- 无标题文档
查看论文信息

论文中文题名:

 基于多源数据的烟草叶面积指数遥感反演    

姓名:

 余洋    

学号:

 19210061014    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0816    

学科名称:

 工学 - 测绘科学与技术    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘科学与技术    

研究方向:

 农业定量遥感    

第一导师姓名:

 竞霞    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-16    

论文答辩日期:

 2023-06-02    

论文外文题名:

 Remote sensing inversion of tobacco leaf area index based on multi-source data    

论文中文关键词:

 遥感 ; 烟草 ; 叶面积指数 ; PROSAIL模型 ; Sentinel数据    

论文外文关键词:

 Remote sensing ; Tobacco ; LAI ; PROSAIL model ; Sentinel data    

论文中文摘要:

叶面积指数(Leaf Area Index,LAI)是表征作物长势的重要指标,及时准确的获取烟草叶面积指数对于评估烟草生长状况、优化田间管理体系具有重要研究意义。本文以安徽省宣城市宣州区烟草为研究对象,基于Sentinel-1雷达数据和Sentinel-2多光谱数据,结合地面野外调查数据,基于统计模型和PROSAIL模型反演烟草旺长期叶面积指数、成熟期叶面积指数,并对比分析了2种反演方法的优劣。主要有以下成果:

(1)基于统计模型的烟草叶面积指数反演方法中,通过袋外数据重要性分析算法(out-of-bag data,OOB),初步选择了重要性得分大于50分的17个植被指数,并在此基础上使用连续投影算法(Susscesive projections algorithm,SPA)进一步精选特征,基于均方根误差最小原则,选择前10个植被指数与Sentinel-1雷达数据VV、VH极化后向散射系数数据作为自变量构建烟草叶面积指数反演模型。结果表明,植被指数-VV数据组合反演精度最高,植被指数、植被指数-VH数据、植被指数-VV、VH数据的反演精度逐渐降低。

(2)基于统计模型的叶面积指数反演算法中,利用随机森林(random forest,RF)反演精度最高,R2最高可达0.7992,RMSE(Root mean square error,RMSE)为0.21;BP神经网络(Back Propagation,BP)次之,R2最高可达0.7718,RMSE为0.22;最后是径向基神经网络(radial basis function neural network,RBF),R2最高可达0.77,RMSE为0.25。

(3)基于PROSAIL模型的叶面积指数反演方法,选择Sentinel-2数据蓝波段、绿波段、红波段、近红外波段构建查找表,在此基础上进行烟草叶面积指数反演并进行精度分析。结果表明,使用物理模型反演烟草叶面积指数,R2最高可达0.8083,RMSE为0.316。

论文外文摘要:

Leaf Area Index (LAI) is an important indicator of the growth of crops. Timely and accurately obtaining the tobacco leaf area index has important research significance for assessing the growth of tobacco and optimizing the field management system. This article takes Tobacco in Xuanzhou District, Anhui Province as the research object. Based on the Sentinel-1 radar data and Sentinel-2 multi-spectrum data, combined with ground field survey data, based on statistical models and Prosail models, Tobacco Wang is long-term and mature LAI. Compare the advantages and disadvantages of 2 counter -trumpet methods. The following conclusions are mainly drawn:

(1) Based on the method of leaf area indexes based on the statistical m-odel, through the OOB(Out-OF-Bag Data,OOB),17vegetation indexes with th-e importance score more than 50 points are preliminarily selected, and at this basis Using SPA(Susscesive projections algorithm,SPA) to further select features. Based on the principle of minimum the principle of the minimum equity, the top 10 vegetation indices and Sentinel-1 radar data VV, VH polarization backscatter coefficient data were selected as independent variables to construct the tobacco leaf area index inversion model. Veority Index-VV combination has the highest counterpart accuracy, and the countermeasure accuracy of vegetation index, vegetation index -VH, vegetation index-VH, and VH gradually decreases.

(2) Among the leaf area index inversion algorithms based on statistical models, random forest (RF) is used to invert the highest accuracy, R2 up to 0.7992, RMSE(Root mean square error,RMSE) is 0.21; BP neural network (BP) is followed by R2 up to 0.7718, RMSE is 0.22; and finally radial basis function neural network (RBF), R2 up to 0.77, RMSE 0.25.

(3) Based on the leaf area index inversion method of PROSAIL model, Sentinel-2 data blue, green, red and near-infrared bands were selected to construct a lookup table, and on this basis, tobacco leaf area index inversion was carried out and accuracy analysis was carried out. The results showed that the R2 was up to 0.8083 and the RMSE was 0.316 when the tobacco leaf area index was inverted using the physical model.

参考文献:

[1] Zhang C, Berry J W, Collelo G, et al. A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS. Part I: Model Formulation[J]. Journal of Climate, 1996, 9(4): 706-737.

[2] 陈仲新, 任建强, 唐华俊, 等. 农业遥感研究应用进展与展望[J]. 遥感学报, 2016, 20(5): 748-767.

[3] 赵娟, 黄文江, 张耀鸿, 等. 冬小麦不同生育时期叶面积指数反演方法[J].光谱学与光谱分析, 2013, 33(9): 2546-2552.

[4] Li X, Zhang Y, Luo J, et al. Quantification winter wheat LAI with HJ-1CCD image features over multiple growing seasons[J]. International Journal of Applied Earth Observation & Geoinformation, 2016(44): 104-112.

[5] 王龑, 田庆久, 王琦, 等. 杨树林全生长期LAI遥感估算模型适用性[J]. 生态学报, 2016, 36(8): 2210-2216.

[6] 李鑫川, 徐新刚, 鲍艳松, 等. 基于分段方式选择敏感植被指数的冬小麦叶面积指数遥感反演[J]. 中国农业科学, 2012, 45(17): 3486-3496.

[7] 陆国政, 李长春, 杨贵军, 于海洋, 赵晓庆, 张晓燕. 基于成像高光谱仪的大豆叶面积指数反演研究[J]. 大豆科学, 2016, 35(4): 599-608.

[8] 樊荣荣, 王妮, 李霞, 张洒洒, 陈财, 余俞寒. 基于滁州市TM数据的叶面积指数估算模型研建[J]. 安徽农业科学, 2016, 44(21): 241-244.

[9] 陆坤, 孟庆岩, 孙云晓, 孙震辉, 张琳琳. 基于 GF-2 卫星数据的孕穗期小麦叶面积指数反演——以河北省廊坊市为例[J]. 国土资源遥感, 2018, 30(1): 196-202.

[10] Liu J, Pattey E. Assessment of vegetation indices for regional crop green LAI estimation from Landsat images over multiple growing seasons[J]. Remote Sensing of Environment, 2012, 123(3): 347-358.

[11] T. Dong, J.Liu, J.Shang, et al. Assessment of Red-Edge Vegetation Indices for Crop Leaf Area Index Estimation[J]. Remote Sensing of Environment, 2019, 222: 133-143.

[12] 孙华, 鞠洪波, 张怀清, 等. 三种回归分析方法在Hyperion影像LAI反演中的比较[J]. 生态学报, 2012, 32(24): 7781-7790.

[13] Chaurasia S, Nigam R,Bhattacharya B K,et al. Development of Regional Wheat VI-LAI Models Using Resourcesat-1 AWiFS Data[J]. Journal of Earth System Science, 2011, 120(6): 1113–1125.

[14] 贾玉秋, 李冰, 程永政, 等. 基于GF-1与Landsat-8多光谱遥感影像的玉米LAI反演比较[J]. 农业工程学报, 2015, 31(9): 173-179.

[15] 邵国敏, 王亚杰, 韩文霆. 基于无人机多光谱遥感的夏玉米叶面积指数估算方法. 智慧农业, 2020, 2(3): 118-128.

[16] 刘涛, 张寰, 王志业, 贺超, 张全国, 焦有宙. 利用无人机多光谱估算小麦叶面积指数和叶绿素含量. 农业工程学报, 2021, 37(19): 65-72.

[17] Jacquemoud S, Verhoef W, Baret F, et al. PROSPECT+SAIL models: a review of use for vegetation characterization[J]. Remote Sensing of Environment, 2009, 113(Supplement1): S56-S66.

[18] E. Amin, J. Verrelst. Rivera Caicedo Juan Pablo,et al. Prototyping Sentinel-2 Green LAI and Brown LAI Products for Crop land Monitoring[J]. Remote Sensing of Environment, 2021, 255: 112-168.

[19] 陶惠林, 徐良骥, 冯海宽, 杨贵军, 苗梦珂, 林博文. 基于无人机高光谱长势指标的冬小麦长势监测[J]. 农业机械学报, 2020, 51(02): 180-191.

[20] 祁楚涵. 基于Sentinel-2遥感数据的水稻叶面积指数估计算法研究[D]. 黑龙江: 黑龙江大学, 2022.

[21] 高帅, 牛铮, 刘翔, 等. 结合雷达影像纹理特征的作物叶面积指数估测[J].国土资源遥感, 2010, 22(3): 36-40.

[22] 王昆, 周忠发, 廖娟, 符勇. 基于合成孔径雷达(SAR)数据的贵州喀斯特山区烟草叶面积指数估算模型[J]. 中国烟草学报, 2015, 21(06): 34-39.

[23] 谭正. 基于SAR数据和作物生长模型同化的水稻长势监测与估产研究[D]. 北京: 中国地质大学, 2012.

[24] 陈艳华, 张万昌, 雍斌. 基于TM的辐射传输模型反演叶面积指数可行性研究[J]. 国土资源遥感, 2007,2007(2): 44-49.

[25] 王强, 过志峰, 孙国清, 等. 离散植被冠层的解析混合BRDF模型—MGeoSAIL[J]. 测绘学报, 2010, 39(2): 195-201.

[26] 张佳华, 郭文娟, 姚凤梅. 植被水分遥感监测模型的研究[J].应用基础与工程科学学报, 2007,15(1): 45-53.

[27] Qin W, Liang S. Plane‐parallel canopy radiation transfer modeling: Recent advances and future directions[J]. Remote Sensing Reviews, 2000, 18(24): 281-305.

[28] Suits G.H. The calculation of the directional reflectance of a vegetative canopy[J]. Remote Sensing of Environment, 1973, 2(71): 117-125.

[29] Verhoef W. Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model[J]. Remote Sensing of Environment, 1984, 16(2): 125-141.

[30] Nilson T, Kuusk A. A reflectance model for the homogeneous canopy and its inversion[J]. Remote Sensing of Environment, 1989, 27(2): 157-167.

[31] 郭晓燕. 基于HJ-1A-HSI数据及PROSAIL模型的苹果冠层参数定量反演[D]. 山东: 山东农业大学, 2019.

[32] 谷成燕, 杜华强, 周国模, 等. 基于 PROSAIL辐射传输模型的毛竹林叶面积指数遥感反演[J]. 应用生态学报, 2013, 24(8): 2248-2256.

[33] 王李娟, 牛铮. PROSAIL 模型的参数敏感性研究[J]. 遥感技术与应用, 2014, 29(2): 219-223.

[34] S. Ren, B. Guo, Z. Wang, et al. Optimized Spectral Index Models for Accurately Retrieving Soil Moisture (SM) of Winter Wheat Under Water Stress[J]. Agricultural Water Management, 2022, 261.

[35] 苏伟, 姚婵, 李颖, 等. 基于SupReMe 影像重建和RF的玉米冠层LAI反演[J]. 农业机械学报, 2021, 52(4): 190-196.

[36] 张云, 智献坡. 基于5-scale模型人工针叶林叶面积指数反演[J]. 中南林业调查规划, 2022, 41(04): 32-36.

[37] 于汧卉, 杨贵军, 王崇倡. 地面高光谱和PROSAIL模型的冬小麦叶绿素反演[J]. 测绘科学, 2019, 44(11): 96-102.

[38] 张明政, 苏伟, 朱德海. 基于PROSAIL模型的玉米冠层叶面积指数及叶片叶绿素含量反演方法研究[J]. 地理与地理信息科学, 2019, 35(05): 28-33.

[39] Chen J M, Black T A . Defining leaf area index for non-flat leaves[J]. Plant, Cell & Environment, 1992, 15(4): 421-429.

[40] 孙阳阳, 靳志伟, 黄明迪, 等. SPAD 值与鲜烟叶成熟度及烤后烟叶质量的关系[J]. 中国烟草科学, 2016, 37(02): 42-46.

[41] 马宇飞, 马力, 雷伶俐. 合成孔径雷达技术及其应用研究[J]. 科技创新导报, 2009(26): 21-22.

[42] 武爱景. 基于非下采样小波包的 SAR 图像去噪算法[D]. 西安: 西安电子科技大学, 2011.

[43] 赵英时. 遥感应用分析原理与方法[M]. 科学出版社, 2003.

[44] 穆超, 刘振宇, 孟丹. 基于Sentinel-2卫星数据的内陆湖泊水体大气校正[J].测绘通报, 2021, 534(09): 9-14.

[45] 周旻悦, 沈润平, 陈俊等. 基于像元质量分析和异常值检测的LAI时序数据S-G滤波重建研究[J]. 遥感技术与应用, 2019, 34(02): 323-330.

[46] 赵娟, 黄文江, 张耀鸿, 等. 冬小麦不同生育时期叶面积指数反演方法[J].光谱学与光谱分析, 2013, 33(9): 2546-2552.

[47] Broge N.H, Leblanc E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density[J]. Remote Sensing of Environment, 2001, 76(2): 156-172.

[48] Vincini M, Frazzi E. Comparing narrow and broad-band vegetation indices toestimate leaf chlorophyll content in planophile crop canopies[J]. Precision Agriculture, 2011, 12(3): 334-344.

[49] Zarco-Tejada P J, Miller J R, Noland T L, et al. Scaling-up and model inversionmethods with narrowband optical indices for chlorophyll content estimation in closed forestcanopies with hyperspectral data[J]. IEEE TRANS GEOSCI REMOT SEN, 2001, 39(7): 1491-1507.

[50] Wang K, Li W, Deng L, et al. Rapid detection of chlorophyll content and distribution onlow- remote sensing and bio-sensors[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(2): 164-169.

[51] Zou X,Matti M. Sensitivity of Common Vegetation Indices to the Canop-y Structure of Field Crops[J]. Remote Sensing, 2017, 9(10): 994-1008.

[52] 曾毓燕, 施润和, 刘浦东, 等. 利用植被指数估算叶绿素含量的模型模拟研究——以PROSPECT+DART模型为例[J].遥感技术与应用, 2017, 32(04): 667-673.

[53] Zarco-Tejada P J, Hornero A, Beck P S A, et al. Chlorophyll content estimation in anopen-canopy conifer forest with Sentinel-2A and hyperspectral imagery in the context of forestdecline[J]. Remote sensing of environment, 2019, 223: 320-335.

[54] Huete A R. A soil-adjusted vegetation index (SAVI)[J]. Remote Sensing of Environment, 1988, 25(3): 295-309.

[55] Frampton W J, Dash J, Watmough G, et al. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation[J]. Isprs Journal of Photogrammetry and Remote Sensing, 2013, (8): 83-92.

[56] Haboudane D, Miller J.R, Pattey E, et al. Hyperspectral vegetation indices and novel algorithms for predicting green of crop canopies: Modeling and validation in the context of precision agriculture[J]. Remote Sensing of Environment, 2004, 90(3): 337-352.

[57] Houborg R, Mccabe M F. A hybrid training approach for leaf area index estimation via Cubist and random forests machine-learning[J]. Isprs Journal of Photogrammetry and Remote Sensing, 2017, 135: 173-188.

[58] 张春兰, 杨贵军, 李贺丽, 等. 基于随机森林算法的冬小麦叶面积指数遥感反演研究[J]. 中国农业科学, 2018, 51(05): 855-867.

[59] MCU Araújo, Saldanha T,Galvo R K H, et al. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis[J]. Chemometrics & Intelligent Laboratory Systems, 2001, 57: 65-73.

[60] 高常军, 蒋侠朋, 甄佳宁, 王俊杰, 邬国锋.耦合WorldView-2和珠海一号影像的红树林物种分布[J]. 遥感学报, 2022, 26(06): 1155-1168.

[61] 曾炜健. 融合光学与SAR的粤港澳大湾区滨海湿地信息提取方法研究[D].广州: 广州大学, 2022.

[62] Rondeaux G, Steven M, Baret F.Optimization of soil-adjusted vegetation indices[J]. Remote Sensing of Environment, 1996, 55(2): 95-107.

[63] 马丽丽, 纪建伟, 贺超兴, 等. 基于BP 神经网络的番茄叶面积指数测定方法研究[J]. 中国蔬菜, 2009, 1(16): 45-50.

[64] 李燕, 王俊德, 王连军. 人工神经网络法鉴别红外光谱[J]. 光谱学与光谱分析, 2000, 20(4): 477-479.

[65] 杨源杰, 黄道. 人工神经网络算法研究及应用[J]. 华东理工大学学报, 2002, 28(5): 551-554.

[66] 刘占宇, 黄敬峰, 陶荣祥, 等. 基于主成分分析和径向基网络的水稻胡麻斑病严重度估测[J]. 光谱学与光谱分析, 2008, 28(9): 2156-2160.

[67] 梁顺林, 范闻捷. 定量遥感[M]. 科学出版社, 2009.

[68] Chen J.M, Leblanc S.G. A four-scale bidirectional reflectance model based on canopy architecture[J] Geoscience & Remote Sensing IEEE Transactions on, 1997, 35(5): 1316-1337.

[69] Jacquemoud S, Verhoef W, Baret F, et al. PROSPECT+ SAIL models: A review ofuse for vegetation characterization[J]. Remote sensing of environment, 2009, 113: 56-66.

[70] Feret J B, François C, Asner G P, et al. PROSPECT-4 and 5: Advances in the leafoptical properties model separating photosynthetic pigments[J]. Remote sensing ofenvironment, 2008, 112(6): 3030-3043.

[71] Verhoef W, Bach H. Coupled soil–leaf-canopy and atmosphere radiative transfermodeling to simulate hyperspectral multi-angular surface reflectance and TOA radiance data[J].Remote Sensing of Environment, 2007, 109(2): 166-182.

[72] 苏伟, 郭皓, 赵冬玲, 等. 基于优化PROSAIL叶倾角分布函数的玉米LAI反演方法[J]. 农业机械学报, 2016, 47(3): 234-241.

[73] 余金林. 基于 PROSAIL 模型的青海湖流域草地叶面积指数反演[D]. 西宁市: 青海师范大学, 2014.

[74] 张阳阳. 耦合叶片-冠层模型的植被典型参数反演方法研究[D]. 武汉: 中国地质大学, 2022.

[75] 杜育璋, 姜小光, 张雨泽, 等. 基于 Landsat-8 遥感数据和 PROSAIL 辐射传输模型反演叶面积指数[J]. 干旱区地理, 2016, 39(5): 1096-1103.

[76] 李小文, 王锦地, 胡宝新, 等. 先验知识在遥感反演中的作用[J]. 中国科学地球科学: 中国科学, 1998, 28(1): 67-72.

中图分类号:

 P237    

开放日期:

 2023-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式