016,36:96-101. [42] 刘博,贾雪梅,周安宁.等.锌镁铝类水滑石/煤复合材料协同阻燃乙烯-醋酸乙烯酯共聚物[J].高分子材料科学与工程,2014,(11):145-150. [43] 钟琼,李欢.Mg/Al水滑石微波共沉淀法合成及其对BrO3-~-吸附性能的研究[J].环境科学,2014,35(04):1566-1575. [44] M. Flores-Flores, E. Luévano-Hipólito, Leticia M. et al.Photocatalytic CO2 conversion by MgAl layered double hydroxides: Effect of Mg2+ precursor and microwave irradiation time[J].Journal of Photochemistry and Photobiology A: Chemistry,2018,68-73, [45] 张鋆益,邹勇昌,陈俊,等.层间阴离子对镁-铝水滑石吸附HCl与PVC热稳定性的影响[J].塑料工业,2019,47(12):116-121. [46] 孔婷婷, 张颖萍, 张亚刚,等. 锂铝基类水滑石的制备及其光催化性能表征[J]. 功能材料, 2016,47(12):12255-12260. [47] 贺学智,李炳杰,吴志坚,等.层状双金属氢氧化物Zn(Cu)/Al-LDHs的制备及其光催化还原二氧化碳的研究[J].分子催化, 2013,27(01):70-75. [48] 孔婷婷,董羿蘩,张颖萍,等.类水滑石Ti/Li/Al-LDHs的制备及其CO2吸附性能[J].燃料化学学报,2016,44(08):1017-1024. [49] 周进康,罗中权,郑洁,等.镁铝钡三元水滑石的制备及吸附性能[J]. 化学世界, 2017(11):37-41. [50] 韩玉琦,宋红娟,魏玉娟,等.Ag@AgCl/Mg-Al-LDHs复合光催化剂的制备及可见光催化活性[J].化学工程,2016,44(01):58-62+68. [51] 李海金,韩秋彤,贾虎,等.LDHs材料的制备及光催化应用研究进展[J].中国材料进展,2019,38(02):91-97+105 [52] Iyi N , Matsumoto T , Kaneko Y , et al. Deintercalation of Carbonate Ions from a Hydrotalcite-Like Compound:? Enhanced Decarbonation Using Acid?Salt Mixed Solution[J]. Chemistry of Materials, 2004, 16(15):2926-2932. [53] Shen, R., Xie, J., Guo, P., Chen, L., et al. Bridging the g-C3N4 Nanosheets and Robust CuS Cocatalysts by Metallic Acetylene Black Interface Mediators for Active and Durable Photocatalytic H2 Production. ACS Applied Energy Materials, 2018,1(5), 2232–2241 [54] Tonda, S., Kumar, S., Kandula, S., et al. Fe-doped and -mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight. Journal of Materials Chemistry A, 2014,2(19), 6772. [55] Song, Biao & Zhuotong, Zeng & Zeng, Guangming, et al. Powerful combination of g-C3N4 and LDHs for enhanced photocatalytic performance: A review of strategy, synthesis, and applications. Advances in Colloid and Interface Science. 2019,272. 101999. [56] Hong J , Zhang W , Wang Y , et al. Photocatalytic Reduction of Carbon Dioxide over Self-ssembled Carbon Nitride and Layered Double Hydroxide: The Role of Carbon Dioxide Enrichment[J]. ChemCatChem, 2014, 6. [57] Guo Q , Zhang Q , Wang H , et al. Core-shell structured ZnO@Cu-Zn-Al layered double hydroxides with enhanced photocatalytic efficiency for CO2 reduction[J]. Catalysis Communications, 2016, 77:118-122. [58] Mureseanu Mihaela, Radu Teodora, Andrei Radu-Dorin. Green synthesis ofg-C3N4//CuONP/LDH composites and derived g-C3N4/MMO and their photocatalytic performance for phenol reduction from aqueous solutions[J]. Applied Clay Science, 141:1-12. [59] Kumar S , Isaacs M A , Trofimovaite R , et al. P25@CoAl layered double hydroxide heterojunction nanocomposites for CO2 photocatalytic reduction[J]. Applied Catalysis B Environmental, 2017, 209(1):394. [60] Wan-Kuen Jo, Surendar Tonda,Novel CoAl-LDH/g-C3N4/RGO ternary heterojunction with notable 2D/2D/2D configuration for highly efficient visible-light-induced photocatalytic elimination of dye and antibiotic pollutants,Journal of Hazardous Materials,2019, 778-787, [61] José Francisco,Naime Filho,Fabrice Leroux,et al. Percolated non-Newtonian flow for silicone obtained from exfoliated bioinorganic layered double hydroxide intercalated with amino acid[J]. Applied Clay Science,2011,55. [62] Lin L , Hou C , Zhang X , et al. Highly efficient visible-light driven photocatalytic reduction of CO2, over g-C3N4, nanosheets/tetra(4-carboxyphenyl)porphyrin iron(III) chloride heterogeneous catalysts[J]. Applied Catalysis B: Environmental, 2017:S092633731730872X. [63] Shu H , Zhu G N , Chao Z , et al. Immobilization of Co-Al Layered Double Hydroxides on Graphene Oxide Nanosheets: Growth Mechanism and Supercapacitor Studies[J]. ACS Applied Materials & Interfaces, 2012, 4(4):2242-2249. [64] Tonda S , Kumar S , Bhardwaj M , et al. g-C3N4/NiAl-LDH 2D/2D Hybrid Heterojunction for High-Performance Photocatalytic Reduction of CO2 into Renewable Fuels[J]. ACS Applied Materials & Interfaces, 2017, 10(3):2667-2678. [65] Qunrong Shi, Junjie Huang, Yong Yang, et al. In-situ construction of urchin-like hierarchical g-C3N4/NiAl-LDH hybrid for efficient photoreduction of CO2,Materials Letters,2020, 0167-577X, [66] Liang X,Wang G,Dong X. et al. Graphitic Carbon Nitride with Carbon Vacancies for Photocatalytic Degradation of Bisphenol A[J]. Acs Applied Nano Materials, 2019.2,1,517–524. [67] Dai K,Peng T, Chen H. et al. Photocatalytic Degradation of Commercial Phoxim over La-Doped TiO2 Nanoparticles in Aqueous Suspension[J]. Environmental Science & Technology,2009, 43(5):1540-1545. [68] Shen A Z,Zhang Q L,Yin C C. et al. Facile synthesis of 3D flower-like mesoporous Ce-ZnO at room temperature for the sunlight-driven photocatalytic degradations of RhB and phenol[J]. Journal of Colloid and Interface Science, 2019,556:726-733. [69] Shi J,Chen T,Guo C. et al. The bifunctional composites of AC restrain the stack of g-C3N4 with the excellent adsorption-photocatalytic performance for the removal of RhB[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 580:123701-123711. [70] Guo Y,Li C,Guo Y. et al. Ultrasonic-assisted synthesis of mesoporous g-C3N4/Na-bentonite composites and its application for efficient photocatalytic simultaneous removal of Cr(VI) and RhB[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2019,578:123624-123633 [71] Benjamin S,Vaya D,Punjabi P B. et al. Enhancing photocatalytic activity of zinc oxide by coating with some natural pigments[J]. Arabian Journal of Chemistry,2011,4(2):205-209. [72] Yu D , Nagelli E , Du F , et al. Metal-Free Carbon Nanomaterials Become More Active Than Metal Catalysts and Last Longer[J]. J.phys.chem.lett, 2010, 1(14):2165-2173. [73] 杨开,钟登杰,徐云兰,等.N,F,Ce三掺杂TiO_2/Ti光催化处理染料废水的研究[J].重庆理工大学学报(自然科学),2017,31(10):134-139+164. [74] Qi, Tong, Tifeng, et al. Facile Synthesis of Highly Crystalline α-Fe2O3 Nanostructures with Different Shapes as Photocatalysts for Waste Dye Treatment[J]. Science of Advanced Materials, 2016, 8(5):1005-1009. [75] 胡春光,辛言君.TiO_2/Ti纳米管光电极制备及光催化性能研究[J].水处理技术,2015,41(08):58-60+66. [76] 马立标,张宾,柳荣展,等.K~+掺杂g-C3N4污泥基复合材料的制备及其光催化性能[J].精细化工,2020,37(11):2255-2261. [77] Gao J, Zhou Y, Li Z, et al. High-yield synthesis of millimetre-long, semiconducting carbon nitride nanotubes with intense photoluminescence emission and reproducible photoconductivity [J]. Nanoscale, 2012, 4(12): 3687-3692 [78] 阎鑫,惠小艳,闫从祥.等.类石墨相氮化碳二维纳米片的制备及可见光催化性能研究[J].材料导报,2017,31(09):77-80. [79] 牟铭,顾宝珊,刘洋洋,等.氧化石墨烯/H_2O_2可见光催化性能影响因素[J].材料科学与工艺,2019,27(05):78-83. [80] 孟运余,尚传勋.二氧化碳甲烷化还原技术研究[J].航天医学与医学工程,1994(02):115-120. [81] 李晓慧,范同祥.人工光合作用[J].化学进展,2011,23(09):1841-1853. [82] 林元华.纳米技术──人类的又一次产业革命[J].国外科技动态,2000(01):11-13 [83] Masakazu, Anpo, and, et al. Photocatalytic reduction of CO2 with H2O on various titanium oxide catalysts[J]. Journal of Electroanalytical Chemistry, 1995, 396(1-2):21-26. [84] Inoue T, Fujishima A, Konishi S, et al. Nature, 1979,277(5698): 637 [85] B X X A , C Y Z , A R S , et al. Selective photocatalytic CO2 reduction over Zn-based layered double hydroxides containing tri or tetravalent metals[J]. Science Bulletin, 2020, 65(12):987-994. [86] 孔婷婷,张颖萍,周安宁,张丹.Cu/Fe/Al-LDHs的制备及其光催化还原CO2制备CH4研究[J].西安科技大学学报,2016,36(01):86-91 [87] Liu, Lianjun,Zhao, Cunyu,Miller, Jeffrey T., et al.Mechanistic Study of CO2 Photoreduction with H2O on Cu/TiO2 Nanocomposites by in Situ X-ray Absorption and Infrared Spectroscopies[J].The journal of physical chemistry, C. Nanomaterials and interfaces,2017,121(1):490-499. [88] Beigi A A , Fatemi S , Salehi Z . Synthesis of nanocomposite CdS/TiO2 and investigation of its photocatalytic activity for CO2 reduction to CO and CH4 under visible light irradiation[J]. Journal of CO2 Utilization, 2014, 7(7):23-29. [89] Zhao C , Liu L , Rao G , et al. Synthesis of novel MgAl layered double oxide grafted TiO2 cuboids and their photocatalytic activity on CO2 reduction with water vapor[J]. Catal.sci.technol, 2015, 5(6):3288-3295. [90] 张颖萍,孔婷婷,周安宁,等.Zn/Fe/Al-LDHs制备及其光催化还原CO2 性能研究[J].应用化工,2017,46(10):1916-1920. [91] Ge Gao, Zhi Zhu, Jia Zheng, et al. Ultrathin magnetic Mg-Al LDH photocatalyst for enhanced CO2 reduction: Fabrication and mechanism,Journal of Colloid and Interface Science,Volume 555,2019,1-10 [92] Ting Ye, Weimin Huang, Liming Zeng, et al. CeO2-x platelet from monometallic cerium layered double hydroxides and its photocatalytic reduction of CO2,Applied Catalysis B: Environmental,2017, 141-148. [93] R Ma, Bando Y , Sasaki T . Nanotubes of lepidocrocite titanates[J]. CHEMICAL PHYSICS LETTERS, 2003. 380, 5, 577-582(6) [94] Xin Li,Jiuqing Wen,Jingxiang Low,et al. Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel[J]. Science China Materials,2014,57(1). [95] Zhu M S, Su M J, Yan B, et al. Ultrathin graphitic C3N4 nanosheet as a promising visible-light-activated support for boosting photoelectrocatalytic methanol oxidation[J]. Applied Catalysis B Environmental, 2017. [96] Lin Q Y, Li L, Liang S J, et al. Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities[J]. Applied Catalysis B Environmental, 2015. [97] Sun X Q, Lei J, Jin Y, et al. Long-Lasting and Intense Chemiluminescence of Luminol Triggered by Oxidized g-C3N4 Nanosheets[J]. Analytical Chemistry,2020,92(17), 11860-11868. [98] Islam A, Abdelhafeez, Chen J b, et al. Scalable one-step template-free synthesis of ultralight edge-functionalized g-C3N4 nanosheets with enhanced visible light photocatalytic performance[J]. Separation and Purification Technology,2020,250:1383-5866. [99] Xu J, Wang Z P, Zhu Y F, et al. Enhanced Visible-Light-Driven Photocatalytic Disinfection Performance and Organic Pollutant Degradation Activity of Porous g-C3N4 Nanosheets[J]. ACS Appl. Mater. Interfaces 2017, 9, 33:27727–27735. [100] Li Y, Wang M, Bao S J, et al. Tuning and thermal exfoliation graphene-like carbon nitride nanosheets for superior photocatalytic activity[J]. Ceramics International,2016,42(16):18521-18528. [101] Yan H, Li J, Zhang M, et al. Enhanced corrosion resistance and adhesion of epoxy coating by two-dimensional graphite-like g-C3N4 nanosheets[J]. Journal of Colloid and Interface ence,2020,579:152-161. [102] Zhou Y, Lv W, Zhu B, et al. Template-free one-step synthesis of g-C3N4 nanosheets with simultaneous porous network and S-doping for remarkable visible-light-driven hydrogen evolution[J]. ACS Sustainable Chem. Eng,2019,7( 6):5801–5807. [103] 王震,任学昌,郭梅,等. g-C3N4的硫酸铵-尿素混合法制备及其可见光催化性能[J]. 环境化学, 2020, 39(10):267-276. [104] 雷东强,周安宁,赵小玲,等.Ti1Li3Al4-LDHs@氧化椰壳活性炭复合材料的制备及光催化水还原CO2性能研究[J].功能材料,2020,51(03):3066-3074. [105] 孔婷婷,董羿蘩,张颖萍,等.类水滑石Ti/Li/Al-LDHs的制备及其CO2吸附性能[J].燃料化学学报,2016,44(08):1017-1024. [106] Zhao Y , Zhao Y , Waterhouse G I N , et al. Layered-Double-Hydroxide Nanosheets as Efficient Visible-Light-Driven Photocatalysts for Dinitrogen Fixation[J]. Advanced Materials, 2017.1703828-1703837 [107] Shekardasht M B , Givianrad M H , Gharbani P , et al. Preparation of a novel Z-scheme g-C3N4/RGO/Bi2Fe4O9 nanophotocatalyst for degradation of Congo Red dye under visible light[J]. Diamond and Related Materials, 2020, 109:108008. [108] Li Y , Xing X , Pei J , et al. Automobile exhaust gas purification material based on physical adsorption of tourmaline powder and visible light catalytic decomposition of g-C3N4/BiVO4[J]. Ceramics International, 2020, 46( 8):12637-12647. [109] Yang Y , Mao B , Gong G , et al. In-situ growth of Zn–AgIn5S8 quantum dots on g-C3N4 towards 0D/2D heterostructured photocatalysts with enhanced hydrogen production[J]. International Journal of Hydrogen Energy, 2019,44(30),15882-15891。 [110] A X Y , A S Q , A X H , et al. Design of Core-shelled g-C3N4@ZIF-8 Photocatalyst with Enhanced Tetracycline Adsorption for Boosting Photocatalytic Degradation[J]. Chemical Engineering Journal, 2021. [111] Karthik P , Gowthaman P , Venkatachalam M , et al. Design and fabrication of g-C3N4 nanosheets decorated TiO2 hybrid sensor films for improved performance towards CO2 gas[J]. Inorganic Chemistry Communications, 2020:108060. [112] Zhang Jinshui,Chen Xiufang,Takanabe K. et al. Synthesis of a Carbon Nitride Structure for Visible‐Light Catalysis by Copolymerization[J]. Angewandte Chemie,2010,49(2):441-444. [113] Mousavi M,Habibi-Yangjeh A,Abitorabi M. Fabrication of novel magnetically separable nanocomposites using graphitic carbon nitride, silver phosphate and silver chloride and their applications in photocatalytic removal of different pollutants using visible-light irradiation[J]. Journal of Colloid and Interface Science,2016,480:218-231. [114] Chen Y,Huang W,He D. et al. Construction of Heterostructured g-C3N4/Ag/TiO2 Microspheres with Enhanced Photocatalysis Performance under Visible-Light Irradiation[J]. Acs Applied Materials & Interfaces,2014, 16(6) :14405–14414 [115] Shao M , Han J , Wei M , et al. The synthesis of hierarchical Zn–Ti layered double hydroxide for efficient visible-light photocatalysis[J]. Chemical Engineering Journal, 2011, 168(2):519-524. [116] Yya B , Fxa B , Rong C , et al. New insights into the role of CO2 in a photocatalytic fuel cell[J]. Journal of Power Sources, 487. [117] Liu Y , Li J , Zhou B , et al. Photoelectrocatalytic degradation of refractory organic compounds enhanced by a photocatalytic fuel cell[J]. Applied Catalysis B Environmental, 2012, 111(none):485-491. [118] 近藤精一,石川达雄,安部郁夫.吸附科学[M].2 ed:化学工业出版社,2006. [119] Lin D, Yu C X, Jun B Z, et al. Ionic liquid-assisted preparation of thin Bi2SiO5 nanosheets for effective photocatalytic degradation of RhB[J]. Materials Letters,2020,261:127117-127127. [120] Kim J, Lee C W, Choi W. Platinized WO3 as an Environmental Photocatalyst that Generates OH Radicals under Visible Light[J]. Environmental ence & Technology, 2010,44:6849-6854. [121] Zeng J, Li J, Zhong J, et al. Improved Sun light photocatalytic activity of α-Fe2O3 prepared with the assistance of CTAB[J]. Materials Letters,2015,160:526-528. [122] Braunstein P., Matt D., Nobel D., Reaction of carbon dioxide with carbon-carbon bond formation catalyzed by transition-metal complex, Chem.Rev.,1988, 88:747-764. [123] Inui T, Highly effective conversion of carbon dioxide to valuable compounds on composite catalysts, Catal.Today, 1996,29:329-334. [124] 魏双绍,二氧化碳化学进展,天然气化工,1998,23 (6): 40-460 [125] 肖稳亮,邝生普,二氧化碳在化学合成上的研究进展,化学研究与应用, 2000 12(3):237一241. [126] 陈明亮,以CO2为原料的反应与合成,有机化学,2000,20(4):591-596 [127] Bi Y , V. Cortés Corberán, Zhuang H , et al. Oxidehydrogenation of ethane with CO2 over transition metal doped mcm-41 mesoporous catalysts[J]. Studies in surface science and catalysis, 2004. [128] 杨宏. 二氧化碳氧化乙烷—低温Cr系催化剂和反应过程的研究[D].中国科学院大连化学物理研究所,2001 [129] Shaobin Wang, K Murata, T Hayakawa,et al. Dehydrogenation of ethane with carbon dioxide over supported chromium oxide catalysts[J]. Applied Catalysis A General, 2000, 196(1):1-8. [130] I. Takahara, W.-C Chang, N. Mimura,et al. Promoting effects of CO2 on dehydrogenation of propane over a SiO2-supported Cr2O3 catalyst[J]. Catalysis Today, 1998, 114(1-4):419-422. [131] Krylov O V , Mamedov A K , Mirzabekova S R . The regularities in the interaction of alkanes with CO2 on oxide catalysts[J]. Catalysis Today, 1995, 24(3):371-375. [132] 张海新, 陈树伟, et al. Ce助剂对V/SiO2催化CO2氧化乙苯脱氢性能的影响[J]. 物理化学学报, 2014(2). [133] 刘忠文. 二氧化碳弱氧化剂用于乙苯脱氢绿色过程的高效催化剂[A]. 中国化学会催化委员会.第九届全国环境催化与环境材料学术会议——助力两型社会快速发展的环境催化与环境材料会议论文集(NCECM 2015)[C].中国化学会催化委员会:中国化学会,2015:1. [134] 陈树伟,秦张峰,孙爱灵,等. 助剂Li对CO2气氛下Fe-Li/AC催化剂上乙苯脱氢反应性能的影响[J]. 催化学报, 2009, V30(4):359-364. [135] 梁奇,高利珍,李庆,等.乙烷脱氢制乙烯研究动向,石油与天然气化工,1999, 28(3):160-162 [136] O.V. Krylov, Free-radical reactions involved in C1-C3 hydrocarbons interaction with oxide catalysts, Catal. Taday, 1992, 13:481-486 [137] 王昶, 刘康, 李桂菊,等. 操作条件对生物质催化热解产轻质芳烃的影响[J]. 生物加工过程, 2007(04):57-62. [138] 丁汀摘译. 新催化剂使生物质裂解制取化工原料的产率提高了40%[J]. 石油炼制与化工, 2012, 43(4):14-14. [139] 郑云武. 木质生物质催化热解重整制备芳烃化合物的研究[D]. 东北林业大学. [140] 赵亮富,赵玉龙,吕朝晖,张碧江.氢气和一氧化碳在混二甲苯中的溶解度[J].化学反应工程与工艺,2000(04):396-400. [141] 陈欢林,刘茉娥,郑莲英,等.一氧化碳,二氧化碳在甲苯中的溶解度测定及关联[J].浙江大学学报,1985(01):143-151 [142] 张洪刚,陈建华,李胜想,任相伟,赵温涛,张万东.醇钠催化苯甲醛合成苯甲酸苄酯——介绍一个探索性有机化学实验[J].大学化学,2016,31(10):64-67 [143] Michael, Dahl, Yiding, et al. Composite Titanium Dioxide Nanomaterials[J]. Chemical Reviews, 2014, 114, 19, 9853–9889 [144] Zhang J,Chen X,Yu W , et al. Photocatalytic study of a novel crystal facets sensitive heterojunction between Sb8O11Cl2 and anatase TiO2 with different exposed facets[J]. Dyes & Pigments, 2019, 160:530-539. [145] Zhang J,Huang G,Zeng J,et al. SnS2 nanosheets coupled with 2D ultrathin MoS2 nanolayers as face-to-face 2D/2D heterojunction photocatalysts with excellent photocatalytic and photoelectrochemical activities[J]. Journal of Alloys and Compounds, 2018, 775. 726-735 [146] J Zhang, Huang G,J Zeng, et al. High carriers transmission efficiency ZnS/SnS2 heterojunction channel toward excellent photoelectrochemical activity[J]. Journal of the American Ceramic Society, 2018,102(5):2810-2819. [147] Huang G , Zhang J , Jiang F , et al. Excellent photoelectrochemical activity of Bi2S3 nanorod/TiO2 nanoplate composites with dominant {001 facets[J]. Journal of Solid State Chemistry, 2019, 281,121041. [148] Dha B , Chen Z , Gza B , et al. A multifunctional platform by controlling of carbon nitride in the core-shell structure: From design to construction, and catalysis applications[J]. Applied Catalysis B: Environmental, 2019, 258:117957-117967. [149] Zhou Y , Wang W , Zhang C , et al. Sustainable hydrogen production by molybdenum carbide-based efficient photocatalysts: From properties to mechanism[J]. Advances in Colloid and Interface Science, 2020, 279:102144-102154. [150] C.A.比尼奥齐.光催化.科学出版社,2014,125-126. [151] 张洪刚,陈建华,李胜想,等.醇钠催化苯甲醛合成苯甲酸苄酯——介绍一个探索性有机化学实验[J].大学化学,2016,31(10):64-67
﹀
|
中图分类号: |
TB34
|
开放日期: |
2023-06-25
|