- 无标题文档
查看论文信息

题名:

 水滑石基纳米流体的结构优化及其 CO2捕集机理研究    

作者:

 鞠晓茜    

学号:

 20103077015    

保密级别:

 保密(2年后开放)    

语种:

 chi    

学科代码:

 081902    

学科:

 工学 - 矿业工程 - 矿物加工工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2024    

学校:

 西安科技大学    

院系:

 能源学院    

专业:

 矿业工程    

研究方向:

 矿物功能材料的制备及其碳捕集    

导师姓名:

 杨志远    

导师单位:

 西安科技大学    

提交日期:

 2024-06-14    

答辩日期:

 2024-06-01    

外文题名:

 Study on structural optimization of LDH-based nanofluid and its CO2 capture mechanism    

关键词:

 水滑石 ; 纳米流体 ; 结构优化 ; 流动性 ; 分散稳定性 ; CO2捕集机理    

外文关键词:

 Layered double hydroxides ; Nanofluids ; Structural optimization ; Liquidity ; Dispersion stability ; CO2 capture mechanism    

摘要:

在“双碳”政策下,高效CO2捕集剂的开发与设计对于实现碳中和战略目标具有至关重要的意义。矿物资源开发与利用一直是我国经济建设的重点内容,廉价、储量丰富且可塑性高的黏土矿物在CO2捕集材料的制备中扮演着重要角色。然而目前单一状态CO2捕集材料(液体吸收材料或者固体吸附材料)难以满足高效低耗捕集CO2的要求。因此,本文基于阴离子黏土矿物-水滑石(LDH)材料结构的灵活可调性,通过控制LDH的层片厚度、三维结构和生长方式,依据“理论指导-应用探索-结构优化-性能提升-机理阐明”的思路,构筑了利于CO2传质的LDH基纳米流体,克服了单一状态捕集剂的限制,为新型高效黏土矿物基CO2捕集剂的开发与设计提供了思路。

通过将有机低聚物接枝到LDH纳米片(LDH-NS)表面制备了LDH-NS基纳米流体(LNS-F)。与传统纳米流体相比,LNS-F在室温且无溶剂条件下表现出宏观流动行为,并且在不同有机溶剂中表现出优异的分散稳定性。通过改变LDH的金属组成、有机低聚物种类和黏土矿物种类,证实了有机低聚物接枝可以作为一种通用方法制备黏土矿物基纳米流体。通过分子动力学与量子化学模拟,查明了LDH与有机低聚物通过脱水缩合发生共价作用而相互结合,为后续LDH基纳米流体的结构优化提供了基础。

对LNS-F作为CO2捕集材料的性能进行了探索。LNS-F具有较低的黏度(30 °C时粘度为6.60 Pa·s)有利于其在实际应用过程中的输送和CO2传质。LNS-F-M2070在25 °C下10 bar和30 bar压力时,CO2捕集量分别为0.48 mmol/g和1.37 mmol/g。由于有机液相对CO2和N2的溶解度不同,LNS-F-M2070表现出优异的CO2/N2分离选择性。由于纳米颗粒的存在增强了LNS-F捕集CO2过程中的物理吸附作用,改善了纳米流体的循环再生能力,通过真空脱附循环再生8次后CO2捕集量保持了最高捕集量的80%。

通过奥斯特瓦尔德反应设计合成了具有丰富暴露-OH的纳米花状LDH(NFL),进而与有机低聚物通过脱水缩合制备了NFL基纳米流体(NFL-F),改善了LNS-F接枝位点不足和捕集性能较差的缺点,探明了接枝密度与纳米流体的黏度及其CO2捕集性能之间的构效关系。研究表明OS-M2070在NFL表面的高饱和接枝密度增加了纳米颗粒的位阻效应,降低了其黏度(NFL-F3在25 °C时的黏度为3.69 Pa·s),并且提高了NFL-F3的分散稳定性。随着接枝密度的增加,NFL-F3的CO2捕集性能显著提高(在10 bar和25 °C测试条件下捕集量为1.44 mmol/g),这主要归功于有机低聚物之间的空隙、物理吸附作用以及NFL-F3表面高饱和接枝所带来的良好流动性。此外,NFL-F3具有良好的CO2/N2分离选择性和循环稳定性(在循环再生12次后CO2捕集量保持了最高捕集量的86%)。

(4)为了提高反应效率和增强纳米流体结构中纳米颗粒LDH对CO2的捕集容量,在NFL表面暴露了大量接枝位点的基础上,利用静电自组装方法在NFL内部构建介孔SiO2,制备了核壳结构的SiO2@LDH。利用离子液体代替有机低聚物制备了SiO2@LDH-离子液体体系的纳米流体(SLDH-2-2h-10%BF4),其黏度显著降低了(25 °C下黏度为0.12 Pa·s)。LDH表面丰富的-OH和有机液相之间的氢键相互作用增强了二者之间的溶解效应,保持了优异的分散稳定性。LDH-NS在介孔SiO2表面作为一层“保护壳”,阻碍了离子液体占据介孔SiO2的孔隙,提升了SLDH-2-2h-10%BF4的CO2捕集性能,在10 bar和25 °C条件下CO2捕集量为1.52 mmol/g;同时提高了LDH基纳米流体捕集CO2的循环稳定性能,在经过10个周期后,捕集量保持在最高捕集量的97%,为LDH基纳米流体捕集CO2的工业应用提供了可能。

(5)LDH基纳米流体的结构(包括纳米颗粒和有机液相)对CO2捕集性能具有重要影响。研究了LDH基纳米流体的结构优化对CO2捕集行为和捕集性能的影响机制,阐明了纳米流体中纳米颗粒与有机液相对CO2捕集的协同强化作用,结合分子模拟方法提出了LDH基纳米流体对CO2的捕集机理。通过等温吸附模型拟合,确定了LDH基纳米流体捕集CO2是化学作用和物理作用共同影响的,其中物理作用占主导;通过吸附动力学模型拟合证实了CO2是先溶解在纳米流体的有机液相中,然后与有机液相中的作用位点相互作用,最后扩散到核心LDH结构中;利用分子模拟结果表明了LDH基纳米流体捕集CO2的作用位点,包括有机液相中长链之间的空隙、有机液相中的作用位点(醚键和胺基)和无机纳米颗粒LDH本身。

基于对LDH基纳米流体的结构优化,实现了其优异的流动性能和分散性能,解决了固体LDH在应用过程中的团聚问题,所开发的LDH基纳米流体对CO2具有较高的捕集性能、CO2/N2选择性能和优异的循环再生能力。LDH基纳米流体在CO2捕集过程中,避免了传统液体吸收剂在高温脱附过程中对设备的腐蚀和高能量消耗,也解决了传统固体吸附剂吸附容量和分离选择性难以兼顾的问题,为高效低耗的黏土矿物基CO2捕集材料的开发与设计提供了新的思路。

外文摘要:

Under the "carbon peaking and carbon neutrality" policy, the development and design of efficient CO2 capture agents hold crucial significance for achieving the strategic goal of carbon neutrality. The development and utilization of mineral resources have always been the focal points of China's economic construction, and clay minerals, which are inexpensive, abundant in reserves, and highly plastic, play a significant role in the preparation of CO2 capture materials. Currently, single-state CO2 capture materials (liquid absorption materials or solid adsorption materials) are insufficient to meet the requirements for efficient and low-cost CO2 capture. Consequently, leveraging the flexible adjustability of the anionic clay mineral-layered double hydroxide (LDH) material structure, this study endeavors to construct LDH-based nanofluids that facilitate CO2 mass transfer by meticulously controlling the layer thickness, three-dimensional structure, and growth mode of LDH. Adhering to the framework of "theoretical guidance, structural optimization, performance enhancement, and mechanism elucidation", this approach overcomes the limitations of single-state adsorbents and offers a insight for the development and design of novel, efficient mineral-based CO2 capture agents.

LDH-NS-based nanofluids (LNS-F) were prepared by grafting organic oligomers onto the surface of LDH nanosheets (LDH-NS). Compared with traditional nanofluids, LNS-F exhibited macroscopic flow behavior at room temperature without solvents and demonstrated higher dispersion stability in various organic solvents. The grafting of organic oligomers was validated as a versatile method for the preparation of clay mineral-based nanofluids through alterations in the metal composition of LDH, types of organic oligomers, and clay varieties. Molecular dynamics simulations and quantum simulations revealed that LDH and organic oligomers covalently interact through dehydration condensation, providing a foundation for the subsequent structural optimization of LDH-based nanofluids.

The application performance of LNS-F as a CO2 capture material was explored. LNS-F exhibited a lower viscosity (6.60 Pa·s at 30 °C), favoring its transportation and CO2 mass transfer during practical applications. At 25 °C, LNS-F-M2070 demonstrated CO2 capacities of 0.48 mmol/g and 1.37 mmol/g under pressures of 10 bar and 30 bar, respectively. Due to the different solubilities of organic liquids for CO2 and N2, LNS-F-M2070 exhibited an excellent CO2/N2 selectivity. The presence of nanoparticles enhanced physical interactions, favoring the cyclic stability of the nanofluid. After eight cycles of regeneration through vacuum desorption, the CO2 capacity retained 80% of the maximum capacity.

Through the Ostwald ripening reaction, nanoflower-like LDH (NFL) with abundant exposed -OH groups were designed and synthesized. Subsequently, NFL-based nanofluids (NFL-F) were prepared by dehydration condensation with organic oligomers, addressing the limitations of insufficient grafting sites and poor CO2 capacity in LNS-F. The study elucidated the structure-activity relationship between the grafting density, viscosity, and CO2 capacity of the nanofluids. It was found that the high saturation grafting density on the surface of NFL increased the steric hindrance effect of the nanoparticles, resulting in reduced viscosity (3.69 Pa·s at 25 °C) and improved dispersion stability of NFL-F3. Notably, as the grafting density increased, the CO2 capacity of NFL-F3 significantly improved (2.27 mmol/g at 15 bar and 25 °C), primarily attributed to the gaps between organic oligomers, physical adsorption, and the excellent fluidity conferred by the high saturation grafting of organic oligomers. Additionally, NFL-F3 exhibited an excellent CO2/N2 separation performance and cyclic stability, maintaining 86% of its maximum CO2 capacity after 12 cycles of regeneration.

To enhance the reaction efficiency and boost the CO2 capacity of the core LDH within the nanofluid, a mesoporous SiO2 was constructed at the center of the nanoflower-like LDH using the electrostatic self-assembly method, resulting in a core-shell SiO2@LDH while maintaining the exposure of numerous grafting sites. Furthermore, a nanofluid based on the SiO2@LDH-ionic liquid system (SLDH-2-2h-10%BF4) was prepared by replacing organic oligomers with ionic liquids, significantly reducing its viscosity (0.12 Pa·s at 25 °C). The strong hydrogen bonding interaction between the abundant -OH groups on the LDH surface and the sterically hindered solvent enhanced the dissolution effect, maintaining excellent dispersion stability. The LDH-NS served as a protective shell on the surface of the mesoporous SiO2, preventing the ionic liquid from occupying the pores of the SiO2 and enhancing the CO2 capacity of SLDH-2-2h-10%BF4. Under conditions of 15 bar and 25 °C, the CO2 capacity reached 1.51 mmol/g. Additionally, the cyclic stability of the LDH-based nanofluids was improved, maintaining 97% of its maximum capacity after 10 cycles, providing a promising avenue for the industrial application of LDH-based nanofluids in CO2 capture.

The structure of LDH-based nanofluids, encompassing both nanoparticles and organic liquid phases, holds significant implications for their CO2 capacity. This study investigated the impact of structural optimization in LDH-based nanofluids on the mechanisms underlying CO2 capture behavior and performance. The synergistic enhancement effects of nanoparticles and organic liquids on CO2 capture within the nanofluid were elucidated. Furthermore, a capture mechanism for CO2 in LDH-based nanofluids was proposed, incorporating molecular simulation methods. By fitting the isothermal adsorption model, it was determined that the adsorption of CO2 by LDH-based nanofluids was influenced by both chemical and physical interactions, with physical interactions playing a dominant role. The adsorption kinetics model fitting confirmed that CO2 first dissolves in the organic liquid phase of the nanofluids, interacts with the functional sites within the organic liquid phase, and then diffuses into the core LDH structure. Molecular simulation results revealed the interaction sites between the LDH-based nanofluids and CO2 molecules, including the gaps between long chains in the organic liquid phase, functional sites in the organic liquid phase (ether bonds and amine groups), and the inorganic solid phase of LDH itself.

Through structural optimization of LDH-based nanofluids, this study achieved excellent flow and dispersion properties, addressing the aggregation issues encountered during the application of solid LDH. The developed LDH-based nanofluids adsorption material exhibits high CO2 capture performance, superior CO2/N2 selectivity, and excellent regeneration capability. As a CO2 capture material, LDH-based nanofluids eliminate the issues of equipment corrosion and high energy consumption associated with traditional liquid materials during desorption at high temperatures. Simultaneously, they overcome the problems of wear and mechanical fatigue encountered with traditional solid adsorbents during application. The LDH-based nanofluids designed and synthesized in this study provides a promising avenue for the development of efficient and low-consumption CO2 capture materials.

参考文献:

[1] Adebayo T S, Ullah S. Towards a sustainable future: The role of energy efficiency, renewable energy, and urbanization in limiting CO2 emissions in Sweden[J]. Sustainable Development, 2024, 32(1): 244-259.

[2] Kumar A, Mishra S, Bakshi S, et al. Response of eutrophication and water quality drivers on greenhouse gas emissions in lakes of China: A critical analysis[J]. Ecohydrology, 2023, 16(1): e2483.

[3] Brethomé F M, Williams N J, Seipp C A, et al. Direct air capture of CO2 via aqueous-phase absorption and crystalline-phase release using concentrated solar power[J]. Nature Energy, 2018, 3(7): 553-559.

[4] Hu G, Li Z, Ma D, et al. Light-driven CO2 sequestration in Escherichia coli to achieve theoretical yield of chemicals[J]. Nature Catalysis, 2021, 4(5): 395-406.

[5] Chu H, Huang Z, Zhang Z, et al. Integration of carbon emission reduction policies and technologies: Research progress on carbon capture, utilization and storage technologies[J]. Separation and Purification Technology, 2024, 343: 127153.

[6] Liu Z, Deng Z, He G, et al. Challenges and opportunities for carbon neutrality in China[J]. Nature Reviews Earth & Environment, 2022, 3(2): 141-155.

[7] 张贤, 杨晓亮, 鲁玺, 等. 《中国二氧化碳捕集利用与封存(CCUS)年度报告(2023)》发布[R]. 清华大学: 全球碳捕集与封存研究院, 2023.

[8] 余碧莹, 赵光普, 安润颖, 等. 碳中和目标下中国碳排放路径研究[J]. 北京理工大学学报 (社会科学版), 2021, 23(2): 17-24.

[9] 娄飞健. 氨基功能化固体吸附剂的结构调控及CO2吸附性能研究[D]. 大连: 大连理工大学, 2021.

[10] 王帅坦. 生物质基础组分化学链燃烧特性实验研究[D]. 大连: 大连理工大学, 2022.

[11] Ma J, Tian X, Zhao H, et al. Effect of coal ash on the performance of CuO@TiO2-Al2O3 in chemical looping with oxygen uncoupling[J]. Fuel Processing Technology, 2021, 221: 106935.

[12] 桂霞, 王陈魏, 云志, 等. 燃烧前CO2捕集技术研究进展[J]. 化工进展, 2014, 33(07): 1895-1901.

[13] MacDowell N, Florin N, Buchard A, et al. An overview of CO2 capture technologies[J]. Energy & Environmental Science, 2010, 3(11): 1645-1669.

[14] Zhang M, Guo Y. Rate based modeling of absorption and regeneration for CO2 capture by aqueous ammonia solution[J]. Applied Energy, 2013, 111: 142-152.

[15] Kim Y J, You J K, Hong W H, et al. Characteristics of CO2 absorption into aqueous ammonia[J]. Separation Science and Technology, 2008, 43(4): 766-777.

[16] Fang M, Xiang Q, Yu C, et al. Experimental study on CO2 absorption by aqueous ammonia solution at elevated pressure to enhance CO2 absorption and suppress ammonia vaporization[J]. Greenhouse Gases: Science and Technology, 2015, 5(2): 210-221.

[17] Yang X, Rees R J, Conway W, et al. Computational modeling and simulation of CO2 capture by aqueous amines[J]. Chemical Reviews, 2017, 117(14): 9524-9593.

[18] Aghel B, Janati S, Wongwises S, et al. Review on CO2 capture by blended amine solutions[J]. International Journal of Greenhouse Gas Control, 2022, 119: 103715.

[19] Said R B, Kolle J M, Essalah K, et al. A unified approach to CO2-amine reaction mechanisms[J]. ACS Omega, 2020, 5(40): 26125-26133.

[20] Park S, Choi B, Lee J. Chemical absorption of carbon dioxide with triethanolamine in non-aqueous solutions[J]. Korean Journal of Chemical Engineering, 2006, 23(1): 138-143.

[21] Chen S, Chen S, Zhang Y, et al. Species distribution of CO2 absorption/desorption in aqueous and non-aqueous N-ethylmonoethanolamine solutions[J]. International Journal of Greenhouse Gas Control, 2016, 47: 151-158.

[22] Yu Y S, Lu H F, Zhang T T, et al. Determining the performance of an efficient nonaqueous CO2 capture process at desorption temperatures below 373 K[J]. Industrial & Engineering Chemistry Research, 2013, 52(35): 12622-12634.

[23] Li J, You C, Chen L, et al. Dynamics of CO2 absorption and desorption processes in alkanolamine with cosolvent polyethylene glycol[J]. Industrial & Engineering Chemistry Research, 2012, 51(37): 12081-12088.

[24] Guo C, Chen S, Zhang Y, et al. Solubility of CO2 in nonaqueous absorption system of 2-(2-aminoethylamine)ethanol + benzyl alcohol[J]. Journal of Chemical & Engineering Data, 2014, 59(6): 1796-1801.

[25] Alkhatib I I I, Pereira L M C, AlHajaj A, et al. Performance of non-aqueous amine hybrid solvents mixtures for CO2 capture: A study using a molecular-based model[J]. Journal of CO2 Utilization, 2020, 35: 126-144.

[26] Mumford K A, Wu Y, Smith K H, et al. Review of solvent based carbon-dioxide capture technologies[J]. Frontiers of Chemical Science and Engineering, 2015, 9(2): 125-141.

[27] Cai Y, Wang W, Li L, et al. Effective capture of carbon dioxide using hydrated sodium carbonate powders[J]. Materials, 2018, 11(2): 183.

[28] Knuutila H, Juliussen O, Svendsen H F. Kinetics of the reaction of carbon dioxide with aqueous sodium and potassium carbonate solutions[J]. Chemical Engineering Science, 2010, 65(23): 6077-6088.

[29] 赵唯, 刘立, 马晓辉. 离子液体及其复配溶剂捕集CO2的研究进展[J]. 低碳化学与化工, 2023, 48(03): 107-115.

[30] Blanchard L A, Hancu D, Beckman E J, et al. Green processing using ionic liquids and CO2[J]. Nature, 1999, 399(6731): 28-29.

[31] Xiao M, Liu H, Gao H, et al. CO2 capture with hybrid absorbents of low viscosity imidazolium-based ionic liquids and amine[J]. Applied Energy, 2019, 235: 311-319.

[32] 王兰云, 张亚娟, 徐永亮, 等. 离子液体吸收CO2及其机理研究进展[J]. 安全与环境学报, 2022, 22(03): 1525-1542.

[33] Bica K, Deetlefs M, Schröder C, et al. Polarisabilities of alkylimidazolium ionic liquids[J]. Physical Chemistry Chemical Physics, 2013, 15(8): 2703-2711.

[34] Fillion J J, Xia H, Desilva M A, et al. Phase transitions, decomposition temperatures, viscosities, and densities of phosphonium, ammonium, and imidazolium ionic liquids with aprotic heterocyclic anions[J]. Journal of Chemical & Engineering Data, 2016, 61(8): 2897-2914.

[35] Smith E L, Abbott A P, Ryder K S. Deep eutectic solvents (DESs) and their applications[J]. Chemical Reviews, 2014, 114(21): 11060-11082.

[36] 毕莹莹. 新型低共熔溶剂捕获二氧化碳[D]. 马鞍山: 安徽工业大学, 2020.

[37] 崔颖娜, 张殊佳, 王爱玲, 等. 低共熔溶剂用于CO2捕集的研究进展[J]. 天然气化工-C1化学与化工, 2022, 47(01): 33-43.

[38] Peh S B, Zhao D. Tying amines down for stable CO2 capture[J]. Science, 2020, 369(6502): 372-373.

[39] Lee G, Li Y C, Kim J, et al. Electrochemical upgrade of CO2 from amine capture solution[J]. Nature Energy, 2021, 6(1): 46-53.

[40] Ahmed M B, Hasan Johir M A, Zhou J L, et al. Activated carbon preparation from biomass feedstock: Clean production and carbon dioxide adsorption[J]. Journal of Cleaner Production, 2019, 225: 405-413.

[41] Raupach M R, Marland G, Ciais P, et al. Global and regional drivers of accelerating CO2 emissions[J]. Proceedings of the National Academy of Sciences, 2007, 104(24): 10288-10293.

[42] Luo H, Qiao Y, Ning Z, et al. Effect of thermal extraction on coal-based activated carbon for methane decomposition to hydrogen[J]. ACS Omega, 2020, 5(5): 2465-2472.

[43] Rashidi N A, Yusup S. An overview of activated carbons utilization for the post-combustion carbon dioxide capture[J]. Journal of CO2 Utilization, 2016, 13: 1-16.

[44] Szostak R. Molecular Sieves[M]. Germany: Kluwer Academic Publishers, 1998.

[45] Wang J, Xuan Y, Ming Y, et al. Reducing possible combinations of Wyckoff positions for zeolite structure prediction[J]. Faraday Discussions, 2018, 211: 541-552.

[46] 张博超, 张洲朋, 赵文豪, 等. 利用煤矸石合成沸石分子筛的应用进展[J]. 煤炭技术, 2023, 42(11): 252-255.

[47] 鲁景山, 方亚平, 迪丽努尔·艾力, 等. 以高岭土为铝源合成ZSM-5分子筛及其CO2吸附性能研究[J]. 石油炼制与化工, 2023, 54(2): 90-99.

[48] 迟舒丹. 用于CO2吸附分离的分子筛复合材料合成研究[D]. 北京: 北京化工大学, 2023.

[49] Liu J, Thallapally P K, McGrail B P, et al. Progress in adsorption-based CO2 capture by metal-organic frameworks[J]. Chemical Society Reviews, 2012, 41(6): 2308-2322.

[50] An J, Rosi N L. Tuning MOF CO2 adsorption properties via cation exchange[J]. Journal of the American Chemical Society, 2010, 132(16): 5578-5579.

[51] Zhang Z, Gao W, Wojtas L, et al. Post-synthetic modification of porphyrin-encapsulating Metal–organic materials by cooperative addition of inorganic salts to enhance CO2/CH4 selectivity[J]. Angewandte Chemie International Edition, 2012, 51(37): 9330-9334.

[52] Vaidhyanathan R, Iremonger S S, Dawson K W, et al. An amine-functionalized metal organic framework for preferential CO2 adsorption at low pressures[J]. Chemical Communications, 2009,(35): 5230-5232.

[53] Zheng B, Yang Z, Bai J, et al. High and selective CO2 capture by two mesoporous acylamide-functionalized rht-type metal-organic frameworks[J]. Chemical Communications, 2012, 48(56): 7025-7027.

[54] Hong D, Hwang Y K, Serre C, et al. Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: Surface functionalization, encapsulation, sorption and catalysis[J]. Advanced Functional Materials, 2009, 19(10): 1537-1552.

[55] Sumida K, Rogow D L, Mason J A, et al. Carbon dioxide capture in metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2): 724-781.

[56] 刘艳宇. 层状黏土改性纳米二氧化硅复合材料补强硅橡胶的研究[D]. 北京: 北京化工大学, 2023.

[57] 张帅. 高岭石层间域有机化合物分子动力学模拟研究[D]. 北京: 中国矿业大学(北京), 2017.

[58] 余义昌, 彭枫, 姜德彬, 等. 酸-镁改性蒙脱土的制备及对磷酸盐吸附性能的研究[J]. 材料导报, 2023, 37(24): 83-89.

[59] 王佳瑞. 煅烧MgAlFe-CO3层状双氢氧化物除氟性能研究[D]. 北京: 中国地质大学(北京), 2012.

[60] 王永燎. 阴离子层状双氢氧化物(LDHs)的制备及氨基类药物的插层组装应用研究[D]. 广州: 华南理工大学, 2012.

[61] Chen Y, Lu D. CO2 capture by kaolinite and its adsorption mechanism[J]. Applied Clay Science, 2015, 104: 221-228.

[62] Michot L J, Baravian C, Bihannic I, et al. Sol-gel and isotropic/nematic transitions in aqueous suspensions of natural nontronite clay. Influence of particle anisotropy. 2. Gel structure and mechanical properties[J]. Langmuir, 2009, 25(1): 127-139.

[63] Wang K, Yan X, Komarneni S. CO2 adsorption by several types of pillared montmorillonite clays[J]. Applied Petrochemical Research, 2018, 8(3): 173-177.

[64] Hunvik K W B, Loch P, Cavalcanti L P, et al. CO2 capture by nickel hydroxide interstratified in the nanolayered space of a synthetic clay mineral[J]. The Journal of Physical Chemistry C, 2020, 124(48): 26222-26231.

[65] Awad A M, Shaikh S M R, Jalab R, et al. Adsorption of organic pollutants by natural and modified clays: A comprehensive review[J]. Separation and Purification Technology, 2019, 228: 115719.

[66] Chouikhi N, Cecilia J A, Vilarrasa-García E, et al. CO2 adsorption of materials synthesized from clay minerals: A review[J]. Minerals, 2019, 9(9): 514.

[67] Wal K, Rutkowski P, Stawiński W. Application of clay minerals and their derivatives in adsorption from gaseous phase[J]. Applied Clay Science, 2021, 215: 106323.

[68] Ma Z, Ranjith P G. Review of application of molecular dynamics simulations in geological sequestration of carbon dioxide[J]. Fuel, 2019, 255: 115644.

[69] Wang T, Tian S, Li G, et al. Molecular simulation of gas adsorption in shale nanopores: A critical review[J]. Renewable and Sustainable Energy Reviews, 2021, 149: 111391.

[70] Qazvini O T, Telfer S G. A robust metal-organic framework for post-combustion carbon dioxide capture[J]. Journal of Materials Chemistry A, 2020, 8(24): 12028-12034.

[71] Zhou Y, Zhang J, Wang L, et al. Self-assembled iron-containing mordenite monolith for carbon dioxide sieving[J]. Science, 2021, 373(6552): 315-320.

[72] 耿一琪, 郭彦霞, 樊飙, 等. CaO基吸附剂捕集CO2及其抗烧结改性研究进展[J]. 燃料化学学报, 2021, 49(7): 998-1013.

[73] Yu W, Wang T, Park A A, et al. Review of liquid nano-absorbents for enhanced CO2 capture[J]. Nanoscale, 2019, 11(37): 17137-17156.

[74] Pil Jang S, Choi S U S. Effects of various parameters on nanofluid thermal conductivity[J]. Journal of Heat Transfer, 2006, 129(5): 617-623.

[75] Choi U S, Eastman J A, Lee S, et al. Enhanced thermal conductivity through the development of nanofluids[J]. MRS Proceedings, 1996, 457: 3.

[76] Krishnamurthy S, Bhattacharya P, Phelan P E, et al. Enhanced mass transport in nanofluids[J]. Nano Letters, 2006, 6(3): 419-423.

[77] Solangi K H, Kazi S N, Luhur M R, et al. A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids[J]. Energy, 2015, 89: 1065-1086.

[78] Zhang Z, Cai J, Chen F, et al. Progress in enhancement of CO2 absorption by nanofluids: A mini review of mechanisms and current status[J]. Renewable Energy, 2018, 118: 527-535.

[79] Kim W, Kang H U, Jung K, et al. Synthesis of silica nanofluid and application to CO2 absorption[J]. Separation Science and Technology, 2008, 43(11-12): 3036-3055.

[80] Park Y, Shin D, Jang Y N, et al. CO2 capture capacity and swelling measurements of liquid-like nanoparticle organic hybrid materials via attenuated total reflectance fourier transform infrared spectroscopy[J]. Journal of Chemical & Engineering Data, 2012, 57(1): 40-45.

[81] Darvanjooghi M H K, Esfahany M N, Esmaeili-Faraj S H. Investigation of the effects of nanoparticle size on CO2 absorption by silica-water nanofluid[J]. Separation and Purification Technology, 2018, 195: 208-215.

[82] Nagy E, Feczkó T, Koroknai B. Enhancement of oxygen mass transfer rate in the presence of nanosized particles[J]. Chemical Engineering Science, 2007, 62(24): 7391-7398.

[83] Jung J, Lee J W, Kang Y T. CO2 absorption characteristics of nanoparticle suspensions in methanol[J]. Journal of Mechanical Science and Technology, 2012, 26(8): 2285-2290.

[84] Lee J S, Lee J W, Kang Y T. CO2 absorption/regeneration enhancement in DI water with suspended nanoparticles for energy conversion application[J]. Applied Energy, 2015, 143: 119-129.

[85] Lee J W, Kang Y T. CO2 absorption enhancement by Al2O3 nanoparticles in NaCl aqueous solution[J]. Energy, 2013, 53: 206-211.

[86] Torres Pineda I, Lee J W, Jung I, et al. CO2 absorption enhancement by methanol-based Al2O3 and SiO2 nanofluids in a tray column absorber[J]. International Journal of Refrigeration, 2012, 35(5): 1402-1409.

[87] Jiang J, Zhao B, Zhuo Y, et al. Experimental study of CO2 absorption in aqueous MEA and MDEA solutions enhanced by nanoparticles[J]. International Journal of Greenhouse Gas Control, 2014, 29: 135-141.

[88] Jiang Y, Zhang Z, Fan J, et al. Experimental study on comprehensive carbon capture performance of TETA-based nanofluids with surfactants[J]. International Journal of Greenhouse Gas Control, 2019, 88: 311-320.

[89] 凌智勇, 孙东健, 张忠强, 等. 温度和颗粒浓度对纳米流体粘度的影响[J]. 功能材料, 2013, 44(1): 92-95.

[90] 梁嘉欣, 冉艺璇, 武西宁, 等. 纳米流体强化吸收CO2研究进展[J]. 化工新型材料, 2022, 50(9): 60-64.

[91] Yang R, Fan W, Zheng Y, et al. Effects of the core of liquid-like SiO2 nanoparticle organic hybrid materials on CO2 capture[J]. Journal of Materials Science, 2018, 53(7): 5172-5182.

[92] Fang X, Xuan Y, Li Q. Experimental investigation on enhanced mass transfer in nanofluids[J]. Applied Physics Letters, 2009, 95(20): 203108.

[93] Koronaki I P, Nitsas M T, Vallianos C A. Enhancement of carbon dioxide absorption using carbon nanotubes-A numerical approach[J]. Applied Thermal Engineering, 2016, 99: 1246-1253.

[94] Sun L, Yang Y, Ni H, et al. Enhancement of CO2 adsorption performance on hydrotalcites impregnated with alkali metal nitrate salts and carbonate salts[J]. Industrial & Engineering Chemistry Research, 2020, 59(13): 6043-6052.

[95] Sharma U, Tyagi B, Jasra R V. Synthesis and characterization of Mg-Al-CO3 layered double hydroxide for CO2 adsorption[J]. Industrial & Engineering Chemistry Research, 2008, 47(23): 9588-9595.

[96] Chi H, Dong J, Li T, et al. Scaled-up synthesis of defect-rich layered double hydroxide monolayers without organic species for efficient oxygen evolution reaction[J]. Green Energy & Environment, 2022, 7(5): 975-982.

[97] Wang Y, Liu Y, Chen Z, et al. In situ growth of hydrophilic nickel-cobalt layered double hydroxides nanosheets on biomass waste-derived porous carbon for high-performance hybrid supercapacitors[J]. Green Chemical Engineering, 2022, 3(1): 55-63.

[98] Xu Z P, Stevenson G S, Lu C, et al. Stable suspension of layered double hydroxide nanoparticles in aqueous solution[J]. Journal of the American Chemical Society, 2006, 128(1): 36-37.

[99] Claydon R, Wood J. A mechanistic study of layered-double hydroxide (LDH)-derived nickel-enriched mixed oxide (Ni-MMO) in ultradispersed catalytic pyrolysis of heavy oil and related petroleum coke formation[J]. Energy & Fuels, 2019, 33(11): 10820-10832.

[100] Erastova V, Degiacomi M T, O'Hare D, et al. Understanding surface interactions in aqueous miscible organic solvent treated layered double hydroxides[J]. RSC Advances, 2017, 7(9): 5076-5083.

[101] Zhang Y, Li H, Du N, et al. Large-scale aqueous synthesis of layered double hydroxide single-layer nanosheets[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 501: 49-54.

[102] Nyongombe G E, Kabongo G L, Noto L L, et al. Up-scalable synthesis of highly crystalline electroactive Ni-Co LDH nanosheets for supercapacitor applications[J]. International Journal of Electrochemical Science, 2020, 15(5): 4494-4502.

[103] 张胜楠, 莫小婵, 陈彤, 等. 电场作用下金属串配合物[Ru3(dpa)4]L2 (L=Cl, C≡N, C≡CPh)结构的理论研究[J]. 华南师范大学学报(自然科学版), 2015, 47(2): 39-47.

[104] Ali A M, Kwaya M Y, Mijinyawa A, et al. Molecular dynamics and energy distribution of methane gas adsorption in shales[J]. Journal of Natural Gas Geoscience, 2023, 8(1): 1-15.

[105] Ying J, Zhao H, Wang Z, et al. Effect of asphaltene structure characteristics on asphaltene accumulation at oil-water interface: An MD simulation study[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 675: 132014.

[106] Djebbi M A, Braiek M, Namour P, et al. Layered double hydroxide materials coated carbon electrode: New challenge to future electrochemical power devices[J]. Applied Surface Science, 2016, 386: 352-363.

[107] Wang Y, Zhou X, Yin M, et al. Superhydrophobic and self-healing Mg-Al layered double hydroxide/silane composite coatings on the Mg alloy surface with a long-term anti-corrosion lifetime[J]. Langmuir, 2021, 37(27): 8129-8138.

[108] Zhang L, Zhao J, Zhang S, et al. Ultrasound-assisted synthesis of single layer MgAl hydrotalcite for the removal of Cr(VI) in solution and soil[J]. Applied Clay Science, 2021, 204: 106025.

[109] Guo X, Ruan Y, Diao Z, et al. Environmental-friendly preparation of Ni-Co layered double hydroxide (LDH) hierarchical nanoarrays for efficient removing uranium (VI)[J]. Journal of cleaner production, 2021, 308: 127384.

[110] Sun Y, Gao X, Yang N, et al. Morphology-controlled synthesis of three-dimensional hierarchical flowerlike Mg-Al layered double hydroxides with enhanced catalytic activity for transesterification[J]. Industrial & Engineering Chemistry Research, 2019, 58(19): 7937-7947.

[111] Chen B, Sun Q, Wang D, et al. High-gravity-assisted synthesis of surfactant-free transparent dispersions of monodispersed MgAl-LDH nanoparticles[J]. Industrial & Engineering Chemistry Research, 2020, 59(7): 2960-2967.

[112] Wen T, Wu X, Tan X, et al. One-pot synthesis of water-swellable Mg-Al layered double hydroxides and graphene oxide nanocomposites for efficient removal of As(V) from aqueous solutions[J]. ACS Applied Materials & Interfaces, 2013, 5(8): 3304-3311.

[113] Shen G, Zhang L, Gu Z, et al. Zinc aluminum-layered double hydroxide(LDH)-graphene oxide(GO) lubricating and corrosion-resistant composite coating on the surface of magnesium alloy[J]. Surface and Coatings Technology, 2022, 437: 128354.

[114] Cadars S, Layrac G, Gérardin C, et al. Identification and quantification of defects in the cation ordering in Mg/Al layered double hydroxides[J]. Chemistry of Materials, 2011, 23(11): 2821-2831.

[115] Pushparaj S S C, Forano C, Prevot V, et al. How the method of synthesis governs the local and global structure of zinc aluminum layered double hydroxides[J]. The Journal of Physical Chemistry C, 2015, 119(49): 27695-27707.

[116] Sun G, Sun L, Wen H, et al. From layered double hydroxide to spinel nanostructures: Facile synthesis and characterization of nanoplatelets and nanorods[J]. The Journal of Physical Chemistry B, 2006, 110(27): 13375-13380.

[117] Xu J, Liu X, Zhou Z, et al. Visible light-driven CO2 photocatalytic reduction by Co-porphyrin-coupled MgAl layered double-hydroxide composite[J]. Energy & Fuels, 2021, 35(19): 16134-16143.

[118] Goh K, Lim T, Dong Z. Enhanced arsenic removal by hydrothermally treated nanocrystalline Mg/Al layered double hydroxide with nitrate intercalation[J]. Environmental Science & Technology, 2009, 43(7): 2537-2543.

[119] Hibino T. Delamination of layered double hydroxides containing amino acids[J]. Chemistry of Materials, 2004, 16(25): 5482-5488.

[120] Cavani F, Trifirò F, Vaccari A. Hydrotalcite-type anionic clays: Preparation, properties and applications.[J]. Catalysis Today, 1991, 11(2): 173-301.

[121] Li L, Ma R, Ebina Y, et al. Positively charged nanosheets derived via total delamination of layered double hydroxides[J]. Chemistry of Materials, 2005, 17(17): 4386-4391.

[122] Liu Z, Ma R, Ebina Y, et al. General synthesis and delamination of highly crystalline transition-metal-bearing layered double hydroxides[J]. Langmuir, 2007, 23(2): 861-867.

[123] Fernandes N J, Wallin T J, Vaia R A, et al. Nanoscale ionic materials[J]. Chemistry of Materials, 2014, 26(1): 84-96.

[124] Zhao X, Yuan Y, Li P, et al. A polyether amine modified metal organic framework enhanced the CO2 adsorption capacity of room temperature porous liquids[J]. Chemical Communications, 2019, 55(87): 13179-13182.

[125] Park Y, Decatur J, Lin K A, et al. Investigation of CO2 capture mechanisms of liquid-like nanoparticle organic hybrid materials via structural characterization[J]. Physical Chemistry Chemical Physics, 2011, 13(40): 18115.

[126] Li G, You F, Zhou S, et al. Preparations, characterizations, thermal and flame retardant properties of cotton fabrics finished by boron-silica sol-gel coatings[J]. Polymer Degradation and Stability, 2022, 202: 110011.

[127] Wada R, Fujimoto K, Kato M. Why Is poly(oxyethylene) soluble in water? Evidence from the thermodynamic profile of the conformational equilibria of 1,2-Dimethoxyethane and Dimethoxymethane revealed by Raman spectroscopy[J]. The Journal of Physical Chemistry B, 2014, 118(42): 12223-12231.

[128] Orendorff C J, Ducey M W, Pemberton J E. Quantitative correlation of Raman spectral indicators in determining conformational order in alkyl chains[J]. The Journal of Physical Chemistry A, 2002, 106(30): 6991-6998.

[129] Yang Z, Ju X, Liao H, et al. Preparation of activated carbon doped with graphene oxide porous materials and their high gas adsorption performance[J]. ACS Omega, 2021, 6(30): 19799-19810.

[130] Du W, Yu Z, Wang X, et al. Large-scale and clean preparation of low-defect few-layered graphene from commercial graphite via hydroxyl radical exfoliation in an acidic medium[J]. Reaction Chemistry & Engineering, 2022, 7(2): 333-345.

[131] Xin Y, Wang D, Yao D, et al. Post-synthetic modification of UiO-66-OH toward porous liquids for CO2 capture[J]. New Journal of Chemistry, 2022, 46(5): 2189-2197.

[132] Huang S, Peng H, Tjiu W W, et al. Assembling exfoliated layered double hydroxide (LDH) nanosheet/carbon nanotube (CNT) hybrids via electrostatic force and fabricating nylon nanocomposites[J]. The Journal of Physical Chemistry B, 2010, 114(50): 16766-16772.

[133] Adachi-Pagano M, Forano C, Besse J. Delamination of layered double hydroxides by use of surfactants[J]. Chemical Communications, 2000, (1): 91-92.

[134] Zhao Y, Yang W, Xue Y, et al. Partial exfoliation of layered double hydroxides in DMSO: a route to transparent polymer nanocomposites[J]. Journal of Materials Chemistry, 2011, 21(13): 4869-4874.

[135] Wang Q, O Hare D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets[J]. Chemical Reviews, 2012, 112(7): 4124-4155.

[136] Gardner E, Huntoon K M, Pinnavaia T J. Direct synthesis of alkoxide-intercalated derivatives of hydrocalcite-like layered double hydroxides: Precursors for the formation of colloidal layered double hydroxide suspensions and transparent thin films[J]. Advanced Materials, 2001, 13(16): 1263-1266.

[137] Tanaka Y, Stanford J L, Stepto R. Interpretation of gel points of an epoxy-amine system including ring formation and unequal reactivity: Measurements of gel points and analyses on ring structures[J]. Macromolecules, 2012, 45(17): 7197-7205.

[138] Liao W, Yang S, Wang J, et al. Effect of molecular chain length on the mechanical and thermal properties of amine-functionalized graphene oxide/polyimide composite films prepared by in situ polymerization[J]. ACS Applied Materials & Interfaces, 2013, 5(3): 869-877.

[139] Lin K A, Park A A. Effects of bonding types and functional groups on CO2 capture using novel multiphase systems of liquid-like nanoparticle organic hybrid materials[J]. Environmental Science & Technology, 2011, 45(15): 6633-6639.

[140] Li P, Yang R, Zheng Y, et al. Effect of polyether amine canopy structure on carbon dioxide uptake of solvent-free nanofluids based on multiwalled carbon nanotubes[J]. Carbon, 2015, 95: 408-418.

[141] Lan L, Zheng Y P, Zhang A B, et al. Study of ionic solvent-free carbon nanotube nanofluids and its composites with epoxy matrix[J]. Journal of Nanoparticle Research, 2012, 14(3): 753.

[142] Bai H, Zheng Y, Wang T, et al. Magnetic solvent-free nanofluid based on Fe3O4/polyaniline nanoparticles and its adjustable electric conductivity[J]. Journal of Materials Chemistry A, 2016, 4(37): 14392-14399.

[143] Liu J, Wang X, Liu Y, et al. Bioinspired three-dimensional and multiple adsorption effects toward high lubricity of solvent-free graphene-based nanofluid[J]. Carbon, 2022, 188: 166-176.

[144] Yao D, Peng N, Zheng Y. Enhanced mechanical and thermal performances of epoxy resin by oriented solvent-free graphene/carbon nanotube/Fe3O4 composite nanofluid[J]. Composites Science and Technology, 2018, 167: 234-242.

[145] Wang Y, Wang D, He Z, et al. Damping and mechanical properties of carbon nanotube solvent-free nanofluids-filled epoxy nanocomposites[J]. Polymer Composites, 2021, 42(7): 3262-3271.

[146] Li P, Zheng Y, Li M, et al. Enhanced toughness and glass transition temperature of epoxy nanocomposites filled with solvent-free liquid-like nanocrystal-functionalized graphene oxide[J]. Materials & Design, 2016, 89: 653-659.

[147] Wang D, Xin Y, Wang Y, et al. A general way to transform Ti3C2Tx MXene into solvent-free fluids for filler phase applications[J]. Chemical Engineering Journal, 2021, 409: 128082.

[148] Zhang J, Li P, Zhang Z, et al. Solvent-free graphene liquids: Promising candidates for lubricants without the base oil[J]. Journal of Colloid and Interface Science, 2019, 542: 159-167.

[149] Li P, Zheng Y, Li M, et al. Enhanced flame-retardant property of epoxy composites filled with solvent-free and liquid-like graphene organic hybrid material decorated by zinc hydroxystannate boxes[J]. Composites Part A: Applied Science and Manufacturing, 2016, 81: 172-181.

[150] Yang S, Tan Y, Yin X, et al. A facile and green approach to prepare monodispersion nanonickel nanofluids[J]. Particulate Science and Technology, 2018, 36(2): 141-145.

[151] Yang S, Li S, Yin X, et al. Preparation and characterization of non-solvent halloysite nanotubes nanofluids[J]. Applied Clay Science, 2016, 126: 215-222.

[152] Li P, Zheng Y, Yang R, et al. Flexible nanoscale thread of MnSn(OH)6 crystallite with liquid-like behavior and its application in nanocomposites[J]. ChemPhysChem, 2015, 16(12): 2524-2529.

[153] Li Q, Dong L, Fang J, et al. Property-structure relationship of nanoscale ionic materials based on multiwalled carbon nanotubes[J]. ACS Nano, 2010, 4(10): 5797-5806.

[154] Li X, Yao D, Wang D, et al. Amino-functionalized ZIFs-based porous liquids with low viscosity for efficient low-pressure CO2 capture and CO2/N2 separation[J]. Chemical Engineering Journal, 2022, 429: 132296.

[155] Yu X, Luo T, Jia Y, et al. Three-dimensional hierarchical flower-like Mg-Al-layered double hydroxides: highly efficient adsorbents for As(v) and Cr(vi) removal[J]. Nanoscale, 2012, 4(11): 3466-3474.

[156] Zhang Y, Zhang Y, Ma L, et al. NiCr-Cl LDH/rGO composite as anode material for sodium-ion batteries[J]. Journal of Electronic Materials, 2022, 51(11): 6067-6075.

[157] Zhang W, He J, Guo C. Second staging of tartrate and carbonate anions in Mg-Al layered double hydroxide[J]. Applied Clay Science, 2008, 39(3): 166-171.

[158] Wang J, Wei Y, Yu J. Influences of polyhydric alcohol co-solvents on the hydration and thermal stability of MgAl-LDH obtained via hydrothermal synthesis[J]. Applied Clay Science, 2013, 72: 37-43.

[159] Prinetto F, Ghiotti G, Graffin P, et al. Synthesis and characterization of sol-gel Mg/Al and Ni/Al layered double hydroxides and comparison with co-precipitated samples[J]. Microporous and Mesoporous Materials, 2000, 39(1): 229-247.

[160] Yuan X, Wang Y, Wang J, et al. Calcined graphene/MgAl-layered double hydroxides for enhanced Cr(VI) removal[J]. Chemical Engineering Journal, 2013, 221: 204-213.

[161] Miao C, Hui T, Liu Y, et al. Pd/MgAl-LDH nanocatalyst with vacancy-rich sandwich structure: Insight into interfacial effect for selective hydrogenation[J]. Journal of Catalysis, 2019, 370: 107-117.

[162] Li T, Li G H, Li L H, et al. Large-scale self-assembly of 3D flower-like hierarchical Ni/Co-LDHs microspheres for high-performance flexible asymmetric supercapacitors[J]. ACS Applied Materials & Interfaces, 2016, 8(4): 2562-2572.

[163] Ju X, Yang Z, Wang D, et al. Expanding the gallery of solvent-free nanofluids: Using layered double hydroxides as core nanostructures[J]. Chemical Engineering Journal, 2023, 455: 140797.

[164] Wang D, Xin Y, Li X, et al. Transforming metal-organic frameworks into porous liquids via a covalent linkage strategy for CO2 capture[J]. ACS Applied Materials & Interfaces, 2021, 13(2): 2600-2609.

[165] Li P, Yang R, Zheng Y, et al. Effect of polyether amine canopy structure on carbon dioxide uptake of solvent-free nanofluids based on multiwalled carbon nanotubes[J]. Carbon, 2015, 95: 408-418.

[166] Wang J, Zhou F, Bai H, et al. A Comprehensive method to evaluate the viscous slickwater as fracturing fluids for hydraulic fracturing applications[J]. Journal of Petroleum Science and Engineering, 2020, 193: 107359.

[167] Li P, Chen H, Schott J A, et al. Porous liquid zeolites: hydrogen bonding-stabilized H-ZSM-5 in branched ionic liquids[J]. Nanoscale, 2019, 11(4): 1515-1519.

[168] Sheng L, Chen Z, Wang Y. Molecular dynamics simulations of stability and fluidity of porous liquids[J]. Applied Surface Science, 2021, 536: 147951.

[169] Barillas M K, Enick R M, O Brien M, et al. The CO2 permeability and mixed gas CO2/H2 selectivity of membranes composed of CO2-philic polymers[J]. Journal of Membrane Science, 2011, 372(1): 29-39.

[170] Jiang X, He S, Li S, et al. Penetrating chains mimicking plant root branching to build mechanically robust, ultra-stable CO2-philic membranes for superior carbon capture[J]. Journal of Materials Chemistry A, 2019, 7(28): 16704-16711.

[171] Petit C, Lin K A, Park A A. Design and characterization of liquidlike POSS-based hybrid nanomaterials synthesized via ionic bonding and their interactions with CO2[J]. Langmuir, 2013, 29(39): 12234-12242.

[172] Choi S, Moon S, Park Y. Spectroscopic investigation of entropic canopy-canopy interactions of nanoparticle organic hybrid materials[J]. Langmuir, 2020, 36(32): 9626-9633.

[173] Li P, Yang R, Zheng Y, et al. Effect of polyether amine canopy structure on carbon dioxide uptake of solvent-free nanofluids based on multiwalled carbon nanotubes[J]. Carbon, 2015, 95: 408-418.

[174] Yang R, Fan W, Zheng Y, et al. Effects of the core of liquid-like SiO2 nanoparticle organic hybrid materials on CO2 capture[J]. Journal of Materials Science, 2018, 53(7): 5172-5182.

[175] Li L, Gu W, Liu J, et al. Amine-functionalized SiO2 nanodot-coated layered double hydroxide nanocomposites for enhanced gene delivery[J]. Nano Research, 2015, 8(2): 682-694.

[176] Yu C, Chu H, Wan Y, et al. Synthesis of easily shaped ordered mesoporous titanium-containing silica[J]. Journal of Materials Chemistry, 2010, 20(22): 4705-4714.

[177] Xu Z P, Stevenson G, Lu C, et al. Dispersion and size control of layered double hydroxide nanoparticles in aqueous solutions[J]. The Journal of Physical Chemistry B, 2006, 110(34): 16923-16929.

[178] Qin J, Shi H, Lv Q, et al. Enhanced adsorption effect of defect ordering Mg/Al on layered double hydroxides nanosheets with highly efficient removal of Congo red[J]. Materials & Design, 2023, 232: 112084.

[179] Hosseini S, Ghasemi E. Synthesis and characterization of hybrid MgAl-LDH@SiO2@CoAl2O4 pigment with high NIR reflectance for sustainable energy saving applications[J]. Applied Clay Science, 2020, 193: 105674.

[180] Fereidooni L, Pirkarami A, Ghasemi E, et al. Using ZnAl-LDH@SiO2 as a catalyst for the electrocatalytic conversion of waste frying oil into biodiesel[J]. Energy Conversion and Management, 2023, 296: 117646.

[181] Li C, Lu H, Lin Y, et al. Self-sacrificial templating synthesis of self-assembly 3D layered double hydroxide nanosheets using nano-SiO2 under facile conditions[J]. RSC Advances, 2016, 6(99): 97237-97240.

[182] Holomb R, Martinelli A, Albinsson I, et al. Ionic liquid structure: the conformational isomerism in 1-butyl-3-methyl-imidazolium tetrafluoroborate ([bmim][BF4])[J]. Journal of Raman Spectroscopy, 2008, 39(7): 793-805.

[183] Shi F, Deng Y. Abnormal FT-IR and FTRaman spectra of ionic liquids confined in nano-porous silica gel[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2005, 62(1): 239-244.

[184] Putz A, Len A, Trif L, et al. Imidazolium ionic liquids as designer solvents confined in silica nanopores[J]. Gels, 2022, 8(6): 388.

[185] Feng W, Lu Y, Chen Y, et al. Thermal stability of imidazolium-based ionic liquids investigated by TG and FTIR techniques[J]. Journal of Thermal Analysis and Calorimetry, 2016, 125(1): 143-154.

[186] Zhou X, Yang H, Wang F. [BMIM]BF4 ionic liquids as effective inhibitor for carbon steel in alkaline chloride solution[J]. Electrochimica Acta, 2011, 56(11): 4268-4275.

[187] Ji X, Zhang W, Shan L, et al. Self-assembly preparation of SiO2@Ni-Al layered double hydroxide composites and their enhanced electrorheological characteristics[J]. Scientific Reports, 2015, 5(1): 18367.

[188] 杨宁. ZIF-8基多孔离子液体设计及其在反应型萃取脱硫中的研究[D]. 镇江: 江苏大学, 2022.

[189] Rogers R D, Seddon K R. Ionic liquids-solvents of the future?[J]. Science, 2003, 302(5646): 792-793.

[190] Dong K, Liu X, Dong H, et al. Multiscale studies on ionic liquids[J]. Chemical Reviews, 2017, 117(10): 6636-6695.

[191] Kumar R, Dhasaiyan P, Naveenkumar P M, et al. A solvent-free porous liquid comprising hollow nanorod-polymer surfactant conjugates[J]. Nanoscale Advances, 2019, 1(10): 4067-4075.

[192] Hamza A, Hussein I A, Al-Marri M J, et al. Impact of clays on CO2 adsorption and enhanced gas recovery in sandstone reservoirs[J]. International Journal of Greenhouse Gas Control, 2021, 106: 103286.

[193] Zhou X, Yi H, Tang X, et al. Thermodynamics for the adsorption of SO2, NO and CO2 from flue gas on activated carbon fiber[J]. Chemical Engineering Journal, 2012, 200-202: 399-404.

[194] Nguyen C, Do D D. The Dubinin-Radushkevich equation and the underlying microscopic adsorption description[J]. Carbon, 2001, 39(9): 1327-1336.

[195] Sakurovs R, Day S, Weir S, et al. Application of a modified Dubinin-Radushkevich equation to adsorption of gases by coals under supercritical conditions[J]. Energy & Fuels, 2007, 21(2): 992-997.

[196] Hamdaoui O, Naffrechoux E. Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon: Part I. Two-parameter models and equations allowing determination of thermodynamic parameters[J]. Journal of Hazardous Materials, 2007, 147(1): 381-394.

[197] Tan I A W, Ahmad A L, Hameed B H. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies[J]. Journal of Hazardous Materials, 2008, 154(1): 337-346.

[198] 李树刚, 白杨, 林海飞, 等. 温度对煤吸附瓦斯的动力学特性影响实验研究[J]. 西安科技大学学报, 2018, 38(2): 181-186.

[199] 肖涵宇. 负载低共熔溶剂多孔碳化甲壳素微球对SO2高效捕集研究[D]. 南昌: 南昌大学, 2023.

[200] Rappe A K, Casewit C J, Colwell K S, et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations[J]. Journal of the American Chemical Society, 1992, 114(25): 10024-10035.

[201] Deng Z, Ying W, Gong K, et al. Facilitate gas transport through metal-organic polyhedra constructed porous liquid membrane[J]. Small, 2020, 16(11): 1907016.

[202] Li P, Yang R, Zheng Y, et al. Effect of polyether amine canopy structure on carbon dioxide uptake of solvent-free nanofluids based on multiwalled carbon nanotubes[J]. Carbon, 2015, 95: 408-418.

[203] Yang R, Zheng Y, Li P, et al. Effects of acidification time of MWCNTs on carbon dioxide capture of liquid-like MWCNTs organic hybrid materials[J]. RSC Advances, 2016, 6(89): 85970-85977.

[204] Bai H, Zheng Y, Yang R. Recyclable liquid-like POSS derivatives with designed structures and their potential for CO2 capture[J]. Materials & Design, 2016, 99: 145-154.

[205] Lin K A, Petit C, Park A A. Effect of SO2 on CO2 capture using liquid-like nanoparticle organic hybrid materials[J]. Energy & Fuels, 2013, 27(8): 4167-4174.

[206] Yang R, Zheng Y, Li P, et al. Investigation of a power strip-like composite nanoparticle derivative with liquid-like behaviour on capturing carbon dioxide[J]. New Journal of Chemistry, 2017, 41(2): 603-610.

[207] Yao D, Li T, Zheng Y, et al. Fabrication of a functional microgel-based hybrid nanofluid and its application in CO2 gas adsorption[J]. Reactive and Functional Polymers, 2019, 136: 131-137.

[208] Shi T, Zheng Y, Wang T, et al. Effect of pore size on the carbon dioxide adsorption behavior of porous liquids based on hollow silica[J]. ChemPhysChem, 2018, 19(1): 130-137.

[209] Yang Y, Liu S, Zhao W, et al. Intrinsic relationship between Langmuir sorption volume and pressure for coal: Experimental and thermodynamic modeling study[J]. Fuel, 2019, 241: 105-117.

[210] Wang J, Guo X. Adsorption isotherm models: Classification, physical meaning, application and solving method[J]. Chemosphere, 2020, 258: 127279.

[211] Suslukaya M, Mumcu Topaloğlu H, Gül Karagüler N, et al. Hierarchically porous high-surface-area polymers with interconnected pores for fast and selective albumin adsorption[J]. ACS Applied Polymer Materials, 2021, 3(5): 2742-2758.

[212] Sun Y, Yue Q, Gao B, et al. Preparation of activated carbon derived from cotton linter fibers by fused NaOH activation and its application for oxytetracycline (OTC) adsorption[J]. Journal of Colloid and Interface Science, 2012, 368(1): 521-527.

[213] Cáceres-Jensen L, Rodríguez-Becerra J, Parra-Rivero J, et al. Sorption kinetics of diuron on volcanic ash derived soils[J]. Journal of hazardous materials, 2013, 261: 602-613.

[214] Charaabi S, Absi R, Pensé-Lhéritier A M, et al. Adsorption studies of benzophenone-3 onto clay minerals and organosilicates: Kinetics and modelling[J]. Applied Clay Science, 2021, 202: 105937.

[215] Hande V R, Rath S K, Rao S, et al. Cross-linked sulfonated poly (ether ether ketone) (SPEEK)/reactive organoclay nanocomposite proton exchange membranes (PEM)[J]. Journal of Membrane Science, 2011, 372(1): 40-48.

[216] Jiang X, He S, Li S, et al. Penetrating chains mimicking plant root branching to build mechanically robust, ultra-stable CO2-philic membranes for superior carbon capture[J]. Journal of Materials Chemistry A, 2019, 7(28): 16704-16711.

中图分类号:

 TD985    

开放日期:

 2026-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式