论文中文题名: | 玄武岩纤维-煤矸石混凝土的跨尺度力学性能研究 |
姓名: | |
学号: | 19204209096 |
保密级别: | 保密(2年后开放) |
论文语种: | chi |
学科代码: | 085213 |
学科名称: | 工学 - 工程 - 建筑与土木工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 煤矸石建材资源化研究与利用 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-15 |
论文答辩日期: | 2022-05-31 |
论文外文题名: | Study on Cross scale Mechanical Properties of Basalt Fiber Coal Gangue Concrete |
论文中文关键词: | 煤矸石混凝土 ; 玄武岩纤维 ; 多尺度 ; 力学性能 ; 界面过渡区 ; 显微硬度 ; 孔结构 ; 微观形貌 ; 粘结性能 ; 灰色关联度 |
论文外文关键词: | Coal gangue concrete ; Basalt fiber ; Multiscale ; Mechanical properties ; Interface transition zone ; Microhardness ; Pore structure ; Micro morphology ; Bonding properties ; Grey correlation theory |
论文中文摘要: |
煤矸石是成煤过程中与煤层伴生的一种碳含量较低,但硬度和强度都高于煤的岩石,其大量堆积对煤矿周围的环境造成巨大危害。目前较优的煤矸石资源化利用方式是将其用于制作煤矸石混凝土 (Coal gangue concrete, CGC) 。然而在以往的实际应用研究中,CGC存在韧性差、易开裂以及抗拉能力弱以及煤矸石骨料易碎裂等缺点。这毫无疑问缩小了CGC在材料性能方面的应用范围。相关研究表明,在混凝土中掺加一定量的玄武岩纤维 (Basalt fiber, BF) ,能够有效的改善混凝土的宏微观性能。本文针对目前CGC性能上的不足,运用BF对CGC进行改性研究。从宏观力学性能、细观界面结构以及微观结构三个尺度下,探究BF对CGC的性能的影响,揭示了BF对CGC的力学性能的影响机理,并探讨了相应的细观和微观结构与宏观力学性能的关系。研究成果对CGC的应用推广具有重要意义。 本课题基于试验研究与理论分析相结合。以不同体积掺量 (0.1 vol%、0.12 vol%、0.15 vol%以及0.18 vol%) 、不同长度 (6 mm, 18 mm, 30mm) 的BF掺入到CGC中,分别从宏观、细观、微观三个尺度下,分别对其工作性能、力学性能、界面过渡区结构、孔结构和微观形貌进行研究,揭示了影响玄武岩纤维-煤矸石混凝土 (Basalt fiber coal gangue concrete, BFCGC) 的工作性能和力学性能的细微观机理。本研究的主要结论如下: (1) 运用BF对CGC进行改性处理时,其新拌CGC的流动性受BF的影响较大,且掺入的BF掺量越大,长度越长,新拌混凝土工作性能越差。然而,再掺入适量的粉煤灰能够弥补这一问题带来的不足。 (2) 宏观尺度研究结果表明:首先,BF对CGC的力学性能的改善效果具有双重效应。适量的BF的参与能够改善CGC的力学性能,但掺量过多时会产生团聚效应,使得CGC容易发生应力集中,损害混凝土的强度,建议最优掺量为0.15 vol %。其次,掺入较长的纤维能够在一定程度上改善CGC的力学性能,30 mm长的纤维效果最优;最后,在选择最优的BF掺量和长度的分组同时掺入适量的粉煤灰后能进一步提高其混凝土的强度。30 % 的粉煤灰与 0.15 vol %的BF共同组合掺入CGC中,对其力学性能的改善效果最好。 (3) 细观尺度的研究结果表明:在CGC中掺入BF ,需要考虑BF对其ITZ结构的影响。BF的掺入能够有效的缩减ITZ的最薄弱区域,同时提高最薄弱区域的显微硬度值,进而达到增强CGC的ITZ强度的目的。同时掺入适量的粉煤灰也能提高混凝土ITZ的显微硬度,改善BFCGC的ITZ结构。 (4) 微观尺度的研究表明:首先,掺入BF使得CGC的总孔隙率增加,然而适当的掺量和长度的纤维掺入后能后分化大孔,增加凝胶孔的孔径,优化CGC的孔径结构;其次,BF在CGC中通过物理和化学的方法与水泥基材结合,从而发挥拉结锚固的效果,增强了CGC的抗拉强度和ITZ的强度。最后,适量的BF能够在CGC中形成三维的网状骨架,既能起到均匀的传递应力的作用,又能使CGC的内部结构变得密实,减少CGC内部由于煤矸石的掺入而形成的水化缺陷。然而,过量的BF在CGC中会产生“抱团”效应,致使混凝土内部产生缺陷,导致应力集中的发生。同时,适量的粉煤灰的二次水化反应有助于BF的粘结和混凝土强度的提升。最后,基于灰色关联度理论,探究了不同类型的孔隙对BFCGC的抗压强度的影响,并通过建立GM (1,2)模型,更好的预测BFCGC的抗压强度随孔结构的变化规律。 |
论文外文摘要: |
Coal gangue is a kind of rock associated with coal seam in the process of coal formation. Its carbon content is low, but its hardness and strength are higher than that of coal. It accumulates in large quantities around the coal mine, causing great harm to the environment. It accumulates in large quantities in the surrounding environment of coal mine and causes great harm. At present, the better resource utilization method of coal gangue is to use it to make coal gangue concrete (CGC). This undoubtedly reduces the application scope of Coal gangue Concrete in material performance. In this paper, aiming at the shortcomings of CGC performance, basalt fiber (BF) is used to modify CGC. The effect of BF on CGC performance was explored from three scales of macroscopic mechanical properties, meso-interface structure and microstructure, and the influence mechanism of BF on CGC mechanical properties was revealed, and the relationship between corresponding meso-structure and macroscopic mechanical properties was also discussed. The research results are of great significance to the application and promotion of CGC. This subject is based on the combination of experimental research and theoretical analysis. BF with different volume contents (0.1 vol%, 0.12 vol%, 0.15 vol% and 0.18 vol%) and different lengths (6 mm, 18 mm and 30 mm) were added into CGC. The working properties, mechanical properties, interface transition zone structure, pore structure and micro morphology of BFCGC were studied from macro, micro and micro scales, respectively, and the micro and micro mechanisms affecting the working properties and mechanical properties of BFCGC were revealed. The main conclusions of this study are as follows: (1) Adding BF into CGC has a great influence on the slump of fresh concrete. The greater the amount of fiber added and the longer the length, the worse the working performance of fresh concrete. After mixing fly ash and BF, it can effectively increase the slump of concrete and improve the working performance of freshly mixed BFCGC. (2) Macro scale research results show that: Firstly, BF has a dual effect on the improvement of the mechanical properties of CGC. The participation of an appropriate amount of BF can improve the mechanical properties of CGC, but when the amount is too much, it will produce agglomeration effect, which makes CGC prone to stress concentration and damage the strength of concrete. It is suggested that the optimal dosage is 0.15 vol%. Secondly, adding longer fibers can improve the mechanical properties of CGC to a certain extent, and the best effect is 30 mm long fibers; Finally, the strength of concrete can be further improved by adding an appropriate amount of fly ash in the optimal BF dosage group at the same time. When 30% fly ash and 0.15 vol% BF are combined into CGC, the effect of improving its mechanical properties is the best. (3) The results of meso scale research show that: When BF is added into CGC, the effect of BF on its ITZ structure needs to be considered. The incorporation of BF can effectively reduce the weakest area of ITZ and improve the microhardness of the weakest area, so as to enhance the ITZ strength of CGC. At the same time, an appropriate amount of fly ash can also improve the microhardness of concrete ITZ and improve the ITZ structure of BFCGC. (4) Micro scale research shows that: First, the total porosity of CGC increases with the incorporation of BF. However, after proper incorporation and length of fiber incorporation, the macropores can be differentiated, the pore size of the gel pores increases, and the pore structure of CGC is optimized. Secondly, BF is combined with cement substrate through physical and chemical methods in CGC, so as to play the effect of tension and anchorage, and enhance the tensile strength of CGC and the strength of ITZ. Finally, an appropriate amount of BF is conducive to the improvement of the internal structure of concrete, while excessive BF is easy to increase the internal defects of concrete, reduce the compactness and reduce the bonding performance. At the same time, the secondary hydration reaction of an appropriate amount of fly ash is conducive to the bonding of BF and the improvement of concrete strength. Finally, based on the grey correlation theory, the influence of different types of pores on the compressive strength of BFCGC is explored, and the GM (1,2) model is established to better predict the variation law of the compressive strength of bfcgc with the pore structure. |
参考文献: |
[3] 田怡然,张晓然,刘俊峰,宋凯鸿,张紫阳,谭朝洪,李海燕.煤矸石作为环境材料资源化再利用研究进展[J].科技导报, 2020, 38(22): 104-113. [4] 尚誉,桑楠.煤矸石堆积区周边土壤重金属污染特征与植物毒性评估 [J].环境科学, 2021, 1-14. [11] 卞正富,金丹,董霁红,牟守国.煤矿矸石处理与利用的合理途径探讨[J].采矿与安全工程学报[J], 2007 (02): 132-136. [14] 胡幼奕.转型中的中国砂石工业-谈砂石行业未来发展大趋势 [J].中国建材, 2018,(07):36-38 [15] 顾云, 张彬. 煤矸石集料混凝土工作与力学性能研究 [J]. 混凝土, 2019(7): 71-73. [16] 邱继生,侯博雯,关虓,周云仙,王民煌.煤矸石理化性质对混凝土抗压强度的影响[J].非金属矿, 2019, 42(02): 29-32. [22] 陈本沛.煤矸石混凝土的强度[J].工业建筑,1994(7):29.32 [24] 王意. 玄武岩纤维混凝土力学性能实验研究[D]; 西南交通大学. [26] 崔云鹏. 低温复合胶凝材料体系水化动力学研究[D]; 沈阳建筑大学, 2014. [29] 马宏强, 易成, 朱红光, 董作超, 陈宏宇, 王佳欣, 李德毅. 煤矸石集料混凝土抗压强度及耐久性能[J].材料导报, 2018, 32(14): 2390-2395. [31] 吴中伟.混凝土科学技术的反思[J]. 混凝土与水泥制品.1988,6:4-5 [32] 冯乃谦,邢锋.高性能混凝土技术[M]. 北京:原子能出版社,2000 [33] 黄成洋. 煤矸石取代粗集料的混凝土抗渗性和抗冻性研究[D]. 沈阳建筑大学, 2015. [34] 段晓牧. 煤矸石集料混凝土的微观结构与物理力学性能研究[D].中国矿业大学, 2014. [35] 晏亮. 煤矸石混凝土及其结构构件性能试验研究[D].天津大学, 2013. [36] 朱泽忠. 煤矸石混凝土的研制及其性能测试[D].安徽理工大学, 2014. [38] 张金喜, 陈炜林, 杨荣俊. 煤矸石集料基本性能的试验研究[J]. 建筑材料学报, 2010, 13(06): 739-743. [41] 王振军,沙爱民,杜少文.半刚性面层复合材料浆体-集料界面显微硬度研究[J].材料科学与工程学报, 2007(04): 524-528. [42] 苏杰,董芸,杨华全.骨料品种对混凝土界面结构及性能的影响[J].混凝土, 2019(01):97-100. [43]李一鸣,贺智敏,沈黄冰,柳俊哲,巴明芳.偏高岭土对蒸养混凝土界面区显微硬度及统计分布的影响[J].水资源与水工程学报, 2019, 30(01):176-182. [46] 陈建武. 陶粒混凝土界面区显微硬度影响因素研究[D].哈尔滨工业大学,2009. [47] 舒畅. 混凝土界面过渡区和冻融耐久性纳米划痕表征研究[D].上海交通大学,2015. [48] 陈炜林. 煤矸石作为水泥混凝土骨料可行性的基础研究[D].北京工业大学,2010. [49] 邱继生, 杨占鲁, 关虓, 邢敏, 张程华, 秦卿. 煤矸石陶粒混凝土微观孔结构特征及抗压强度[J]. 西安科技大学学报, 2020, 40 (01): 110-117. [50] 易成, 马宏强, 朱红光, 董作超, 苏振晋, 张宇婷, 褚震. 煤矸石粗集料混凝土抗碳化性能研究[J]. 建筑材料学报, 2017, 20(05): 787-793. [53] 吴钊贤. 玄武岩纤维混凝土基本力学性能与应用研究[D]; 武汉理工大学, 2009. [54] 林志龙,林进,林志超,刘剑东,彭苗.玄武岩纤维混凝土的力学性能研究[J].福建建材, 2016 (01) :1-3. [55] 彭苗,黄浩雄,廖清河,王甲春.玄武岩纤维混凝土基本力学性能试验研究[J].混凝土,2012(01):74-75. [56] 葛浩军. 玄武岩纤维混凝土力学性能及耐久性研究[D]. 大连理工大学. [58] 孙斯慧. 玄武岩纤维增强混凝土力学性能和耐久性能的研究[D]. 沈阳理工大学,2020. [63] GB175-2007通用硅酸盐水泥[S]. 北京:中国质检出版社,2007. [64] GBT8074-2008水泥比表面积测定方法[S]. 北京:中国标准出版社,2008. [65] GBT/14685-2011建筑用砂[S]. 北京:中国标准出版社,2011. [66] GB/T14685-2011建筑用卵石碎石[S]. 北京:中国标准出版社,2011. [69] JG/T55-2011普通混凝土配合比设计规范[S].北京:中国建筑工业出版社,2011. [70] GB/T 50081-2002.普通混凝土力学性能实验方法标准[S].北京:中国建筑工业出版社,2003. [71] CESC13–2009. 纤维混凝土试验方法标准[S].北京:中国计划出版社,2009. [80] 黄蕴元.混凝土工艺理论的科学基础[J].混凝土与水泥制品,1985 (05): 2-5. [81] 陈旭鹏,庞建勇.偏高岭土对混凝土抗复合盐侵蚀性能的研究[J].非金属矿,2021,44(01):78-80+95. [82] 王庆轩,丁一宁.玄武岩纤维耐碱性能及其网格布对混凝土的增强效应[J]. 建筑材料学报, 2021, 24(01):54-62+70. |
中图分类号: | TU528 |
开放日期: | 2024-06-14 |