题名: | 多功能的多串锂电池充放电保护芯片设计 |
作者: | |
学号: | 21206035034 |
保密级别: | 保密(3年后开放) |
语种: | chi |
学科代码: | 080903 |
学科: | 工学 - 电子科学与技术(可授工学、理学学位) - 微电子学与固体电子学 |
学生类型: | 硕士 |
学位: | 工学硕士 |
学位年度: | 2021 |
学校: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 模拟集成电路设计 |
导师姓名: | |
导师单位: | |
提交日期: | 2024-06-26 |
答辩日期: | 2024-06-05 |
外文题名: | Multi-functional Multi-cell Lithium Battery Charging and Discharging Protection Chip Design |
关键词: | |
外文关键词: | Lithium battery ; Charge and discharge protection ; Multi-function ; Voltage protection ; Current protection |
摘要: |
在全球能源转型的背景下,锂电池已经成为了供电电源领域的主力军,为保证锂电池的安全使用并最大化其性能潜力,需在其使用过程中配套相应的锂电池充放电保护芯片。但目前现有的国产保护芯片功能较为单一,难以满足当前锂电池的实际应用需求,为推动该芯片的国产替代化,设计出一款多功能的多串锂电池充放电保护芯片具有重要的理论研究意义与实际应用价值。 本文基于锂电池的实际应用需求,提出了一种多功能的多串锂电池充放电保护芯片设计方案,其内部的电压保护电路基于电荷守恒定律,通过时序控制开关电容完成了电池组中各节电池的电压状态巡检,实现了比较器的分时复用且检测精度较高;在电流保护电路中通过所设计的正负压加法比较器,实现了对电池组充放电电流的交替检测;在温度保护电路中采用片外电阻进行温度保护阈值的设置,扩展了芯片的适用范围;基于被动式均衡架构设计了电池均衡电路,实现了被均衡电池的奇偶分时选通,提高了电池组工作的可靠性;设计的断线保护电路可以实时检测电池组中各节电池的连接情况,增强了芯片电压检测的可靠性;设计的电池串接数量选择电路,满足了实际应用场景中不同电压等级的需求。此外,芯片内部还设计有辅助电源、带隙基准、振荡器以及逻辑控制与驱动等子模块电路,以确保芯片能够正常工作并实现相应的保护功能。最终完成了多功能的多串锂电池充放电保护芯片整体电路设计。 基于SMIC 0.18µm BCD工艺对整体电路进行仿真分析,结果表明该芯片的各个功能及指标参数均能满足预期要求,不仅实现了锂电池的过充和过放、过流和短路、过温和低温保护,还能实现锂电池的低压禁止充电、均衡、断线保护以及电池组工作电池的串接数量选择。最后完成了整体电路的版图设计,并通过了DRC、LVS验证。 |
外文摘要: |
In the context of the global energy transition, lithium batteries have become the main force in the field of power supply, to ensure the safe use of lithium batteries and maximize their performance potential, it is necessary to support the use of lithium batteries in the process of charging and discharging the corresponding protection chip. However, the existing domestic protection chip function is relatively single, and it is difficult to meet the current lithium battery application requirements, to promote the chip's domestic alternative, the design of a multi-functional multi-cell lithium battery charging and discharging protection chip has an important theoretical research significance and practical application value. This paper proposes a multi-functional multi-cell lithium battery charging and discharging protection chip design based on the actual application requirements of lithium batteries. The internal voltage protection circuit is based on the law of charge conservation, and completes the voltage state checking of each battery in the battery pack through the timing control of the switched capacitor to achieve the time-multiplexing of the comparator and a higher detection accuracy; the designed positive and negative voltage addition comparator in the current protection circuit realizes the alternating detection of the battery pack charging and discharging current; the temperature protection circuit uses an off-chip resistor to set the temperature protection threshold, which extends the scope of application of the chip; the battery equalization is designed based on the passive equalization architecture. In the current protection circuit, the designed positive-negative voltage addition comparator realizes the alternating detection of charging and discharging currents of the battery pack; in the temperature protection circuit, an off-chip resistor is used to set the temperature protection threshold, which extends the scope of application of the chip; based on the passive equalization architecture, a battery equalization circuit has been designed, which realizes parity time-sharing selectivity of the equalized batteries and improves the reliability of the operation of the battery pack; the design of the disconnection protection circuit detects the connection status of the cells in the battery pack in real-time, which enhances the reliability of the voltage detection of the chip. The broken wire protection circuit is designed to detect the connection of each battery in the battery pack in real-time, which enhances the reliability of the voltage detection of the chip, and the battery series connection quantity selection circuit is designed to meet the needs of different voltage levels in practical application scenarios. In addition, the chip is designed with an auxiliary power supply, bandgap reference, oscillator, and logic control and drive sub-module circuits to ensure that the chip can work properly and realize the corresponding protection functions. Finally completed the multi-functional multi-cell lithium battery charging and discharging protection chip overall circuit design. Based on the SMIC 0.18µm BCD process, the overall circuit is simulated and analyzed, and the results indicate that the various functions and index parameters of the chip can meet the expected requirements, which not only realizes the over-charging and over-discharging, over-current and short-circuit, over-temperature and low-temperature protections of lithium batteries, but also realizes low-voltage prohibited charging, equalization, disconnection protection of lithium batteries, as well as the selection of the number of a series connection of the working cells of the battery pack. Finally, the layout design of the overall circuit is completed and passed DRC and LVS verification. |
参考文献: |
[1]陈军, 陶占良, 袁华堂. 锂离子二次电池电极材料的研究进展[J]. 电源技术, 2007, 207(12): 946-950. [4]屈伟平. 锂电池的发展概述[J]. 城市车辆, 2009, (5): 51-54. [7]申晨, 王怀国. 我国锂离子电池产业技术发展概况[J]. 新材料产业, 2019, (09): 15-21. [8]张青松, 赵启臣. 商用钴酸锂电池过充电安全性研究[J]. 电源技术, 2021, 45(03): 286-288+316. [12]马彪, 林春景, 刘磊等. 锂离子电池热失控产气特性及其可燃极限[J]. 储能科学与技术, 2022, 11(05): 1592-1600. [14]杨书华. 动力锂离子电池管理系统研究[D]. 南昌: 南昌大学, 2014. [16]洪杰, 孙明生, 傅琰等. 不同放电倍率条件下的锂电池温度场分析[J]. 太阳能, 2022, (01): 20-33. [17]孙明生, 洪杰, 李扬等. 锂电池温度分析及内部结构散热优化[J]. 太阳能, 2021, (08): 41-50. [19]胡丹丹, 鲍嘉明, 宁可庆. 一种用于锂电池保护芯片的关键电路研究[J]. 电子设计工程, 2018, 26(23): 190-193. [20]李健. 高精度可配置多串锂电池保护芯片的设计[D]. 长沙: 国防科学技术大学, 2016. [21]孙尖. 可编程的级联型多节锂电池组充放电保护电路设计[D]. 西安: 长安大学, 2019. [22]朱治鼎, 王蒙, 白青刚等. 一种电池0V禁止充电电路及电池保护电路[P]. 广东省: CN114362287A, 2022-04-15. [23]杜海忠, 骆滔, 宋浩谊等. 基于电压平衡的锂电池主动均衡电路及策略[J]. 电气工程学报, 2021, 16(03): 145-151. [25]顾鹏展. 低功耗多节锂电池保护芯片的研究[D]. 成都: 电子科技大学, 2020. [26]张凯, 王冠. 碳监测评估信息化发展的战略导向、体系架构及应用探索——基于科技支撑“双碳”目标的前瞻性思考[J]. 企业经济, 2023, 42(01): 96-103. [27]何少媚, 黄付平. 学习贯彻《中共中央国务院关于深入打好污染防治攻坚战的意见》认识之六深入打好污染防治攻坚战与广西机遇[J]. 中国环保产业, 2021, (12): 13-14. [28]李晶菁, 刘云. “双碳”背景下锂电池上市公司盈利情况实证分析——基于2020年及2021年财务数据比较[J]. 全国流通经济, 2022, (27): 116-119. [29]陈鸿. 低功耗高精度多节锂电池保护芯片研究与设计[D]. 广州: 华南理工大学, 2020. [30]蒋新华, 冯毅, 解晶莹. 锂离子蓄电池保护电路发展现状及趋势[J]. 电源技术, 2004, (09): 588-591. [33]紘康科技. HY2120 Datasheet[EB/OL]. www.hycontek.com, 2018-1-24. [35]牛成钰. 智能均衡多节锂电池保护芯片的设计与应用研究[D]. 成都: 电子科技大学, 2022. [36]赵鑫. 基于总线的小功率组主动均衡电路设计[D] .天津: 天津理工大学, 2023. [37]金津. 子母式多节串联锂电池组管理芯片设计[D]. 浙江: 浙江大学, 2010. [38]苟胤宝. 具有高精度温度检测功能的多节锂电池保护芯片研究[D]. 成都: 电子科技大学, 2022. [42]赵伯杰. 基于可穿戴电子设备的锂电池保护芯片设计[D]. 保定: 河北大学, 2022. [44]朱子诚. 高精度七节锂电池保护芯片的设计与实现[D]. 成都: 电子科技大学, 2020. [45]吴凯凯. 可级联的多节串联锂电池充放电保护电路设计与实现[D]. 西安: 长安大学, 2017. [46]肖璟博, 陈敏, 张成彬. 低功耗双带隙结构的CMOS带隙基准源[J]. 湖南大学学报(自然科学版), 2017, 44(08): 124-130. [47]张睿. 适用于LED常数电流驱动的高性能张弛振荡器的设计[D]. 武汉: 华中科技大学, 2010. [48]代钢, 牛健, 姬濯宇. 高压BCD工艺优化对NLDMOS管的性能影响[J]. 微电子学, 2020, 50(01): 142-147. [50]朱筠, 刘有耀, 张霞. CMOS闩锁效应虚拟仿真实验设计[J]. 实验室研究与探索, 2021, 40(03): 112-115+277. |
中图分类号: | TN492 |
开放日期: | 2027-06-26 |