论文中文题名: | 陕西富油煤自燃宏微观特性的构效关系研究 |
姓名: | |
学号: | 21220226126 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085700 |
学科名称: | 工学 - 资源与环境 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2024 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 煤火灾害防控 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
论文提交日期: | 2024-06-17 |
论文答辩日期: | 2024-06-02 |
论文外文题名: | Study on the structure-activity relationship of macro and micro characteristics of spontaneous combustion of oil-rich coal in Shaanxi |
论文中文关键词: | |
论文外文关键词: | oil-rich coal ; coal spontaneous combustion ; thermal effects ; functional group ; microscopic structure ; structure-activity relationship |
论文中文摘要: |
富油煤是一种特殊的煤炭资源,集煤、油、气属性于一体,通过原位热解等方式可形成清洁燃料和化工原料,对缓解我国贫油状况具有重要意义。相较于含油煤,富油煤在微观上富含富氢结构,在宏观上的焦油产率在7%-12%之间,导致其在自燃过程中的氧化特性和活性结构存在差异。因此,针对富油煤自燃全过程开展深入研究至关重要。本文将理论分析、实验研究和数学方法相结合,系统研究了富油煤自燃过程中的宏微观特性,以及活性结构与自燃特性的构效关系。 选取了陕西地区红柳林与柠条塔煤矿煤样作为富油煤,陈家山与永红煤矿煤样作为含油煤;利用程序升温实验,研究了富油煤自燃过程中的气体释放规律、耗氧速率与放热强度,得到富油煤会释放更多的H2等气体,同时具有更高的耗氧速率和更大的放热强度;基于TG实验,研究了富油煤自燃过程中的热失重变化,划分了失水失重、动态平衡、吸氧增重与燃烧失重四个阶段,明确了自燃过程中特征温度及燃烧特性参数等规律;通过KAS法计算了富油煤自燃过程四个阶段的动力学参数,并利用FWO法进行验证,得出富油煤在失水失重、动态平衡与燃烧失重三个阶段的活化能均低于含油煤,在吸氧增重阶段的活化能高于含油煤;利用DSC实验,分析了富油煤在自燃过程中的特征温度点与放热规律,划分了失水、氧化与燃烧三个阶段,表征了自燃过程中三个阶段的热效应特征与吸放热的变化规律;采用原位漫反射傅里叶红外光谱仪,测试了富油煤自燃过程中的主要官能团变化规律,明确了常温下富油煤的结构特征,确定了自燃过程中主要活性基团的变化规律。 基于多重共线性基础理论,以15种微观结构特征为自变量X,以活化能为因变量Y。通过Pearson相关系数与VIF值对微观结构特征之间的多重共线性进行诊断,筛选出在失水失重、动态平衡、吸氧增重与燃烧失重四个阶段内的主要微观结构特征。在此基础上,采用逐步回归与岭回归模型,建立了自变量X与因变量Y之间在各阶段内的构效关系。所得模型在统计学上均表现出有效性与可靠性,通过相对误差值筛选出了各个阶段的最优模型,并利用方程系数筛选出各个阶段的关键微观结构。结果显示,岭回归模型能更准确地表征富油煤的构效关系,同时游离氢键、甲基与亚甲基等富氢结构在整个自燃过程中起重要作用。该模型具有一定解释富油煤自燃危险性的能力,为未来深入研究和测定富油煤提供了有力依据。 |
论文外文摘要: |
Oil-rich coal is a special coal resource that combines the properties of coal, oil, and gas. It can form clean fuels and chemical raw materials through in-situ pyrolysis and other methods, which is of great significance to alleviating my country's oil-poor situation. Compared with oil-bearing coal, oil-rich coal is rich in hydrogen-rich structures at the microscopic level, and the tar yield at the macroscopic level is between 7% and 12%, which leads to differences in its oxidation characteristics and active structures during the spontaneous combustion process. Therefore, it is very important to conduct in-depth research on the entire process of spontaneous combustion of oil-rich coal. This paper combines theoretical analysis, experimental research and mathematical methods to systematically study the macroscopic and microscopic characteristics of oil-rich coal during spontaneous combustion, as well as the structure-activity relationship between active structure and spontaneous combustion characteristics. Coal samples from the Hongliulin and Ningtiaota coal mines in Shaanxi were chosen as oil-rich coal, while samples from Chenjiashan and Yonghong coal mines were selected as oil-bearing coals. Through programmed temperature experiments, the gas release patterns and oxygen consumption during the spontaneous combustion of oil-rich coals were investigated. It was observed that oil-rich coal releases more gases such as H2 and exhibits a higher oxygen consumption rate and greater heat release intensity. Based on TG experiments, the thermal weight loss of oil-rich coal during the spontaneous combustion process was examined, revealing four stages: water loss, dynamic equilibrium, oxygen absorption weight gain, and combustion weight loss. The characteristic temperature and combustion parameters during the spontaneous combustion process were elucidated. The KAS method was employed to calculate kinetic parameters for the four stages of the spontaneous combustion process of oil-rich coal, which were verified by the FWO method. It was concluded that the activation energy of oil-rich coal in the stages of water loss, dynamic equilibrium, and combustion weight loss is lower than that of oil-bearing coal, while it is higher in the oxygen absorption and weight gain stage. Utilizing DSC experiments, characteristic temperature points and heat release patterns of oil-rich coal during spontaneous combustion were analyzed, dividing the process into three stages: water loss, oxidation, and combustion. The thermal effect characteristics and absorption/release patterns during these stages were characterized. Lastly, an in-situ diffuse reflection Fourier transform infrared spectrometer was employed to examine the change in main functional groups during the spontaneous combustion process of oil-rich coal, clarifying the structural characteristics of oil-rich coal at room temperature and identifying the changing patterns of main active groups during spontaneous combustion. Based on the theory of multicollinearity, 15 microstructural characteristics are used as the independent variable X and the activation energy is used as the dependent variable Y. The multicollinearity between microstructural features was diagnosed through Pearson correlation coefficient and VIF value, and the main microstructural features in the four stages of water loss and weight loss, dynamic equilibrium, oxygen absorption weight gain and combustion weight loss were screened out. On this basis, stepwise regression and ridge regression models were used to establish the structure-activity relationship between the independent variable X and the dependent variable Y in each stage. The obtained models all showed statistical validity and reliability. The optimal models at each stage were screened out through relative error values, and the key microstructures at each stage were screened out using equation coefficients. The results show that the ridge regression model can more accurately characterize the structure-activity relationship of oil-rich coal. At the same time, hydrogen-rich structures such as free hydrogen bonds, methyl groups and methylene groups play an important role in the entire spontaneous combustion process.The model has a certain ability to explain the spontaneous combustion risk of oil-rich coal, and provides a strong basis for future in-depth research and measurement of oil-rich coal. |
参考文献: |
[1] 王双明, 刘浪, 朱梦博, 等. “双碳”目标下煤炭绿色低碳发展新思路[J]. 煤炭学报, 2024, 49(01): 152-171. [2] 王佟, 刘峰, 赵欣等. “双碳”背景下我国煤炭资源保障能力与勘查方向的思考[J]. 煤炭科学技术, 2023, 51(12): 1-8. [3] 国家统计局. 中华人民共和国2023年国民经济和社会发展统计公报. [4] 张建强, 宁树正, 陈美英, 等. 我国煤炭资源开发前景及对策[J]. 地质论评, 2020, 66(S1): 143-145. [6] 王双明, 师庆民, 王生全, 等. 富油煤的油气资源属性与绿色低碳开发[J]. 煤炭学报, 2021, 46(05): 1365-1377. [7] 王双明, 王虹, 任世华, 等. 西部地区富油煤开发利用潜力分析和技术体系构想[J]. 中国工程科学, 2022, 24(03): 49-57. [8] 王云刚, 崔春阳, 张飞燕, 等. 2011—2020年我国较大及以上煤矿事故统计分析及研究[J]. 安全与环境学报, 2023, 23(09): 3269-3276. [9] 孟圣师, 郑义宁, 陆强等. 深部开采煤岩动力灾害风险评估模型及判识技术研究[J]. 煤炭技术, 2023,42(11): 113-117. [13] 郭军, 蔡国斌, 金彦, 等. 煤自燃火灾防治技术研究进展及趋势[J]. 煤矿安全, 2020, 51(11): 180-184. [14] 赵洪宇. 难选铁矿石促进富油煤热解及铁矿物回收技术研究[D]. 北京: 中国矿业大学, 2016. [15] 马丽, 拓宝生. 陕西富油煤资源量居全国之首榆林可“再造一个大庆油田”[J]. 陕西煤炭, 2020, 39(01): 220-222. [16] 鲁金涛, 何奕, 程刚. 褐煤大分子模型构建及其低温条件下物理吸氧分析[J]. 矿业研究与开发, 2021, 41(11): 58-66. [17] 贾廷贵, 强倩, 娄和壮, 等. 不同变质程度煤样氧化自燃热特性试验研究[J]. 中国安全科学学报, 2021, 31(10): 62-67. [18] 陈鹏, 张弛, 张浪, 等. 煤自燃倾向性测试方法研究进展与展望[J]. 煤矿安全, 2016, 47(03): 164-168. [19] 沈云鸽, 王德明, 朱云飞. 不同自燃倾向性煤的指标气体产生规律实验研究[J]. 中国安全生产科学技术, 2018, 14(04): 69-74. [25] 娄和壮, 贾廷贵. TG-DSC联用研究瓦斯气氛对煤自燃热特性的影响[J]. 中国安全科学学报, 2019, 29(11): 77-82. [26] 张辛亥, 白亚娥, 李亚清, 等. 煤升温氧化动力学阶段性规律[J]. 西安科技大学学报, 2017, 37(04): 474-478. [27] 马砺, 王伟峰, 邓军, 等. CO2对煤升温氧化燃烧特性的影响[J]. 煤炭学报, 2014, 39(S2): 397-404. [32] 姜峰, 孙雯倩, 李珍宝, 等. 复合阻化剂抑制煤自燃过程的阶段阻化特性[J]. 煤炭科学技术, 2022, 50(10): 68-75. [34] 张文豪, 于涛. 预氧化煤二次自燃热效应及动力学分析[J]. 煤矿安全, 2022, 53(08): 42-49. [35] 周旋旋, 张修峰. 变氧浓度及元素对煤自燃的影响[J]. 煤炭技术, 2021, 40(06): 142-146. [36] 王秋红, 靳松灵, 罗振敏, 等. 煤变质程度对煤燃烧动力学参数的影响[J]. 安全与环境工程, 2022, 29(03): 62-70. [37] 王兰云, 蒋曙光, 邵昊, 等. 煤自燃过程中自氧化加速温度研究[J]. 煤炭学报, 2011, 36(06): 989-992. [38] 徐长富, 殷文韬, 姚海飞. 基于活化能指标的煤自燃最佳含水率研究[J]. 安全与环境学报, 2018, 18(04): 1301-1306. [39] 仲晓星, 候飞, 曹威虎, 等. 基于等转化率法的煤氧化自热动力学参数测试方法[J]. 煤炭学报, 2021, 46(06): 1727-1737. [44] 张玉涛, 杨杰, 李亚清, 等. 煤自燃特征温度与微观结构变化及关联性分析[J]. 煤炭科学技术, 2023, 51(04): 80-87. [45] 李宗翔, 张明乾, 杨志斌, 等. 断层构造对煤结构及氧化自燃特性的影响[J]. 煤炭学报, 2023, 48(03): 1246-1254. [46] 贾海林, 崔博, 焦振营, 等. 基于TG/DSC/MS技术的煤氧复合全过程及气体产物研究[J]. 煤炭学报, 2022, 47(10): 3704-3714. [47] 金永飞, 李清政, 刘荫. 煤自燃特征参数与自由基变化特性研究[J]. 煤炭技术, 2022, 41(07): 101-104. [48] 冯杰, 李文英, 谢克昌. 傅立叶红外光谱法对煤结构的研究[J]. 中国矿业大学学报, 2002(05): 25-29. [49] 王继仁, 邓存宝. 煤微观结构与组分量质差异自燃理论[J]. 煤炭学报, 2007(12): 1291-1296. [52] 王福生, 孙超, 董宪伟, 等. 煤的微观结构对自燃特性影响分析[J]. 煤炭技术, 2017, 36(12): 139-141. [54] 张九零, 阮杲阳, 王苗苗. 浸水程度对煤自燃特性影响研究[J]. 中国矿业, 2022,31(04): 132-139. [55] 邓军, 周佳敏, 白祖锦, 等. 瓦斯对煤低温氧化过程微观结构及热反应性的影响研究[J]. 煤炭科学技术, 2023, 51(01): 304-312. [58] 任万兴, 郭庆, 石晶泰, 等. 基于标志气体统计学特征的煤自燃预警指标构建[J]. 煤炭学报, 2021, 46(06): 1747-1758. [59] 底翠翠, 辛海会, 李金帅. 基于煤自燃倾向性的绝热氧化时间预测方法研究[J]. 科学技术与工程, 2017, 17(21): 13-17. [60] 王寅, 王海晖. 基于交叉点温度法煤自燃倾向性评定指标的物理内涵[J]. 煤炭学报, 2015, 40(02): 377-382. [71] 许延辉. 煤自燃特性宏观表征参数及测试方法研究[D]. 西安: 西安科技大学, 2014. [78] 胡荣祖, 史启祯. 热分析动力学[M]. 科学出版社, 2008. [83] 陆璇. 应用统计[M]: 清华大学出版社, 1999. |
中图分类号: | TD752.2 |
开放日期: | 2024-06-19 |