- 无标题文档
查看论文信息

论文中文题名:

 鞣花酸-碳酸氢钠协效阻化长焰煤自燃特性研究    

姓名:

 南世华    

学号:

 21220089009    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 煤火灾害防治    

第一导师姓名:

 肖旸    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-20    

论文答辩日期:

 2024-06-01    

论文外文题名:

 Study on synergistic inhibition of spontaneous combustion characteristics of long-flame coal by ellagic acid-sodium bicarbonate    

论文中文关键词:

 煤自燃 ; 鞣花酸 ; 碳酸氢钠 ; 阻化剂 ; 抑制效果    

论文外文关键词:

 Coal spontaneous combustion ; Ellagic acid ; Sodium bicarbonate ; Inhibitor ; Inhibition effect    

论文中文摘要:

综放开采的不断推广及煤炭自身氧化属性,造成采空区内存在不同程度的遗煤自燃现象,威胁着矿井的正常运转。阻化剂作为一种常规手段被广泛应用于井下煤自燃灾害治理,为达到抑制煤自燃的目的,本文选取适合的化学和物理阻化剂,化学阻化剂与煤中活性结构进行结合,物理阻化剂吸收煤中热量,减少煤氧吸附,实现对煤自燃的物化阻化。主要研究成果如下:

(1)将8 wt.%鞣花酸处理煤与8 wt.%柠檬酸处理煤进行煤自燃程序升温实验,对比得出目标抗氧化剂,鞣花酸的阻化效果优于柠檬酸。将8 wt.%碳酸氢钠处理煤与8 wt.%氯化镁处理煤进行煤自燃程序升温实验,得到碳酸氢钠的阻化效果优于氯化镁。

(2)将鞣花酸与下石节煤以2、4、6、8和10 wt.%的质量比均匀混合,分析鞣花酸处理煤在30~270 ℃内各个样品的活性官能团分布及热输运特性。发现鞣花酸处理煤中-CH3、-CH2、-OH和-C=O-的峰面积相较于原煤均减少,但C-O的峰面积增加;在相同煤温时,原煤的热扩散系数和导热系数高于鞣花酸处理煤,其比热容低于鞣花酸处理煤,且8 wt.% 鞣花酸对原煤低温氧化过程的热扩散系数、比热容和导热系数的平均抑制率分别为20.8、9.8和13.1 %;通过对煤自燃抑制效果的评价,确定最优质量比为8 wt.%。

(3)对原煤及鞣花酸-碳酸氢钠处理煤(复配比例为3:1、2:1、1:1、1:2、1:3)进行程序升温实验测试,初步得到单一阻化剂的阻化作用和阻化时间上低于鞣花酸-碳酸氢钠(1:1)阻化剂;五种复配比的鞣花酸-碳酸氢钠阻化剂均可显著降低煤氧化过程中的耗氧速率、CO浓度和CO产生率,具有较好的抑制煤自燃效果;复配比为1:1的鞣花酸-碳酸氢钠阻化剂的阻化效果最好,在170 ℃时的耗氧速率、CO浓度、CO产生率较原煤分别降低了67.3、60.9、87.2 %,在30~170 ℃对煤自燃的阻化率为60.9~86.9 %;相比于原煤,鞣花酸-碳酸氢钠(1:1)处理煤的最大放热强度减少了1132.89 J·cm-3·s-1,最小放热强度减少了466.25 J·cm-3·s-1

(4)利用热分析仪对鞣花酸和碳酸氢钠在升温过程中的氧化过程进行分析,得出鞣花酸的最大质量损失率对应的温度为458.35 ℃,碳酸氢钠的最大质量损失率对应的温度为162.11 ℃。利用热重分析仪和差示扫描量热仪对下石节原煤及鞣花酸-碳酸氢钠(1:1)处理煤的煤自燃过程中热失重及热释放特性的变化进行研究。分析煤样的热失重曲线,发现处理煤的各特征温度相比于原煤向后推移。根据热释放曲线,与鞣花酸-碳酸氢钠(1:1)处理煤相比,原煤的最大释放热功率、全过程放热量及净放热量大,脱水脱附吸热量小。鞣花酸-碳酸氢钠(1:1)处理煤的燃烧特性参数低于原煤。鞣花酸-碳酸氢钠(1:1)处理煤在T1-T4阶段所需表观活化能比原煤多33.826 kJ mol-1

(5)基于煤氧复合及量子化学理论,掌握鞣花酸在常温下阻化煤自燃的阻化路径及化学反应所需能量。得到五种自由基的活性顺序为:RO·>·CH2>ROO·>·CH3>·OH,且电子主要分布在未成键的区域;鞣花酸含有的四个羟基的断键容易程度顺序为:O19-H26>O22-H28>O20-H25>O21-H27;H·与五种自由基可以快速结合,鞣花酸自由基同样具备活性,能与多数自由基自发成键。

论文外文摘要:

With the continuous promotion of fully-mechanized caving mining and the oxidation properties of coal, there are different degrees of spontaneous combustion of residual coal in goaf, which threatens the safety of mine production and miners’ personal safety. As a conventional method, inhibitor is widely used in the treatment of underground coal spontaneous combustion disaster. In order to achieve the purpose of inhibiting coal spontaneous combustion, this paper selects suitable chemical and physical inhibitors. The chemical inhibitor is combined with the active structure in coal, and the physical inhibitor absorbs the heat in coal and reduces the adsorption of coal oxygen to realize the physical and chemical synergistic inhibition. The main research results are as follows:

(1) The temperature programmed experiment of coal spontaneous combustion was carried out on 8 wt.% ellagic acid treated coal and 8 wt.% citric acid treated coal. The target antioxidant was obtained by comparison, and the inhibition effect of ellagic acid was better than that of citric acid. The 8 wt.% sodium bicarbonate treated coal and 8 wt.% magnesium chloride treated coal were subjected to the temperature programmed experiment of coal spontaneous combustion, and the inhibition effect of sodium bicarbonate was better than that of magnesium chloride.

(2) The ellagic acid and Xiashijie coal were uniformly mixed at a mass ratio of 2, 4, 6, 8 and 10 wt.%. The distribution of active functional groups and heat transport characteristics of each sample of ellagic acid-treated coal at 30 to 270 ℃ were analyzed. The results showed that at the same coal temperature, the thermal diffusivity and thermal conductivity of raw coal are higher than those of EA-tc, and the specific heat capacity is lower than that of EA-tc. The average inhibition rates of 8 wt.% ellagic acid on the thermal diffusivity, specific heat capacity and thermal conductivity of raw coal during low temperature oxidation are 20.8, 9.8 and 13.1 %, respectively. Through the evaluation of the inhibition effect of coal spontaneous combustion, the optimal mass ratio was determined to be 8 wt.%.

(3) The temperature programmed experiment of raw coal and ellagic acid-sodium bicarbonate treated coal ( compound ratio of 3:1, 2:1, 1:1, 1:2, 1:3) was carried out. The inhibition effect and inhibition time of single inhibitor were lower than that of ellagic acid-sodium bicarbonate (1:1) inhibitor. The ellagic acid-sodium bicarbonate inhibitors of five compound ratios can significantly reduce the oxygen consumption rate, CO concentration and CO production rate in the process of coal oxidation, and have a good effect on inhibiting coal spontaneous combustion. The ellagic acid-sodium bicarbonate inhibitor with a compound ratio of 1:1 has the best inhibition effect. At 170 ℃, the oxygen consumption rate, CO concentration, and CO production rate are reduced by 67.3, 60.9, and 87.2 %, respectively, compared with the raw coal. And the inhibition rate of coal spontaneous combustion at 30 to 170 ℃ is at 60.9 to 86.9 % ; compared with raw coal, the maximum exothermic intensity of ellagic acid-sodium bicarbonate (1:1)-tc decreased by 1132.89 J·cm-3·s-1.

(4) The oxidation of ellagic acid and sodium bicarbonate during the heating process was analyzed by thermal analyzer. The temperature corresponding to the maximum mass loss rate of ellagic acid was 458.35 °C, and the temperature corresponding to the maximum mass loss rate of sodium bicarbonate was 162.11 °C. Thermogravimetric analyzer and differential scanning calorimeter were used to study the changes of thermal weight loss and heat release characteristics of Xiashijie raw coal and ellagic acid-sodium bicarbonate (1:1) treated coal during spontaneous combustion. According to the thermogravimetric curve of the coal sample, the characteristic temperatures of the treated coal move backward compared with the raw coal. According to Heat release curve, compared with ellagic acid-sodium bicarbonate (1:1)-tc, the maximum heat release power, whole process heat release and net heat release of raw coal are larger, and the heat absorption of dehydration and desorption is smaller. The flammability index and comprehensive combustion index of ellagic acid-sodium bicarbonate (1:1)-tc were significantly lower than those of raw coal. The apparent activation energy required by ellagic acid-sodium bicarbonate (1:1) treated coal at T1 to T4 was 33.826 kJ·mol-1 higher than that of raw coal.

(5) Based on the theory of coal-oxygen composite and quantum chemistry, the inhibition path and the energy required for the chemical reaction of ellagic acid to inhibit the spontaneous combustion of coal at room temperature were mastered. The results show that the activity order of the five free radicals is RO·>·CH2>ROO·>·CH3>·OH, and the electrons are mainly distributed in the unbonded region. The order of the bond breaking ease of the four hydroxyl groups contained in ellagic acid is O19-H26>O22-H28>O20-H25>O21-H27; H· can be quickly combined with five free radicals, and ellagic acid free radicals also have activity and can spontaneously bond with most free radicals.

参考文献:

[1]朱吉茂, 孙宝东, 张军, 等. “双碳”目标下我国煤炭资源开发布局研究[J]. 中国煤炭, 2023, 49(01): 152-171.

[2]孙宝东, 滕霄云, 张帆, 等. 2024年中国能源供需形势研判[J]. 中国煤炭, 2024, 50(04): 20-26.

[3]Ren SJ, Ma T, Zhang YN, et al. Sound absorption characteristics of loose bituminous coal porous media with different metamorphic degrees[J]. Fuel, 2023, 332: 126091.

[4]张嬿妮, 舒盼, 刘春辉, 等. 乙二胺四乙酸微胶囊阻化煤自燃性能研究[J]. 煤炭科学技术, 2022, 50(8): 108-117.

[5]Cheng J, Ma Y, Lu W, et al. Using inverting CO critical value to predict coal spontaneous combustion severity in mine gobs with considering air leakages-A case study[J]. Process Safety and Environmental Protection, 2022, 167: 45-55.

[6]Onifade M. Countermeasures against coal spontaneous combustion: A review[J]. International Journal of Coal Preparation and Utilization, 2022, 42(10): 2953-2975.

[7]Xue F, Li D, Guo Y, et al. Technical progress and the prospect of low-rank coal pyrolysis in China[J]. Energy Technology, 2017, 5(11): 1897-1907.

[8]孙萌, 王福生, 王建涛等. 惰化煤中过渡金属离子抑制煤自燃特性试验研究[J]. 矿业研究与开发, 2022, 42(02): 124-128.

[9]戚绪尧, 王涛, 张兰君, 等. 低共熔溶剂抑制煤自燃的机理研究[J]. 煤炭学报, 2024, 49(04): 1917-1930.

[10]Wang W, Wen F, Yang Y, et al. Study of the Impact of the Rise and Fall of the Coal Industry on the Regional Economy[J]. Journal of Global Information Management, 2021, 30(06): 1-17.

[11]崔崇斌, 孙丽荣, 李伟刚, 等. 基于正交试验的采空区自燃防治多点注氮研究[J]. 煤炭技术, 2024, 43(05): 241-245.

[12]王明建, 贾宝山, 宫洪祥, 等. -CH2-官能团煤氧化学吸附微观机理研究[J]. 煤矿安全, 2019, 50(12): 41-45.

[13]陆伟, 胡千庭, 仲晓星, 等. 煤自燃逐步自活化反应理论[J]. 中国矿业大学学报, 2007, 36(01): 111-115.

[14]徐精彩. 煤自燃危险区域判定理论[M]. 北京: 煤炭工业出版社, 2001.

[15]李增华. 煤炭自燃的自由基反应机理[J]. 中国矿业大学学报, 1996, (03): 111-114.

[16]李增华, 位爱竹, 杨永良. 煤炭自燃自由基反应的电子自旋共振实验研究[J]. 中国矿业大学学报, 2006, (05): 576-580.

[17]王庆国, 周亮, 秦汝祥, 等. 不同预氧化程度焦煤CO2冷却后自燃特性研究[J]. 工矿自动化, 2023, 49(02): 109-114+156.

[18]姬玉成, 张英华, 黄志安, 等. 褐煤低温氧化分子结构单元变化特性[J]. 中南大学学报(自然科学版), 2020, 51(09): 2614-2623.

[19]戚绪尧. 煤中活性基团的氧化及自反应过程[J]. 煤炭学报, 2011, 36(12): 2133-2134.

[20]张卫, 臧立岩, 李靖. 量子化学方法在煤自燃机理方面的应用及进展[J]. 科技导报, 2024, 42(04): 73-83.

[21]王继仁, 邓存宝, 邓汉忠, 等. 煤表面对氧分子物理吸附的微观机理[J]. 煤炭转化, 2007, 30(04): 18-21.

[22]邓军, 张嬿妮. 煤自然发火微观机理[M]. 徐州: 中国矿业大学出版社, 2015.

[23]董凯丽, 王俊峰, 梁择文, 等. 矿用CMC/ZrCit/GDL防灭火凝胶特性研究[J]. 中国安全科学学报, 2020, 30(01): 114-120.

[24]娄和壮, 贾廷贵. 惰性气氛对煤自燃过程的竞争吸附差异性研究[J]. 中国安全科学学报, 2020, 30(04): 60-67.

[25]张延松, 解庆鑫, 孟祥豹, 等. 煤层预注阻化液防治煤自然发火的实验研究[J]. 煤炭工程, 2018, 50(11): 87-90.

[26]Cui C, Jiang S, Shao H, et al. Experimental study on thermo-responsive inhibitors inhibiting coal spontaneous combustion[J]. Fuel Processing Technology, 2018, 175: 113-122.

[27]Li QW, Xiao Y, Zhong KQ, et al. Overview of commonly used materials for coal spontaneous combustion prevention[J]. Fuel, 2020, 275: 117981.

[28]朱红青, 胡超, 周全涛, 等. 泥浆泡沫性能及影响因素研究[J]. 矿业科学学报, 2019, 4(04): 343-348.

[29]李明, 宋欣筑, 潘伟, 等. 硫化矿固态阻化剂的阻化机理与性能评价[J]. 自然灾害学报, 2023, 32(02): 91-98.

[30]姜峰, 孙雯倩, 李珍宝, 等. 复合阻化剂抑制煤自燃过程的阶段阻化特性[J]. 煤炭科学技术, 2022, 50(10): 68-75.

[31]李祥臣. Al-XG复合凝胶制备及抑制煤自燃实验研究[D]. 河南: 河南理工大学, 2022.

[32]Galano A, Mazzone G, Alvarez-Diduk R, et al. Food antioxidants: chemical insights at the molecular level[J]. Annual review of food science and technology, 2016, 7: 335-352.

[33]Alfei S, Marengo B, Zuccari G. Oxidative stress, antioxidant capabilities, and bioavailability: Ellagic acid or urolithins?[J]. Antioxidants, 2020, 9(08): 707.

[34]Li J, Li Z, Yang Y, et al. Laboratory study on the inhibitory effect of free radical scavenger on coal spontaneous combustion[J]. Fuel processing technology, 2018, 171: 350-360.

[35]Li J, Li Z, Yang Y, et al. Inhibitive effects of antioxidants on coal spontaneous combustion[J]. Energy & Fuels, 2017, 31(12): 14180-14190.

[36]Wang D, Dou G, Zhong X, et al. An experimental approach to selecting chemical inhibitors to retard the spontaneous combustion of coal[J]. Fuel, 2014, 117: 218-223.

[37]Gao A, Sun Y, Hu X, et al. Substituent positions and types for the inhibitory effects of phenolic inhibitors in coal spontaneous combustion[J]. Fuel, 2022, 309: 122104.

[38]肖旸, 钟凯琪, 解萌玥, 等.离子液体抑制煤自燃的程序升温试验研究[J]. 西安科技大学学报, 2017, 37(03): 396-402.

[39]宋长磊, 刘向荣, 赵顺省, 等.咪唑类离子液体中阴离子对新疆褐煤阻燃性能[J]. 煤炭学报, 2020, 45(S1): 470-480.

[40]马砺, 何铖茂, 魏泽, 等. 离子液体对不粘煤煤粉自燃特性的影响[J]. 工程科学学报, 2022, 44(12): 2008-2016.

[41]刘志荣. 过渡金属对煤自燃影响的实验研究[J]. 中国矿业, 2023, 32(05): 153-159.

[42]王福生, 孙玮, 张渝, 等. 过渡金属离子促进煤自燃机理的量子化学计算[J]. 煤炭学报, 2024, 1-14.

[43]Li J, Li Z, Wang C, et al. Experimental study on the inhibitory effect of ethylenediaminetetraacetic acid (EDTA) on coal spontaneous combustion[J]. Fuel processing technology, 2018, 178: 312-321.

[44]Qiao L, Deng C, Dai F, et al. Experimental study on a metal-chelating agent inhibiting spontaneous combustion of coal[J]. Energy & Fuels, 2019, 33(09): 9232-9240.

[45]Liu P, Li Z, Zhang X, et al. Study on the inhibition effect of citric acid on coal spontaneous combustion[J]. Fuel, 2022, 310: 122268.

[46]王福生, 张朝阳, 刘向群, 等. 金属离子螯合剂抑制煤自燃试验研究[J]. 煤炭科学技术, 2023, 51(s1): 1-8.

[47]Saha P, Yeoh BS, Singh R, et al. Gut microbiota conversion of dietary ellagic acid into bioactive phytoceutical urolithin A inhibits heme peroxidases[J]. PloS one, 2016, 11(6): e0156811.

[48]Ríos JL, Giner RM, Marín M, et al. A pharmacological update of ellagic acid[J]. Planta medica, 2018, 84(15): 1068-1093.

[49]Kilic I, Yeşiloğlu Y, Bayrak Y. Spectroscopic studies on the antioxidant activity of ellagic acid[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 130: 447-452.

[50]Evtyugin DD, Magina S, Evtuguin DV. Recent advances in the production and applications of ellagic acid and its derivatives. A review[J]. Molecules, 2020, 25(12): 2745.

[51]阳治康, 殷运菊, 郑梦莉, 等. 鞣花酸的生理功能及其在畜禽生产中的应用[J]. 动物营养学报, 2023, 35(06): 3456-3466.

[52]冯焕然, 赖家平, 孙慧, 等. 以鞣花酸为荧光探针的水体中二/三价铁离子的检测[J]. 分析测试学报, 2019, 38(05): 581-585.

[53]Sharifi-Rad J, Quispe C, Castillo CMS, et al. Ellagic acid: A review on its natural sources, chemical stability, and therapeutic potential[J]. Oxidative medicine and cellular longevity, 2022.

[54]Qi X, Wei C, Li Q, et al. Controlled-release inhibitor for preventing the spontaneous combustion of coal[J]. Natural Hazards, 2016, 82: 891-901.

[55]Qin B, Dou G, Wang Y, et al. A superabsorbent hydrogel–ascorbic acid composite inhibitor for the suppression of coal oxidation[J]. Fuel, 2017, 190: 129-135.

[56]Zhong Y, Yang S, Hu X, et al. Whole process inhibition of a composite superabsorbent polymer-based antioxidant on coal spontaneous combustion[J]. Arabian journal for science and engineering, 2018, 43: 5999-6009.

[57]郑腾蛟, 狄艳丽, 沈昊洋. 抗坏血酸和迷迭香酸复合阻化抑制煤自燃的实验研究[J]. 煤炭科技, 2020, 41(04): 48-51.

[58]李绪萍, 陈映光, 张金山等. 氯盐复合阻化剂对不同煤样自燃阻化效果的研究[J]. 煤炭工程, 2020, 52(02): 106-110.

[59]张嬿妮, 侯云超, 刘博, 等. 卤盐载体无机盐阻化煤自燃的机理及性能[J]. 工程科学学报, 2021, 43(10): 1295-1303.

[60]Xue D, Hu X, Dong H, et al. Examination of characteristics of anti-oxidation compound inhibitor for preventing the spontaneous combustion of coal[J]. Fuel, 2022, 310: 122160.

[61]Wang K, Hu LH, Deng J, et al. Inhibiting effect and mechanism of polyethylene glycol-Citric acid on coal spontaneous combustion[J]. Energy, 2023, 275: 127522.

[62]段夏丹. 膨胀型温敏水凝胶协效褪黑素阻化煤自燃特性研究[D]. 西安: 西安科技大学, 2022.

[63]郭翔宇. 儿茶素抑制煤自燃的机理研究[D]. 天津:天津理工大学, 2020.

[64]程子朦, 李绍英, 白丽梅, 等. 镁盐阻化剂抑制煤自燃特性的实验研究[J]. 煤矿安全, 2024, 55(01):126-131.

[65]Li DJ, Xiao Y, Lü HF, et al. Effects of 1-butyl-3-methylimidazolium tetrafluoroborate on the exothermic and heat transfer characteristics of coal during low-temperature oxidation[J]. Fuel, 2020, 273: 117589.

[66]肖旸, 尹岚, 吕慧菲, 等. 咪唑类离子液体处理煤热失重以及传热特性[J]. 煤炭学报, 2019, 44(02): 520-527.

[67]雷昌奎, 江莉娟, 邓存宝, 等.采空区煤自燃极限参数灰色关联分析及预测[J]. 煤矿安全, 2022, 53(09): 113-121.

[68]郭世斌, 胡国忠, 朱家锌, 等.顶板瓦斯抽采巷布置位置智能预测方法[J]. 煤炭科学技术, 2024, 52(04): 203-213.

[69]朱建芳, 许育铭, 郭文杰, 等. 煤自然发火过程中的放热特性实验研究[J]. 华北科技学院学报, 2016, 13(01): 1-8.

[70]白亚娥, 马腾, 任立峰, 等. 凉水井煤自燃关键活性基团氧化释放气体的试验[J]. 西安科技大学学报,2023, 43(4): 715-723.

[71]何萍, 张京京, 潘懿, 等. 污泥生物质混合燃料燃烧特性分析[J]. 化学试剂, 2021, 43(06): 830-835.

[72]张旭, 孙姣, 范赢, 等. 芦苇秆热解特性及动力学分析[J]. 生物质化学工程, 2019, 53(04): 9-18.

[73]王德明, 辛海会, 戚绪尧, 等. 煤自燃中的各种基元反应及相互关系:煤氧化动力学理论及应用[J]. 煤炭学报, 2014, 39(8): 1667-1674.

[74]Ma LY, Wang DM, Wang Y, et al. Experimental investigation on a sustained release type of inhibitor for retarding the spontaneous combustion of coal[J]. Energy & Fuels, 2016, 30(11): 8904-8914.

[75]Wang K, Hu LH, Deng J, et al. Inhibiting effect and mechanism of polyethylene glycol–Citric acid on coal spontaneous combustion[J]. Energy, 2023, 275: 127-522.

[76]单春晖, 白若鹏, 蓝宇. 过渡金属参与C-H键切断模式的理论研究进展[J]. 物理化学学报, 2019, 35(09): 940-953.

[77]Dalvi LT, Moreira DC, Andrade JR, et al. Ellagic acid inhibits iron-mediated free radical formation[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2017, 173: 910-917.

中图分类号:

 TD752.2    

开放日期:

 2024-06-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式