- 无标题文档
查看论文信息

论文中文题名:

 钐掺杂铅基钙钛矿压电陶瓷中微观缺陷对电学性能影响研究    

姓名:

 牛旭平    

学号:

 19201104021    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 070205    

学科名称:

 理学 - 物理学 - 凝聚态物理    

学生类型:

 硕士    

学位级别:

 理学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 理学院    

专业:

 物理学    

研究方向:

 压电材料    

第一导师姓名:

 杨静    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-21    

论文答辩日期:

 2022-06-06    

论文外文题名:

 Study of the influence of defects on electrical properties in Sm-doped Pb-based perovskite piezoelectric ceramics    

论文中文关键词:

 铅基压电陶瓷 ; 掺杂改性 ; 压电性能增强 ; 缺陷表征    

论文外文关键词:

 Lead-based piezoelectric ceramics ; doping modification ; piezoelectric performance enhancementing ; defect characterization    

论文中文摘要:

高性能压电陶瓷,特别是性能可与单晶相媲美的压电陶瓷的开发,是压电材料研究者孜孜以求的目标。通过组分设计使陶瓷位于准同型相界附近和通过稀土离子掺杂增强局部结构异质性是两种在钙钛矿压电陶瓷中获得优异压电性能的方法。在所有稀土离子中,钐离子(Sm3+)是最有效的构筑局部异质结构的离子。在Sm3+掺杂铅基钙钛矿压电陶瓷中,可实现准同型相界和增强局部结构异质性两种机制协同作用,有效增强压电性能。稀土Sm3+离子掺杂会引入缺陷,而缺陷在调控压电性能中起到至关重要的作用。因此,深入研究稀土Sm3+离子掺杂的铅基压电陶瓷中缺陷的变化规律以及缺陷对电学性能的影响具有重要意义。 本文采用固相烧结法制备了铅基压电陶瓷,包括Pb[(Mg1/3Nb2/3)(1-x)Tix]O3(PMN-xPT)、Pb(1-x)Smx[(Mg1/3Nb2/3)0.68Ti0.32](1-x/4)O3(xSm-0.68PMN-0.32PT)、Pb(1-x)Smx[(Mg1/3Nb2/3)0.71Ti0.29](1-x/4)O3(xSm-0.71PMN-0.29PT)、Pb(1-x)Smx[(Mg1/3Nb2/3)0.15Zr0.43Ti0.42](1-x/4)O3 (xSm-PMN-PZT(43/42))、Pb(1-x)Smx(Zr0.54Ti0.46)(1-x/4)O3(xSm-PZT(54/46)),对制备的陶瓷进行了XRD、SEM微观形貌表征,同时进行介电、压电、铁电等电学性能表征,分析材料中的缺陷对材料电学性能的影响,结论如下: 在xSm-PMN-PT中,与未掺杂的PMN-xPT相比,压电性能显著增强。xSm-0.68PMN-0.32PT体系中最大压电系数出现在x=0.025,d33=1004pC/N,掺杂使压电系数增大71.6%;在xSm-0.71PMN-0.29PT体系中最大压电系数出现在x=0.01,d33=1004pC/N,掺杂使压电系数增大了224%。Sm掺杂也使体系的介电性能增强,但其铁电性能却劣化。分析表明,在未掺杂的PMN-xPT中,最优压电性能与其中较高的A位空位浓度促进畴壁运动有关;而在Sm掺杂的PMN-PT中,压电性能增强则与掺杂引入的B位空位有关,适度提高B位相对A位缺陷的比例I1/I2有益于增强压电性能。 在xSm-PMN-PZT(43/42)和xSm-PZT(54/46)体系中,Sm掺杂也使压电性能增强,但其性能远不如xSm-PMN-PT。xSm-PMN-PZT(43/42)体系中最大压电系数出现在x=0.02,d33=383pC/N,Sm掺杂也使体系的介电性能增强,但其铁电性能却劣化,这与掺杂改变了体系中A位与B位缺陷的比例有关;xSm-PZT(54/46)体系中最大压电系数出现在x=0.01,d33=572pC/N,压电系数提高了近一倍,Sm掺杂也使介电性能增强,但剩余极化2Pr却随着Sm掺杂量x增大呈现出先增大后减小的趋势,这与该体系中缺陷类型改变有关,x=0、0.03和0.04陶瓷中出现了缺陷偶极子,对畴壁具有强烈钉扎作用,使压电、介电和铁电性能变差。

论文外文摘要:

The development of high performance piezoelectric ceramics, especially those whose piezoelectric performance is comparable to that of single crystal, is always desired by the researchers in this field. There are two main techniques available for achieving the high piezoelectric response:locating the compositions at or near morphotropic phase boundary (MPB), where the rhombohedral and tetragonal phases coexist and result in easily domain reorientation during poling, by composition design;improving the local structural heterogeneity by rare earth ion doping, which can flatten the thermodynamic energy profile. Among all rare earth ions, samarium ion (Sm3+) is the most effective ion to induce local heterostructures. In Sm3+-doped Pb-based perovskite piezoceramics, piezoelectric properties are improved by synergistic contributions from MPB and enhanced local structural heterogeneity. Rare earth Sm3+ ion doping will introduce defects, which plays an important role in regulating piezoelectric properties. Therefore, it is of great significance to study the variation of defects and the effect of defects on electrical properties in Sm3+ ions doped lead based piezoelectric ceramics. In this paper, Sm3+-doped Pb-based piezoelectric ceramics, including Pb[(Mg1/3Nb2/3)(1-x)Tix]O3(PMN-xPT), Pb(1-x)Smx[(Mg1/3Nb2/3)0.68Ti0.32](1-x/4)O3(xSm-0.68PMN-0.32PT), Pb(1-x)Smx[(Mg1/3Nb2/3)0.71Ti0.29](1-x/4)O3(xSm-0.71PMN-0.29PT), Pb(1-x)Smx[(Mg1/3Nb2/3)0.15Zr0.43Ti0.42](1-x/4)O3(xSm-PMN-PZT(43/42)), Pb(1-x)Smx(Zr0.54Ti0.46)(1-x/4)O3(xSm-PZT(54/46)), were preparedwith solid-state sintering method. The microstructures andelectrical properties were investigatedby XRD and SEM, and dielectric, piezoelectric, ferroelectric test. The defect information in ceramics was obtained using positron annihilation techniques (PAT),including positron annihilation lifetime spectroscopy (PALS) and Coincidence Doppler Bro-adening energy spectroscopy (CDB). The effect of microstructure defects on elelctrocal properties was analyzed. The conclusions are as follows: In comparison with undoped PMN-PT ceramics, the piezoelectric properties of Sm-doped PMN-PT ceramics are significantly enhanced. In xSm-0.68PMN-0.32PT, the optimal piezoelectric coefficient appears at doping amount x=0.025, d33=1004pC/N,which increases by 71.6% in comparison with undoped 0.68PMN-0.32PT (the MPB composition of PMN-PT) ceramics. In xSm-0.71PMN-0.29PT, the optimized piezoelectric coefficient appears at doping amount x=0.01, d33=1004pC/N, which increases by 224% in comparison with undoped 0.71PMN-0.29PT ceramics. In both systems, Sm doping enhances the dielectric properties of the system, but degrades its ferroelectric properties. It is inferred that the maximum piezoelectric coefficient of undoped PMN-PT is related to the much higher concentration of A-site Pb vacancy, which promotes the domain wall movement.In contrast, the enhancement of piezoelectric properties in Sm-doped PMN-PT ceramics is associated with B-site defects introduced by Sm doping. It is beneficial to enhancing piezoelectric properties by properly increasing I1/I2, which indicates the ratio of B-site to A-site defects . In xSm-PMN-PZT(43/42) and xSm-PZT(54/46) systems, Sm doping also enhances the piezoelectric properties, but their piezoelectric performances are much inferior to that of xSm-PMN-PT. In xSm-PMN-PZT(43/42) system, the maximum piezoelectric coefficient appears at x=0.02, d33=383pC/N. Like Sm-PMN-PT, Sm doping also enhances the dielectric properties of the system, but its ferroelectric properties deteriorate, which is related to the change of the ratio of A-site to B-site defect in the system. In xSm-PZT(54/46) system, the maximum piezoelectric coefficient appears at x=0.01, d33=572pC/N, and the piezoelectric coefficient increases nearly twice. Sm doping also enhances the dielectric properties, but the residual polarization 2Pr increases first and then decreases with the increase of Sm doping amount x, which is related to the change of defect types in the system. The presence of defect dipoles in x=0, 0.03, and 0.04 ceramics strongly pins the domain walls, resulting in poor piezoelectric, dielectric, and ferroelectric properties.

参考文献:

[1] Yan Y, Li Z, Jin L, et al. Extremely high piezoelectric properties in Pb-based ceramics through integrating phase boundary and defect engineering[J]. ACS Applied Materials & Interfaces, 2021, 13(32): 38517-38525.

[2] Ueda I, Ikegami S. Piezoelectric Properties of modified PbTiO3 ceramics[J]. Japanese Journal of Applied Physics, 2014, 7(7):236-242.

[3] Cordero F. Elastic properties and enhanced piezoelectric response at morphotropic phase boundaries[J]. Materials, 2015, 8(12): 8195-8245.

[4] Cox D E, Noheda B, Shirane G, et al. Universal phase diagram for high-piezoelectric perovskite systems[J]. Applied Physics Letters, 2001, 79(3): 400-402.

[5] Kuwata J, Uchino K, Nomura S. Phase transitions in the Pb(Zn1/3Nb2/3)O3-PbTiO3 system[J]. Ferroelectrics, 1981, 37(1): 579-582.

[6] Shrout T R, Chang Z P, Kim N, et al. Dielectric behavior of single crystals near the (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 morphotropic phase boundary[J]. Ferroelectrics Letters Section, 1990, 12(3): 63-69.

[7] Yamashita Y Y Y. Large electromechanical coupling factors in perovskite binary material system[J]. Japanese Journal of Applied Physics, 1994, 33(9): 5328-5336.

[8] Araújo E B. Recent advances in processing, structural and dielectric properties of PMN-PT ferroelectric ceramics at compositions around the MPB[J]. Advances in Ceramics–Electric and Magnetic Ceramics, Bioceramics, Ceramics and Environment, 2011, 39(9): 43-60.

[9] Eichel R A, Erünal E, Drahus M D, et al. Local variations in defect polarization and covalent bonding in ferroelectric Cu2+-doped PZT and KNN functional ceramics at the morphotropic phase boundary[J]. Physical Chemistry Chemical Physics, 2009, 11(39): 8698-8705.

[10] Garcia J E, R Pérez, Albareda A, et al. Non-linear dielectric and piezoelectric response in undoped and Nb5+ or Fe3+ doped PZT ceramic system[J]. Journal of the European Ceramic Society, 2007, 27(13-15): 4029-4032.

[11] Puthucheri S, Pandey P K, Gajbhiye N S, et al. Microstructural, electrical, and magnetic properties of acceptor‐doped nanostructured lead zirconate titanate[J]. Journal of the American Ceramic Society, 2011, 94(11): 3941-3947.

[12] Zhu Z X, Li J F, Liu Y, et al. Shifting of the morphotropic phase boundary and superior piezoelectric response in Nb-doped Pb(Zr,Ti)O3 epitaxial thin films[J]. Acta materialia, 2009, 57(14): 4288-4295.

[13] Geng W, Liu Y, Meng X, et al. Giant negative electrocaloric effect in antiferroelectric La‐doped Pb(Zr,Ti)O3 thin films near room temperature[J]. Advanced materials, 2015, 27(20): 3165-3169.

[14] Seshadri S B, Nolan M M, Tutuncu G, et al. Unexpectedly high piezoelectricity of Sm-doped lead zirconate titanate in the Curie point region[J]. Scientific Reports, 2018, 8(1): 1-13.

[15] Li C, Xu B, Lin D, et al. Atomic-scale origin of ultrahigh piezoelectricity in samarium-doped PMN-PT ceramics[J]. Physical Review B, 2020, 101(14): 140-142.

[16] Li F, Lin D, Chen Z, et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design[J]. Nature Materials, 2018, 17(4): 349-354.

[17] 麦久翔, 蔡速捷. 现代功能陶瓷[J]. 电子元件, 1992(1):10.

[18] 周玉. 陶瓷材料学[M]. 科学出版社, 2004.

[19] Carl K, Hardtl K H. Electrical after-effects in Pb(Ti,Zr)O3 ceramics[J]. Ferroelectrics, 1977, 17(1): 473-486.

[20] Lambeck P V, Jonker G H. The nature of domain stabilization in ferroelectric perovskites[M]. Journal of the Physics & Chemistry of Solids. 1986: 453-461.

[21] Schulze W A, Ogino K. Review of literature on aging of dielectrics[J]. Ferroelectrics, 1988, 87(1): 361-377.

[22] Luo N, Zhang S, Li Q, et al. Crystallographic dependence of internal bias in domain engineered Mn-doped relaxor-PbTiO3 single crystals [J]. Journal of Materials Chemistry C, 2016, 4(20): 4568-4576.

[23] Gao Y, Uchino K, Viehland D. Effects of thermal and electrical histories on hard piezoelectrics: A comparison of internal dipolar fields and external dc bias [J]. Journal of Applied Physics, 2007, 101(5): 12-20.

[24] Zheng L, Sahul R, Zhang S, et al. Orientation dependence of piezoelectric properties and mechanical quality factors of 0.27Pb(In1/2Nb1/2)O3-0.46Pb(Mg1/3Nb2/3)O3-0.27PbTiO3: Mn single crystals[J]. Journal of Applied Physics, 2013, 114(10): 65-71.

[25] Mao C, Yan S, Cao S, et al. Effect of grain size on phase transition, dielectric and pyroelectric properties of BST ceramics[J]. Journal of the European Ceramic Society, 2014, 34(12): 2933-2939.

[26] 富永明. Nd掺杂PZT基铁电薄膜能量储存与电卡制冷性能研究[D]. 广西大学, 2018.

[27] Fu Y, Gong S, Liu X, et al. Crystallization and concentration modulated tunable upconversion luminescence of Er3+ doped PZT nanofibers[J]. Journal of Materials Chemistry C, 2014, 3(2): 382-389.

[28] Tiwari B, Babu T, Choudhary R N P. Dielectric response of Mn and Ce substituted PZT ferroelectric ceramics[J]. Materials Today: Proceedings, 2021, 43: 535-540.

[29] 李瑛娟. 稀土掺杂PZT压电陶瓷与薄膜材料的制备研究[D]. 昆明理工大学, 2012.

[30] Pramila C, Goel T C, Pillai P. Piezoelectric, pyroelectric and dielectric properties of La and Sm doped PZT ceramics[J]. Journal of Materials Science Letters, 1993, 12(21): 1657-1658.

[31] Parashar S K S, Choudhary R N P, Murty B S. Electrical propeties of Gd-doped PZT nanoceramic synthesized by high-energy ball milling[J]. Materials Science & Engineering B, 2004, 110(1): 58-63.

[32] Gao B, Yao Z, Lai D, et al. Unexpectedly high piezoelectric response in Sm-doped PZT ceramics beyond the morphotropic phase boundary region[J]. Journal of Alloys and Compounds, 2020, 836:155-174.

[33] Kuwata J, Uchino K, Nomura S. Phase transitions in the Pb(Zn1/3Nb2/3)O3-PbTiO3 system[J]. Ferroelectrics, 1981, 37(1): 579-582.

[34] Wongsaenmai S, Laosiritaworn Y, Ananta S, et al. Improving ferroelectric properties of Pb(Zr0.44Ti0.56)O3 ceramics by Pb(Mg1/3Nb2/3)O3 addition[J]. Materials Science & Engineering B, 2006, 128(1-3): 83-88.

[35] Noheda B, Cox D E, Shirane G, et al. Phase diagram of the ferroelectric relaxor (1−x)PbMg1/3Nb2/3O3−xPbTiO3[J]. Physical Review B, 2002, 66(5): 198-104.

[36] 苏建华, 田莳. 掺杂元素对PMN-PZT三元系材料温度稳定性能的影响[C] //96中国材料研讨会论文集(功能材料).北京:化学工业出版社, 1997: 473-475.

[37] 董昌. Sm掺杂增强PZT基弛豫型铁电陶瓷压电性能研究[J]. 无机材料学报, 2021, 36(12):1270-1276.

[38] Cheng C, Zheng D Y, Peng G G , et al. The effects of Sm2O3 doping on properties of PNN–PZT ceramics near morphotropic phase boundary[J]. Journal of Materials Science: Materials in Electronics, 2017, 28(2):1624-1630.

[39] Fang Z, Tian X, Zheng F, et al. Enhanced piezoelectric properties of Sm3+-modified PMN-PT ceramics and their application in energy harvesting[J]. Ceramics International, 2022, 48(6): 7550-7556.

[40] Yu Z, Wang Z, Shu S, et al. Local structural heterogeneity induced large flexoelectricity in Sm-doped PMN–PT ceramics[J]. Journal of Applied Physics, 2021, 129(17): 174-180.

[41] Babu G A, Gowthami S, Varadarajan E, et al. Enhanced piezoelectric properties in Sm-doped-24Pb(In0.5Nb0.5)O3–42Pb(Mg0.335Nb0.665)O3–34PbTiO3 piezoceramics[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(3):1-9.

[42] Chen H, Fan C. Fabrication and properties of PYN–PMN–PZT quaternary piezoelectric ceramics for high-power, high-temperature applications[J]. Materials Letters, 2010, 64(6): 654-656.

[43] Zeng J, Zhao K, Zhang X, et al. Giant piezoelectric properties and photoluminescence enhancement for Pr3+ doped PMN-PT transparent ceramics[J]. Social Science Electronic Publishing, 2020, 67(15): 390-397.

[44] Yan P, Qin Y, Xu Z, et al. Highly transparent Eu-doped 0.72PMN-0.28PT ceramics with excellent piezoelectricity[J]. ACS Applied Materials & Interfaces, 2021, 13(45): 54210-54216.

[45] Abid, Hussain, Binay, et al. Intrinsic polarization and resistive leakage analyses in high performance piezo-pyroelectric Ho-doped 0.64PMN-0.36PT binary ceramic-sciencedirect[J]. Advanced Powder Technology, 2018, 29(12): 3124-3137.

[46] Dirac P A M. On the annihilation of electrons and protons[C] //Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge University Press, 1930, 26(3): 361-375.

[47] Chao C Y. The absorption coefficient of hard γ-rays[J]. Proceedings of the National Academy of Sciences of the United States of America, 1930, 16(6): 431-446.

[48] Gray L H. The scattering of hard gamma rays. Part I[J]. Proceedings of the Royal Society of London, 1930, 128(808): 361-375.

[49] Anderson C D. Energies of cosmic-ray particles[J]. Physical Review, 1932, 41(4): 405-421.

[50] Anderson C D. Cosmic-Ray positive and negative electrons[J]. Physical Review, 1933, 44(5): 406.

[51] Klemperer O. On the annihilation radiation of the positron[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1934, 30(03):347-354.

[52] Wakoh S, Kubo Y, Yamashita J. Angular distribution of positron annihilation radiation in vanadium and niobium-heory[J]. Journal of the Physical Society of Japan, 2007, 38(2): 416-422.

[53] Shearer J W, Deutsch M. The lifetime of positronium in matter[J]. Physical Review, 1949, 76: 462.

[54] Puska M J, Corbel C, Nieminen R M. Positron trapping in semiconductors[J]. Physical R. B, Condensed matter, 1990, 41(14): 9980-9993.

[55] Ge W, Rahman A, Zhang M, et al. Probing the role of cation vacancies on the ferromagnetism of La-doped BiFeO3 ceramics[J]. Journal of Magnetism and Magnetic Materials, 2018, 449: 401-405.

[56] Dai H, Ye F, Chen Z, et al. The effect of ion doping at different sites on the structure, defects and multiferroic properties of BiFeO3 ceramics[J]. Journal of Alloys and Compounds, 2018, 734: 60-65.

[57] Chen J, Wang J, Dai H, et al. Investigations on the structure, defects, electrical and magnetic properties of Ni-substituted BiFeO3 ceramics[J]. Journal of Materials Science: Materials in Electronics, 2016, 27(11): 11151-11157.

[58] Qin M, Gao F, Cizek J, et al. Point defect structure of La-doped SrTiO3 ceramics with colossal permittivity[J]. Acta Materialia, 2019, 164: 76-89.

[59] Zhang L J, Wang T, Wang L H, et al. Structural defects and non-ferroelectric piezoelectricity in an unpoled SrTiO3-Bi12TiO20(ST-BT) composite ceramics[J]. Scripta Materialia, 2012, 67(1): 61-64.

[60] 钟维烈. 铁电体物理学[M]. 北京:科学出版社, 1996.

[61] 李翰如. 电介质物理导论[M]. 成都科技大学出版社, 1990.

[62] Chen X, Wang W, Bi J, Wu L, Fu X. Microwave hydrothermal synthesis and upconversion properties of NaYF4: Yb3+, Tm3+ with icrotube morphology[J]. Materials Letters, 2009, 63(12): 1023-1026.

[63] Brown M B, Shared W A, et al. Infrared quantum counter in Er3+-doped luorides lattices[J]. Physical Review Letters. 1964, 12(13): 367-368.

[64] 陈恒智. 稀土掺杂Bi3TiNbO9铁电氧化物的光学性质研究[D]. 哈尔滨工业大学, 2011.

[65] Cao W, Randall C A. Grain size and domain size relations in bulk ceramic ferroelectric materials[J]. Journal of Physics And Chemistry of Solids, 1996, 57(10): 1499-1505.

[66] Thlefeld J F, Harris D T, Keech R, et al. Scaling effects in perovskite ferroelectrics: fundamental limits and process-structure-property relations[J]. Journal of the American Ceramic Society, 2016, 99(8): 2537-2557.

[67] Pascual-González C, Berganza E, Amorín H, et al. Point defect engineering of high temperature piezoelectric BiScO3-PbTiO3 for enhanced voltage response[J]. Materials & Design, 2016, 108: 501-509.

[68] Kim T Y, Jang H M. B-site vacancy as the origin of spontaneous normal-to-relaxor ferroelectric transitions in La-modified PbTiO3[J]. Applied Physics Letters, 2000, 77(23): 3824-3826.

中图分类号:

 TM282    

开放日期:

 2024-06-21    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式