- 无标题文档
查看论文信息

论文中文题名:

 低温冻结裂隙砂岩蠕变试验及本构模型研究    

姓名:

 郭玺玺    

学号:

 19204209113    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085213    

学科名称:

 工学 - 工程 - 建筑与土木工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 建筑与土木工程    

研究方向:

 岩土工程    

第一导师姓名:

 宋勇军    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-15    

论文答辩日期:

 2022-05-31    

论文外文题名:

 Experimental study on mechanical properties and constitutive model of fractured sandstone in freezing environment.    

论文中文关键词:

 冻结砂岩 ; 裂隙倾角 ; 三轴蠕变 ; 破坏模式 ; 力学性质 ; 本构模型    

论文外文关键词:

 Frozen sandstone ; Fracture dip ; Triaxial creep ; Mechanical properties ; Failure mode ; Constitutive model.    

论文中文摘要:

流变性是岩石重要的力学特性,为探究寒区裂隙岩体在长期外部荷载作用下的流变力学特性及破坏机理,对含不同倾角的预制裂隙砂岩开展-10℃冻结环境下的三轴力学试验,得到了裂隙倾角对岩样物理力学参数及破坏模式的影响规律。之后又开展了分级加载蠕变试验,分析了不同岩样在蠕变三阶段的变形及损伤演化规律。最后建立了裂隙砂岩的非线性黏弹塑性本构模型,并对蠕变特征参数进行拟合,得出以下结论:

(1)裂隙倾角对加载过程中砂岩应力应变曲线发展有较大影响。应力应变曲线初始段呈“上凸型”特征,是由于该阶段岩体主要由岩样孔隙内部冰体承担荷载的结果。砂岩峰值强度、弹性模量、抗剪强度参数与裂隙倾角呈线性正相关;泊松比、体积应变与裂隙倾角呈非线性负相关关系,但变化幅度不明显;应用体积应变法并结合Hook定律建立考虑裂隙砂岩强度和变形的损伤演化方程发现,随裂隙倾角增大,砂岩起裂应力水平、扩容应力水平均逐渐增大,而峰后应力应变曲线跌落状态越明显,说明应力应变曲线弹性阶段经历时间增加,而塑性阶段相对变短,砂岩脆性增强,抵抗塑性变形能力下降。另外,峰后细观扫描显示低温冻结增强了砂岩内部颗粒间的胶结度,使得不同裂隙倾角砂岩均呈剪切破坏模式,破坏面较均匀,未出现明显的次生裂纹,翼裂纹起始于预制裂隙两侧端部向试样上下端面发展;随裂隙倾角增大,不同扫描高度下裂纹表面积波动范围减小,但破裂面裂纹体积呈增大趋势。研究结果可以对含裂隙岩层的冻结法施工及为后续开展低温冻结环境下的分级加载蠕变试验提供理论参考。

(2)分析了不同岩样在蠕变三阶段的变形及损伤演化规律。不同应力等级下,岩石稳态蠕变持续时间随裂隙角度增大逐渐增加,蠕变速率则呈非线性减小,另一方面,随应力等级的升高,瞬时应变及蠕变应变量也呈增大趋势。采用等时曲线簇法及改进的稳态蠕变速率法得到了砂岩蠕变长期强度发现,随裂隙倾角增大砂岩长期强度也显著增大。对比岩石破坏模式发现,主破坏面与水平方向夹角呈先减小后增大的U型变化趋势,其中0°、15°倾角岩石表现为整体剪切贯通破坏模式,75°、90°倾角岩石表现为拉剪贯通破坏,且岩样内部无微裂纹及次生裂纹产生。

(3)根据分级加载蠕变试验结果引入含分数阶微积分的软体元件和改进的非线性黏缸,建立非线性黏弹塑性本构模型,同时利用1stOpt软件进行参数识别和验证发现,所提出的蠕变本构模型可以较为准确地描述低温冻结环境下裂隙砂岩的分级加载蠕变曲线,尤其是在不稳定蠕变阶段。同时又分析了加载应力等级和裂隙倾角对蠕变模型参数的影响,最后对蠕变特征参数进行拟合,验证了蠕变模型的准确性和合理性。

论文外文摘要:

Rheology is an important mechanical property of rock. In order to explore the rheological mechanical property and failure mechanism of fractured rock mass in cold region under long-term external load, triaxial mechanical tests were carried out on saturated sandstone with different fracture dip angles in freezing environment at -10℃, and the influence law of fracture geometry characteristics on physical and mechanical parameters and failure modes of rock samples was obtained. Then, triaxial graded loading creep test was carried out, and the deformation and damage evolution law of different rock samples in three stages of creep was analyzed. Finally, the nonlinear viscoelastic-plastic constitutive model of fractured sandstone is established, and the creep characteristic parameters are fitted, and the following conclusions are drawn:

(1)The fracture dip angle has a great influence on the development of stress-strain curves of sandstone during loading. The initial segment of the stress-strain curve is "convex", which is due to the fact that the rock mass is mainly loaded by ice bodies in pores and fissures. The peak strength, elastic modulus and shear strength parameters of sandstone are linearly positively correlated with fracture dip angle, while Poisson's ratio and volume strain are negatively correlated with fracture dip angle, but the variation range is not obvious. The damage evolution equation considering the strength and deformation of fractured sandstone is established by volume strain method combined with Hook's law. It is found that with the increase of fracture dip angle, the crack initiation and dilatation stresses of the sandstone increase gradually, while the drop state of post-peak stress-strain curve is more obvious, indicating that the elastic stage of stress-strain curve becomes longer, the plastic stage becomes shorter, the brittleness of sandstone increases, and the ability to resist plastic deformation decreases. In addition, the post-peak mesoscopic scan showed that saturated freezing enhanced the degree of cementation between the particles in the sandstone, making the sandstones with different fracture dip angles present a shear failure mode, and the failure surface was more uniform. With the increase of fracture dip angle, the fluctuation range of crack surface area decreases at different scanning heights, but the crack volume on fracture surface increases. The research results can provide theoretical reference for the freezing construction of fractured rock strata and for the follow-up multi-stage loading creep test under low temperature freezing environment.

(2)The deformation and damage evolution of different rock samples in the three stages of creep are analyzed. Under different stress levels, the steady creep duration of rock increases gradually with the increase of crack angle, while the creep rate decreases nonlinearly. On the other hand, with the increase of stress grade, the instantaneous deformation and creep deformation also increase. The long-term creep strength of sandstone is obtained by isochronal curve method and steady-state creep rate method. It is found that the long-term strength of sandstone increases significantly with the increase of fracture inclination. Compared with the rock failure mode, it is found that the angle between the main failure surface and the horizontal direction first decreases and then increases. Among them, the rock with 0° and 15° dip angle shows the overall shear through failure mode, and the rock with 75° and 90° dip angle shows tension-shear through failure, and there are no micro-cracks and secondary cracks in the rock sample.

(3)according to the creep test results of graded loading, the software element with fractional calculus and the improved nonlinear viscous cylinder are introduced to establish the nonlinear viscoelastic-plastic constitutive model. At the same time, the parameters are identified and verified by 1stOpt software. It is found that the proposed creep constitutive model can accurately describe the graded loading creep curve of fractured sandstone under low temperature freezing environment, especially in the unstable creep stage. At the same time, the effects of loading stress level and crack inclination angle on the parameters of the creep model are analyzed. finally, the creep characteristic parameters are fitted to verify the accuracy and rationality of the creep model.

参考文献:

[1]张文泉, 卢玉华, 宫红月, 等. 兖滕矿区立井井壁损坏的原因分析及防治方法[J]. 岩土力学, 2004(12): 1977-1980.

[2]经来旺, 刘飞, 高全臣, 等. 表土沉降阶段煤矿立井井壁破裂应力分析[J]. 岩石力学与工程学报, 2004(19): 3274-3280.

[3]朱维申, 赵成龙, 周浩, 等.当前岩石力学研究中若干关键问题的思考与认识[J]. 岩石力学与工程学报, 2015, 34(04): 649-658.

[4]Wang Y, Feng W K, Wang H J, et al. Rock bridge fracturing characteristics in granite induced by freeze-thaw and uniaxial deformation revealed by AE monitoring and post-test CT scanning[J]. Cold Regions Science and Technology, 2020: 103115.

[5]任建喜, 惠兴田. 裂隙岩石单轴压缩损伤扩展细观机理CT分析初探[J]. 岩土力学, 2005(S1): 48-52.

[6]杨更社, 魏尧, 申艳军, 等. 冻结饱和砂岩三轴压缩力学特性及强度预测模型研究[J]. 岩石力学与工程学报, 2019, 38(04): 683-694.

[7]杨更社, 奚家米, 李慧军, 等. 三向受力条件下冻结岩石力学特性试验研究[J]. 岩石力学与工程学报, 2010, 29(03): 459-464.

[8]杨更社, 蒲毅彬, 马巍. 寒区冻融环境条件下岩石损伤扩展研究探讨[J]. 实验力学, 2002(02): 220-226.

[9]张慧梅, 杨更社. 冻融岩石劣化及力学特性试验研究损伤[J]. 煤炭学报,2013,38(10): 1756-1762.

[10]杨更社, 奚家米, 李慧军, 等. 煤矿立井井筒冻结壁软岩力学特性试验研究[J]. 地下空间与工程学报, 2012, 8(04): 690-697.

[11]刘泉声, 黄诗冰, 康永水, 等. 裂隙岩体冻融损伤研究进展与思考[J]. 岩石力学与工程学报, 2015, 34(03): 452-471.

[12]刘泉声, 黄诗冰, 康永水, 等. 裂隙冻胀压力及对岩体造成的劣化机制初步研究[J]. 岩土力学, 2016, 37(06): 1530-1542.

[13]黄诗冰, 刘泉声, 程爱平, 等. 低温岩体裂隙冻胀力与冻胀扩展试验初探[J]. 岩土力学, 2018, 39(01): 78-84.

[14]李平, 唐旭海, 刘泉声, 等. 双裂隙类砂岩冻胀断裂特征与强度损失研究[J]. 岩石力学与工程学报, 2020, 39(01): 115-125.

[15]黄诗冰, 刘泉声, 程爱平, 等. 低温裂隙岩体水-热耦合模型研究及数值分析[J]. 岩土力学, 2018, 39(2): 735-744.

[16]奚家米, 杨更社, 庞磊, 等. 低温冻结作用下砂质泥岩基本力学特性试验研究[J]. 煤炭学报, 2014, 39(07): 1262-1268.

[17]刘波, 刘念, 李东阳, 等. 鄂尔多斯深部富水砂岩冻结强度的试验研究[J]. 矿业科学学报, 2017, 2(01):25-32.

[18]刘波, 马永君, 盛海龙, 等. 不同围压与冻结温度下白垩系红砂岩力学性质试验研究[J]. 岩石力学与工程学报, 2019, 38(03):455-466.

[19]张晋勋, 杨昊, 单仁亮, 等. 冻结饱水砂卵石三轴压缩强度试验研究[J]. 岩土力学, 2018, 39(11):3993-4000+4016.

[20]徐光苗, 刘泉声, 彭万巍, 等. 低温作用下岩石基本力学性质试验研究[J]. 岩石力学与工程学报, 2006(12): 2502-2508.

[21]单仁亮, 白瑶, 孙鹏飞, 等. 裂隙红砂岩冻胀力特性试验研究[J]. 煤炭学报, 2019, 44(06): 1742-1752.

[22]Kodama J, Goto T, Fujii Y, et al. The effects of water content temperature and loading rate on strength and failure process of frozen rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 62: 1-13.

[23]Lu Y, Wu X. Freeze-thaw damage model of fractured rock samples under uniaxial compression [J]. Electronic Journal of Geo-technical Engineering, 2016, 21: 7839-7848.

[24]Bai Y, Shan R L, Ju Y, et al. Experimental study on the strength, deformation and crack evolution behaviour of red sandstone samples containing two ice-filled fissures under triaxial compression[J]. Cold Regions Science and Technology, 2020, 174: 103061.

[25]Liu Y, Cai Y, Huang S, et al. Effect of water saturation on uniaxial compressive strength and damage degree of clay-bearing sandstone under freeze-thaw[J]. Bulletin of Engineering Geology and the Environment, 2019:1-16.

[26]张晋勋, 杨昊, 单仁亮, 等. 冻结条件下平行双裂隙岩体力学特性试验研究[J]. 岩土力学, 2017, 38(12): 3573-3580+3589.

[27]谢璨, 李树忱, 晏勤, 等. 不同尺寸裂隙岩石损伤破坏特性光弹性试验研究[J]. 岩土工程学报, 2018, 40(03): 568-575.

[28]邓华锋, 潘登, 许晓亮, 等. 三轴压缩作用下断续节理砂岩力学特性研究[J]. 岩土工程学报, 2019, 41(11): 2133-2141.

[29]张国凯, 李海波, 王明洋, 等. 单裂隙花岗岩破坏强度及裂纹扩展特征研究[J]. 岩石力学与工程学报, 2019, 38(S1): 2760-2771.

[30]秦楠, 张金龙, 王永岩. 含不同倾角单裂隙类岩石单轴强度及蠕变速率的研究[J]. 应用力学学报, 2018, 35(03): 662-667+697.

[31]Lajtai E Z. Brittle fracture in compression[J]. International Journal of Fracture, 1974, 10(4): 525-536.

[32]Dyskin A V, Germanovich L N, Ustinov K B. A 3-D model of wing crack growth and interaction[J]. Engineering Fracture Mechanics, 1999, 63(1): 81-110.

[33]Lee H, Jeon S. An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression[J]. International Journal of Solids and Structures, 2011, 48(6): 979-999.

[34]Zhou X P, Wang Y T, Zhang J Z, et al. Fracturing behavior study of three-flawed specimens by uniaxial compression and 3D digital image correlation: sensitivity to brittleness[J]. Rock Mechanics and Rock Engineering, 2019, 52(3): 691-718.

[35]Wang Y L, Tang J X, Dai Z Y, et al. Experimental study on mechanical properties and failure modes of low-strength rock samples containing different fissures under uniaxial compression[J]. Engineering Fracture Mechanics, 2018, 197: 1-20.

[36]Shi G C, Yang X J, Yu H C, et al. Acoustic emission characteristics of creep fracture evolution in double-fracture fine sandstone under uniaxial compression[J]. Engineering Fracture Mechanics, 2019, 210: 13-28.

[37]Yang S Q, Huang Y H. An experimental study on deformation and failure mechanical behavior of granite containing a single fissure under different confining pressures[J]. Environmental Earth Sciences, 2017, 76(10): 364.

[38]Lu Y, Wu X. Freeze-thaw damage model of fractured rock samples under uniaxial compression [J]. Electronic Journal of Geo-technical Engineering, 2016, 21: 7839-7848.

[39]肖桃李, 李新平, 郭运华. 三轴压缩条件下单裂隙岩石的破坏特性研究[J]. 岩土力学, 2012, 33(11): 3251-3256.

[40]王乐华, 牛草原, 张冰祎, 等. 不同应力路径下深埋软岩力学特性试验研究[J]. 岩石力学与工程学报, 2019, 38(05): 973-981.

[41]李晓晋. 白垩系人工冻结软砂岩蠕变力学特性研究[D]. 西安科技大学, 2019.

[42]赵程, 刘丰铭, 田加深, 等. 基于单轴压缩试验的岩石单裂纹扩展及损伤演化规律研究[J]. 岩石力学与工程学报, 2016, 35(S2): 3626-3632.

[43]杨永明, 鞠杨, 陈佳亮, 等. 三轴应力下致密砂岩的裂纹发育特征与能量机制[J]. 岩石力学与工程学报, 2014, 33(04): 691-698.

[44]Miao S T, Pan P Z, Wu Z H, et al. Fracture analysis of sandstone with a single filled flaw under uniaxial compression[J]. Engineering Fracture Mechanics, 2018, 204:319-343.

[45]Griffith A A. VI. The phenomena of rupture and flow in solids[J]. Philosophical transactions of the royal society of london. Series A, containing papers of a mathematical or physical character, 1921, 221(582-593): 163-198.

[46]Wang C, Lu Y, Hao G, et al. Simulated test on compression deformation characteristics and mechanism of fractured rock in mined out area[J]. Geotechnical and Geological Engineering, 2018, 36(5): 2809-2821

[47]Lu Y, Li X, Chan A. Damage constitutive model of single flaw sandstone under freeze-thaw and load[J]. Cold Regions Science and Technology, 2019, 159: 20−28.

[48]陈国庆, 郭帆, 王剑超, 等. 冻融后石英砂岩三轴蠕变特性试验研究[J]. 岩土力学, 2017, 38(S1): 203-210.

[49]李栋伟, 汪仁和, 范菊红. 白垩系冻结软岩非线性流变模型试验研究[J]. 岩土工程学报, 2011, 33(03): 398-403.

[50]盛煜, 吴紫汪, 苗丽娜, 等. 冻土单轴压缩蠕变的归一化模型[J]. 自然科学进展, 1996(03): 103-106.

[51]Griggs D. Creep of Rocks[J]. Journal of Geology. 1939, 47(3): 225-251.

[52]杨昊, 张晋勋, 单仁亮, 等. 冻结饱水单裂隙岩体力学特性试验研究[J]. 岩土力学, 2018, 39(04): 1245-1255.

[53]Bai Y, Shan R L, Han T Y, et al. Study on triaxial creep behavior and the damage constitutive model of red sandstone containing a single ice-filled flaw[J].International Journal of Damage Mechanics, 2021, 30(3): 349-373.

[54]Shan R L, Bai Y, Ju Y, et al. Study on the triaxial unloading creep mechanical properties and damage constitutive model of red sandstone containing a single ice-filled flaw[J]. Rock Mechanics and Rock Engineering, 2021, 54(2): 833-855.

[55]单仁亮, 宋立伟, 李东阳, 等. 冻结红砂岩非线性蠕变模型的研究[J]. 岩土力学, 2014, 35(06):1541-1546.

[56]李晓晋. 白垩系人工冻结软砂岩蠕变力学特性研究[D].西安科技大学,2019.

[57]Li M T, Li K S, Zhang D, et al. Study on Creep Characteristics and Constitutive Relation of Fractured Rock Mass[J]. Shock and Vibration, 2020, 2020.

[58]魏尧, 杨更社, 申艳军, 等. 白垩系饱和冻结砂岩蠕变试验及本构模型研究[J]. 岩土力学, 2020, 41(08): 2636-2646.

[59]宋勇军, 张磊涛, 任建喜, 等. 低温环境下红砂岩蠕变特性及其模型[J]. 煤炭学报, 2020, 45(08): 2795-2803.

[60]杨琪. 西部白垩系地层人工冻结砂质泥岩蠕变力学特性研究[D].西安科技大学,2018.

[61]杨超, 黄达, 蔡睿, 等.张开穿透型单裂隙岩体三轴卸荷蠕变特性试验[J]. 岩土力学, 2018, 39(01): 53-62.

[62]Rassouli F S, Zoback M D. Long-term creep experiments on Haynesville shale rocks[C]//49th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, 2015.

[63]单仁亮, 白瑶, 孙鹏飞, 等.冻结层状红砂岩三轴蠕变特性及本构模型研究[J]. 中国矿业大学学报, 2019, 48(01): 12-22.

[64]白瑶. 含冰裂隙红砂岩力学特性及蠕变本构模型试验研究[D]. 中国矿业大学(北京), 2019.

[65]张金龙. 不同角度单裂隙类岩石强度及蠕变性能研究[D]. 青岛: 青岛科技大学, 2018.

[66]张作良. 不同倾角和贯穿程度下裂隙类岩石强度及蠕变特性试验研究[D]. 青岛科技大学, 2019.

[67]Zhang S J, Lai Y M, Zhang X F, et al. Study on the damage propagation of surrounding rock from a cold-region tunnel under freeze–thaw cycle condition[J]. Tunnelling and Underground Space Technology, 2004, 19(3): 295-302.

[68]Park J, Hyun C U, Park H D. Changes in microstructure and physical properties of rocks caused by artificial freeze–thaw action[J]. Bulletin of Engineering Geology and the Environment, 2015, 74(2):555-565.

[69]Wang Y, Li C H. Investigation on Crack Coalescence Behaviors for Granite Containing Two Flaws Induced by Cyclic Freeze-Thaw and Uniaxial Deformation in Beizhan Iron Mining, Xinjing, China[J]. Geofluids, 2020, 2020.

[70]Duan Y T, Li X, Zheng B, et al. Cracking evolution and failure characteristics of longmaxi shale under uniaxial compression using real-time computed tomography scanning[J]. Rock Mechanics and Rock Engineering, 2019, 52(9): 3003-3015.

[71]Wang Y, Han J Q, Li C H. Acoustic emission and CT investigation on fracture evolution of granite containing two flaws subjected to freeze–thaw and cyclic uniaxial increasing-amplitude loading conditions[J]. Construction and Building Materials, 2020, 260: 119769.

[72]宋勇军, 杨慧敏, 张磊涛, 等. 冻结红砂岩单轴损伤破坏CT实时试验研究[J]. 岩土力学,2019,40(S1):152-160.

[73] 付裕, 陈新, 冯中亮. 基于CT扫描的煤岩裂隙特征及其对破坏形态的影响[J]. 煤炭学报, 2020, 45(02):568-578.

[74]侯志强, 王宇, 刘冬桥, 等. 三轴疲劳-卸围压条件下大理岩力学特性试验研究[J]. 岩土力学, 2020, 41(05):1510-152

[75]武东生, 孟陆波, 李天斌, 等. 灰岩三轴高温后效流变特性及长期强度研究[J]. 岩土力学, 2016, 37(S1): 183-191.

[76]沈明荣, 谌洪菊. 红砂岩长期强度特性的试验研究[J]. 岩土力学, 2011, 32(11): 3301-3305.

[77]李良权, 徐卫亚, 王伟, 等. 基于流变试验的向家坝砂岩长期强度评价[J]. 工程力学, 2010, 27(11): 127-136.

[78]武东生, 孟陆波, 李天斌, 等. 灰岩三轴高温后效流变特性及长期强度研究[J]. 岩土力学, 2016, 37(S1): 183-191.

[79]NONNENMACHER T F, METZLER R. On the Riemann-Liouville fractional calculus and some recent applications[J]. Fractals, 1995, 3(03): 557-566.

[80]Adolfsson K, Enelund M, Olsson P. On the fractional order model of viscoelasticity[J]. Mechanics of Time-dependent materials, 2005, 9(1): 15-34.

[81]齐亚静, 姜清辉, 王志俭, 等. 改进西原模型的三维蠕变本构方程及其参数辨识[J]. 岩石力学与工程学报, 2012, 31(02): 347-355.

[82]陈沅江, 潘长良, 曹平, 等. 软岩流变的一种新力学模型[J]. 岩土力学, 2003(02):209-214.

[83]殷德顺, 任俊娟, 和成亮, 等. 一种新的岩土流变模型元件[J]. 岩石力学与工程学报, 2007(09): 1899-1903.

[84]徐卫亚, 周家文, 杨圣奇, 等. 绿片岩蠕变损伤本构关系研究[J]. 岩石力学与工程学报, 2006(S1): 3093-3097.

[85]杨更社, 屈永龙, 奚家米, 等. 西部白垩系富水基岩立井冻结压力实测研究[J]. 采矿与安全工程学报, 2014, 31(06): 982-986+994.

[86]郭鹏, 管华栋, 邓晓鹏, 等. 袁大滩煤矿冻结斜井受力实测与分析[J]. 建井技术, 2015, 36(05): 31-37.

中图分类号:

 TU452    

开放日期:

 2022-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式