- 无标题文档
查看论文信息

论文中文题名:

 基于全寿命周期的微网储能容量优化配置    

姓名:

 邓力文    

学号:

 21206227135    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085800    

学科名称:

 工学 - 能源动力    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电气工程    

研究方向:

 微网储能优化配置    

第一导师姓名:

 商立群    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-12-16    

论文答辩日期:

 2024-12-01    

论文外文题名:

 Optimal Capacity Configuration of Energy Storage in Microgrids    

论文中文关键词:

 微电网 ; 储能优化配置 ; 风光发电 ; 双层优化模型 ; 全寿命周期成本    

论文外文关键词:

 Microgrid ; Optimized configuration of energy storage ; Wind and solar power generation ; Bi-Level optimization model ; Full lifecycle cost    

论文中文摘要:

       为应对气候变化和化石能源依赖带来的挑战,全球正在加速推进可再生能源的发展。虽然可再生能源在减少碳排放和提能增效方面显示出巨大的潜力,但其发展依然受到技术、成本以及电网管理复杂性的限制。在此背景下,含风光储的微电网作为一种有效的可再生能源整合策略而受到广泛关注。储能作为含风光储微电网的组成部分具有重要作用,而储能技术的应用更是为优化能源结构及增强电网弹性做出了巨大贡献。然而,微网中储能系统的成本相对较高,且使用寿命较其他设备较短,制约了微电网的总体经济性,因此,本文以含风光储的微电网为主要研究对象,在考虑微电网经济性和可靠性的同时,兼顾储能装置使用寿命对储能装置容量的影响,对微网储能容量进行优化。本文的主要工作包含以下几个方面:

       首先,本文强调了发展微电网的必要性,突出了储能在提升能源利用率和系统可靠性上的优势;接着,回顾了国内外储能系统容量配置及运营策略的研究现状;后进一步介绍了微电网系统的结构。在上述基础上,建立风光储系统的数学模型,分析光伏与风机的出力特性,为后文含风光储微电网的储能优化配置奠定了理论基础。

       其次,针对含风光储微电网的储能容量优化配置问题,建立了一个包含风光发电和电池储能系统(Battery Energy Storage System, BESS)的双层优化模型,采用改进的遗传算法(Improved Genetic Algorithm, IGA)和粒子群算法(Improved Particle Swarm Optimization, IPSO),结合MATPOWER工具,对BESS容量进行了优化。其中,上层模型主要使用遗传算法确定储能配置的最佳容量,下层模型则通过粒子群算法优化储能的运行策略,以提升系统的经济性和能源利用率。算例分析表明,在安装BESS的情况下,经济性及可靠性都有了显著提高,改进配置方案与传统配置方案相比,前者更能显著提高系统的经济效益。

       最后,针对某微电网的BESS进行优化配置及充放电策略研究。具体来说,在第三章提出的双层优化模型的基础上,在下层模型中新增了考虑BESS寿命衰减的影响,建立了BESS的寿命预估模型、充放电模型及全寿命周期内的经济效益模型,同时考虑了新能源接入后的负荷波动影响,将其作为可靠性指标进行分析;上层模型仍旧是针对储能容量进行求解,针对多目标粒子群算法(Multi-Objective Particle Swarm Optimization, MOPSO)的缺点,提出一种改进的多目标粒子群算法(Improved Multi-objective Particle Swarm Optimization Algorithm, IMPSO)用于求解该优化问题。通过算例分析验证了所提出方法的有效性和可行性,结果显示该方法在经济性和可靠性方面具有显著优势,特别是在降低负荷波动和提高系统稳定性方面表现优异。

论文外文摘要:

       In response to the challenges posed by climate change and dependence on fossil fuels, the development of renewable energy is accelerating around the world. While renewables have shown great potential to reduce carbon emissions and improve efficiency, their development is still limited by technology, cost, and the complexity of grid management. In this context, microgrids with wind, solar and storage have attracted extensive attention as an effective renewable energy integration strategy. Energy storage plays an important role as a component of wind-solar-storage microgrids, and the application of energy storage technology has made great contributions to optimizing the energy structure and enhancing the resilience of the power grid. However, the cost of the energy storage system in the microgrid is relatively high, and the service life is shorter than that of other equipment, which restricts the overall economy of the microgrid. The main work of this paper includes the following aspects:

       Firstly, this paper emphasizes the necessity of developing microgrids, and highlights the advantages of energy storage in improving energy efficiency and system reliability. Then, the research status of capacity allocation and operation strategy of energy storage system at home and abroad was reviewed. The structure of the microgrid system is further introduced. On the basis of the above, the mathematical model of the wind-solar storage system is established, and the output characteristics of photovoltaic and wind turbines are analyzed, which lays a theoretical foundation for the optimal configuration of energy storage including wind-solar storage microgrid.

       Secondly, in order to solve the problem of optimal allocation of energy storage capacity of wind-solar-storage microgrid, a two-layer optimization model including wind-solar power generation and battery energy storage system (BESS) was established, and the improved Genetic Algorithm (IGA) and Improved Particle Swarm Optimization (Particle Swarm Optimization) were adopted. IPSO), combined with the MATPOWER tool, optimizes the BESS capacity. Among them, the upper-layer model mainly uses genetic algorithm to determine the optimal capacity of energy storage configuration, and the lower-level model optimizes the operation strategy of energy storage through particle swarm optimization to improve the economy and energy utilization rate of the system. The analysis of the case shows that the economy and reliability are significantly improved in the case of BESS installation, and the improved configuration scheme can significantly improve the economic benefits of the system compared with the traditional configuration scheme.

       Finally, the optimization configuration and charge-discharge strategy for a specific microgrid's BESS are studied, constructing a bi-level optimization model. Specifically, the lower model incorporates the impact of BESS lifespan degradation, establishing lifespan prediction, charge-discharge, and economic benefit models over the entire lifespan. The fluctuating load impact after the integration of new energy sources is also considered as a reliability metric for analysis, while the upper model still focuses on solving for storage capacity. To address the limitations of the multi-objective particle swarm optimization (MOPSO), an improved multi-objective particle swarm optimization algorithm (IMPSO) is proposed to solve this optimization problem. Case study analyses validate the effectiveness and feasibility of the proposed method, showing significant advantages in terms of economics and reliability, particularly in reducing load fluctuations and enhancing system stability.

参考文献:

[1] 黄雨涵, 丁涛, 李雨婷, 等. 碳中和背景下能源低碳化技术综述及对新型电力系统发展的启示[J]. 中国电机工程学报, 2021, 41(S1): 28-51.

[2] 宋枫, 孙傲. “双碳”目标下电力系统零碳化路径与投资成本估计[J]. 经济发展研究, 2023, (1): 13-30.

[3] Canizes B, Costa J, Bairrão D, et al. Local renewable energy communities: classification and sizing[J]. Energies, 2023, 16(5): 2389-2415.

[4] Kazemi M, Tabatabaei S S, Moslemi N. A novel public-private partnership to increase the penetration of energy storage systems in distribution level[J]. Journal of Energy Storage, 2023, 62(3): 1851-1860.

[5] 卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战[J]. 电力系统自动化, 2021, 45(9): 171-191.

[6] Yoon M, Cho N, Choi S. Analysis of temporary overvoltage due to inverter-based distributed generation in networked distribution systems[J]. Applied Energy, 2023, 341(7): 1059-1066.

[7] 司金冬, 吴熙, 郭其胜, 等. 面向高比例新能源消纳的地区电网柔性互联规划与运行技术综述[J]. 电网技术, 2024, 48(6): 2272-2286.

[8] Li J, Huang G, Li Y, et al. Development of a multi-region power system risk management model for supporting China's carbon neutrality ambition in 2060s[J]. Earth's Future, 2022, 10(9): 1-13.

[9] 许俊洋. 生态能源微电网网架结构设计与源储优化配置研究[D]. 华北电力大学, 2023.

[10] 顾佳伟. 基于混合储能的综合能源系统容量优化配置[D]. 华北电力大学(北京), 2023.

[11] 马汀山, 王妍, 吕凯, 等. “双碳”目标下火电机组耦合储能的灵活性改造技术研究进展[J]. 中国电机工程学报, 2022, 42(S1): 136-148.

[12] 刘丽军, 黄伟东, 陈泽楷, 等. 考虑灵活性供需平衡的新型电力系统长短期储能联合规划[J/OL]. 电网技术, 1-13[2024-12-13].

[13] 唐西胜, 李伟, 沈晓东. 面向新型电力系统的储能规划方法研究进展及展望[J]. 电力系统自动化, 2024, 48(9): 178-191.

[14] 丰俊杰. 基于储能寿命评估模型的分布式储能优化配置研究[D]. 杭州电子科技大学, 2021.

[15] 刘佳玲, 秦博宇, 蔡其聪, 等. 计及可再生能源接入的城市轨道交通储能容量优化配置[J/OL]. 电网技术, 1-10[2024-12-13].

[16] 张晋铭, 欧阳森, 吴晗, 等. 计及配电网可靠性和运行经济性的电网侧储能优化配置[J]. 电力自动化设备, 2024, 44(7): 62-68+85.

[17] 肖厦颖, 范传光, 郭峰, 等. 基于改进多目标粒子群算法的储能电站定容选址优化配置研究[J]. 储能科学与技术, 2024, 13(2): 503-514.

[18] 吴勇, 吕林, 许立雄, 等. 考虑电/热/气耦合需求响应的多能微网多种储能容量综合优化配置[J]. 电力系统保护与控制, 2020, 48(16): 1-10.

[19] 刘军, 甘乾煜, 张泽秋, 等. 考虑储能电池运行寿命的风电功率波动平抑方法研究[J].电网技术, 2023, 47(5): 2098-2108.

[20] Dong H, Fu Y, Jia Q, et al. Optimal dispatch of integrated energy microgrid considering hybrid structured electric-thermal energy storage[J]. Renewable Energy, 2022, 33(5), 628-639.

[21] Zhang X, Son Y, Cheong T, et al. Affine-arithmetic-based microgrid interval optimization considering uncertainty and battery energy storage system degradation[J]. Energy, 2022, 24(2): 3015-3028.

[22] 伍峻杭, 刘继春, 吴沂洋. 偏远地区能源自洽系统源储容量协同配置方法[J].电网技术, 2024, 48(5): 2031-2042.

[23] 郭东泽, 张继红, 王庆宇, 等. 平抑风电出力波动的混合储能功率分配策略[J]. 储能科学与技术, 2024, 13(5): 1564-1573.

[24] 李建林, 谭宇良, 王含, 等. 配网及光储微网储能系统配置优化策略[J]. 高电压技术, 2022, 48(5): 1893-1902.

[25] 栗占伟, 樊东方, 曾超, 等. 考虑风光消纳的储能系统容量优化配置及运行策略研究[J]. 储能科学与技术, 2024, 13(8): 2713-2725.

[26] 赵云. 基于改进灰狼算法的配电网储能优化配置[J]. 太阳能学报, 2023, 44(10): 584-592.

[27] 吴杰, 丁明, 张晶晶. 基于云模型和k-means聚类的风电场储能容量优化配置方法[J]. 电力系统自动化, 2018, 42(24): 67-73.

[28] 郭雨涵, 郁丹, 杨鹏, 等. 基于贪婪算法的分布式储能系统容量优化配置方法[J].储能科学与技术, 2022, 11(7): 2295-2304.

[29] 徐吉智, 张新燕, 常喜强, 等. 基于PV曲线和改进遗传算法储能选址定容研究[J].太阳能学报, 2022, 43(1): 263-268.

[30] 林敏怡, 雷勇, 李宇泽, 等. 基于改进量子粒子群算法的储能容量优化配置[J]. 电源技术, 2021, 45(2): 203-207.

[31] 张小莲, 陈冲, 张仰飞, 等. 考虑电池运行状态的风电场储能容量优化配置[J]. 电力系统自动化, 2022, 46(18): 199-207.

[32] Zhang X, Li D, Yang Z, et al. Fuzzy adaptive virtual inertia control of energy storage systems considering SOC constraints[J]. Energy Reports, 2023, 9(6): 2431-2439.

[33] 熊康, 黎灿兵, 樊飞龙, 等. 电池储能温度-功率特性建模及其在综合能源系统中的应用[J]. 电工技术学报, 2024, 39(16): 5238-5250.

[34] 程苒, 段瑶, 吴亚雄, 等. 考虑等效循环放电深度约束的配电网储能规划[J/OL]. 南方电网技术, 1-10[2024-12-13].

[35] 董明, 李晓枫, 熊锦晨, 等. 基于自放电阻抗变化的锂电池存储容量衰减评估技术[J/OL]. 中国电机工程学报, 1-13[2024-12-13].

[36] 冯娜娜, 杨明, 惠周利, 等. 基于蚁狮优化高斯过程回归的锂电池剩余使用寿命预测[J]. 储能科学与技术, 2024, 13(5): 1643-1652.

[37] 尹杰, 刘博, 孙国兵, 等. 基于迁移学习和降噪自编码器-长短时间记忆的锂离子电池剩余寿命预测[J]. 电工技术学报, 2024, 39(1): 289-302.

[38] Zhao W, Ding W, Zhang S, et al. A deep learning approach incorporating attention mechanism and transfer learning for lithium-ion battery lifespan prediction[J]. Journal of Energy Storage, 2024, 75(13): 1647-1661.

[39] 闫秀英, 刘盼, 常娟, 等. 住宅区光伏并网两阶段能源交易模式与投产分析[J]. 太阳能学报, 2024, 45(10): 309-316.

[40] 沈赋, 李施伟, 王健, 等. 融合储能的光伏发电系统并网逆变器建模与稳定性分析[J]. 电力系统保护与控制, 2024, 52(19): 131-143.

[41] 韩硕, 胡坚柯, 韩一峰, 等. 双面光伏组件建模及发电性能研究[J]. 太阳能学报, 2023, 44(9): 94-100.

[42] 都骋. 含储能的分布式电源优化配置与调度研究[D]. 山东大学, 2023.

[43] 陈长青, 李欣然, 谭庄熙. 考虑风电不确定性的风储调频能力[J]. 高电压技术, 2022, 48(6): 2128-2139.

[44] 商伟情. 多场景风光耦合制氢系统优化配置研究[D]. 中国矿业大学, 2023.

[45] Hong Q, Meng F, Liu J. Customised multi-energy pricing: model and solutions[J]. Energies, 2023, 16(4): 2080-2111.

[46] 周成伟. 基于风光储微电网下的储能容量优化配置研究[D]. 南京信息工程大学, 2023.

[47] 丁佳昀, 胡秦然, 吴在军, 等. 低温环境下考虑电池寿命的微电网优化调度[J]. 中国电机工程学报, 2024, 44(10): 3815-3824.

[48] 李军徽, 岳鹏程, 李翠萍, 等. 提高风能利用水平的风电场群储能系统控制策略[J]. 电力自动化设备, 2021, 41(10): 162-169.

[49] 张楚, 陈栋才, 陈湘萍, 等. 多应用场景下储能最优配置经济性效益分析[J]. 储能科学与技术, 2024, 13(6): 2078-2088.

[50] 崔杨, 李翼成, 付小标, 等. 基于换电服务定价策略及动态调控方法的含充换电站微电网系统双层优化调度[J]. 电网技术, 2023, 47(5): 1998-2011.

[51] Guo F, Li J, Zhang C, et al. Optimized power and capacity configuration strategy of a grid-side energy storage system for peak regulation[J]. Energies, 2023, 16(15): 5644-5657.

[52] Dui H, Zhang Y, Zhang Y. Grouping maintenance policy for improving reliability of wind turbine systems considering variable cost[J]. Mathematics, 2023, 11(8): 1954-1974.

[53] 蔡静文. 考虑风电和光伏的多能互补系统储能容量优化配置研究[D]. 济南大学, 2023.

[54] Pang K, Zhou J, Tsianikas S, et al. Deep reinforcement learning for resilient microgrid expansion planning with multiple energy resource[J]. Quality and Reliability Engineering International, 2022, 40(1): 34-56.

[55] 任旭阳, 何进, 卢长坤, 等. 计及新能源并网的火储联合调峰运行优化研究[J/OL]. 中国电机工程学报, 1-13[2024-12-13].

[56] 易建波, 胡猛, 王泽宇, 等. 提升光储充电站运行效率的多目标优化配置策略[J]. 电力系统自动化, 2024, 48(14): 100-109.

中图分类号:

 TM732    

开放日期:

 2024-12-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式