论文中文题名: |
基于多源遥感的黄土丘陵沟壑区侵蚀产沙监测方法研究
|
姓名: |
任芳丽
|
学号: |
20210010006
|
保密级别: |
保密(1年后开放)
|
论文语种: |
chi
|
学科代码: |
0705
|
学科名称: |
理学 - 地理学
|
学生类型: |
硕士
|
学位级别: |
理学硕士
|
学位年度: |
2023
|
培养单位: |
西安科技大学
|
院系: |
测绘科学与技术学院
|
专业: |
地理学
|
研究方向: |
地貌遥感与水土保持
|
第一导师姓名: |
李朋飞
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2023-06-16
|
论文答辩日期: |
2023-06-05
|
论文外文题名: |
A study on erosion monitoring methods for the hilly and gully Loess Plateau based on multi-source remote sensing techniques
|
论文中文关键词: |
黄土丘陵沟壑区 ; 三维激光扫描 ; 运动恢复结构 ; 资源三号卫星 ; 侵蚀监测
|
论文外文关键词: |
Hilly and gully Loess Plateau ; laser scanning ; SfM ; ZY303 ; erosion monitoring
|
论文中文摘要: |
︿
坡沟系统是黄土丘陵沟壑区主要产沙源地,精确监测其侵蚀过程和形态发育对过程模型构建与土壤侵蚀防治具有重要意义。地面三维激光扫描(Terrestrial laser scanning,TLS)、地基运动恢复结构(Terrestrial structure from motion,TSfM)、无人机激光雷达(Unmanned aerial vehicle laser scanning,ULS)、无人机运动恢复结构(Unmanned aerial vehicle SfM,UAV-SfM)和卫星遥感等技术可高效、快速、非接触监测地形变化,已成为土壤侵蚀过程精细化研究的重要工具。然而,以上方法监测黄土丘陵沟壑区侵蚀过程的精度缺乏系统评估。鉴于此,本文以黄土丘陵沟壑区辛店沟流域自然坡沟系统和桥沟流域自然侵蚀沟道为研究对象,首先于辛店沟流域设置三个自然坡沟系统径流小区各开展五场模拟放水冲刷试验,梁峁坡放水流量分别为85 L min-1、55 L min-1和25 L min-1,沟谷坡放水流量均为10 L min-1,每场试验前后均利用TLS和TSfM获取地形,基于实测值,评估TLS和TSfM监测坡沟系统土壤侵蚀的精度;其次,基于TLS技术扫描不同区域(坡面、道路、三角堰)并提取侵蚀沟形态,评估ULS和UAV-SfM提取侵蚀沟道形态参数精度,再以TLS扫描不同坡度(0°、15°、30°、45°、60°、75°、90°)聚氯乙烯塑料(Polyvinyl Chloride,PVC)板为“真值”,验证ULS获得点云数据几何精度;最后,基于ULS,评估UAV-SfM和资源3号卫星数据(ZY303)提取侵蚀沟道参数的精度。主要研究结果如下:
(1)TLS和TSfM监测坡沟系统精度方面。单场次中,不同流量下TLS估算产沙量相对误差的均值介于-27.80%~8.24%,与实测产沙量之间的线性拟合R2介于0.70~0.99,而TSfM估算产沙量相对误差的均值介于-16.20%~73.10%,与实测产沙量之间的线性拟合R2在0.86~0.96之间。累积场次中,基于TLS估算产沙量相对误差的均值介于-20.10%~54.30%,与实测产沙量之间的线性拟合R2在0.88~0.93之间,而TSfM估算产沙量相对误差的均值在-24.10%~84.50%之间,与实测产沙量之间的线性拟合R2在0.69~0.93之间。不同流量下,TLS提取侵蚀细沟长度的绝对误差和相对误差的均值分别介于-0.15 m~ -0.02m和-2.18%~-0.16%,与实测侵蚀细沟长度的线性拟合R2介于0.87~0.99。TSfM提取侵蚀细沟长度绝对误差和相对误差分别介于-0.38 m~-0.15 m和-7.09%~-1.49%,与实测侵蚀细沟长度的线性拟合R2介于0.61~0.96。试验结果表明TLS定量监测坡沟系统土壤侵蚀精度更高,同时TSfM可作为TLS监测土壤侵蚀的替代方案。
(2)ULS监测精度方面。基于TLS获取桥沟流域不同部位(坡面、道路、三角堰)地形信息,评估ULS和UAV-SfM在不同区域的监测精度。ULS提取侵蚀沟道绝对误差和相对误差分别小于0.02 m和0.55%,而UAV-SfM监测不同区域提取侵蚀沟道绝对误差和相对误差分别小于0.72 m和3.92%。因此,基于ULS数据提取侵蚀沟精度优于UAV-SfM。利用ULS技术监测不同区域不同坡度PVC板的平均绝对误差介于0 m~0.08 m,中值介于0 m~0.09 m。
(3)UAV-SfM和ZY303监测侵蚀沟道精度方面。UAV-SfM可监测侵蚀沟道17条主沟和16条支沟形态,而ZY303可监测到17条主沟形态,仅监测到11条支沟形态。2020年和2021年UAV-SfM、ZY303与ULS提取主沟二维形态参数(面积、周长、沟长)的百分误差分别小于20%和35%,提取支沟的二维形态参数分别小于25%、40%。2020年和2021年UAV-SfM和ZY303提取主沟三维形态参数(侵蚀沟体积、横截面积、平均沟深)与ULS的百分误差分别小于20%和30%,提取支沟的三维形态参数分别小于20%和50%。结果表明UAV-SfM更适合于监测植被稀疏且地形相对复杂区域的侵蚀沟道,而ZY303更适合监测地形平缓区域,同时ZY303适合区域尺度应用。
﹀
|
论文外文摘要: |
︿
The slope-gully system is the main source of sediment in the hilly and gully Loess Plateau, and monitoring accurate of soil erosion and gully erosion is of great significance for soil and water conservation, process-based erosion model development, and soil erosion control. Remote sensing technologies, such as terrestrial laser scanning (TLS), unmanned aerial vehicle laser scanning (ULS), terrestrial structure from motion (TSfM) photogrammetry, unmanned aerial vehicle SfM (UAV-SfM) and satellite remote sensing, are capable of monitoring terrain changes efficiently in a non-contact manner. These technologies provide an important tool for soil erosion study. However, the accuracy of the techniques for erosion monitoring remained unclear. Thus, this study focused on the natural slope-gully system and the natural gully (i.e. Xindiangou catchment and Qiaogou catchment ) in the hilly and gully Loess Plateau. Firstly, five souring experiments were implemented on each of the three plots, consisting of hillslope and gully area, established on field slopes. The input flow rates of three hillslopes were 25, 55 and 85 L min-1, respectively, while that for the gully area was 10 L min-1. The terrain of the plots before and after the experiments was recorded by TLS and TSfM, while the accuracy of TLS and TSfM in monitoring soil erosion in the gully-slope system was evaluated based on measured values. Secondly, TLS was used to scan different areas (slope, road, and triangular weir) to extract the gully erosion as the validation value and evaluated the accuracy of UAV-SfM and ULS in monitoring gully erosion. The Polyvinyl Chloride (PVC) panels with different slopes (0°, 15°, 30°, 45°, 60°, 75°, 90°) scanned by TLS were used as the validation value to verify the accuracy of the point cloud data obtained by ULS. Finally, the accuracy of gully parameters and erosion volume monitored by UAV-SfM and satellite images (ZY303) were further assessed by ULS results. Main findings are as follows:
(1) In terms of the results for individual experiments, the average values of relative errors for sediment yield estimated by TLS under different flow rates were -27.80% - 8.24%, and the R2 of the linear relationships between the calculated and measured consecutive sediment yield were 0.70 - 0.99. The average values of relative errors for sediment yield estimated by TSfM were -16.20% - 73.10%, and the R2 of the linear relationships between the calculated and measured consecutive sediment yield were 0.86 - 0.96. In terms of cumulative results for the experiments, the average values of relative errors for sediment yield estimated by TLS were -20.10% - 54.30%, and the R2 of the linear relationships between the calculated and measured sediment yield were 0.88 - 0.93. The average values of relative errors for sediment yield estimated by TSfM were -24.10% - 84.50%, and the R2 of the linear relationships between the calculated and measured sediment yield were 0.69 - 0.93. Under different flow rates, the mean values of absolute errors and relative errors for erosion rill length extracted by TLS were -0.15 m - -0.02 m and -2.18% - -0.16%, respectively, and the R2 of the linear relationships between the calculated and measured rill length were 0.87 - 0.99. The mean values of absolute errors and relative errors for rill length extracted by TSfM were -0.38 m - -0.15 m and -7.09% - -1.49%, respectively, and the R2 of the linear relationships between the calculated and measured rill length were 0.61 - 0.96. The experimental results showed that TLS had higher accuracy in quantitative monitoring of soil erosion in slope-gully system, and TSfM could be used as an alternative solution to TLS for monitoring soil erosion.
(2) The average values of absolute errors and relative errors for extracting gullies from different areas (slope, road, and check dam) using ULS were lower than 0.02 m and 0.55%, respectively, while those using UAV-SfM monitoring were lower than 0.72 m and 3.92%, respectively. Therefore, the accuracy of extracting gullies using ULS was superior to that of UAV-SfM. The average values of absolute errors for monitoring PVC boards with different slopes using ULS were 0 m - 0.082 m, with a median value were 0 m - 0.09 m.
(3) UAV-SfM was able to monitor the morphology of 17 main gullies and 16 tributary gullies, while ZY303 monitored the morphology of 17 main gullies and 11 tributary gullies. The percent errors of UAV-SfM, ZY303, compared with ULS in obtaining two-dimensional morphological parameters (i.eg. area, perimeter and gully length) of the main and tributary gullies in 2020 and 2021 were all lower than 20%, 34% and 25%, 40%, respectively. The percent errors of UAV-SfM, ZY303, compared with ULS in obtaining three-dimensional morphological parameters, such as cross-sectional area, average gully depth, and erosion volume, were all lower than 20%, 30% and 20%, 50%, respectively. The results suggested that UAV-SfM had a higher accuracy for monitoring erosion gullies in areas with sparse vegetation and relatively complex terrain, while ZY303 was more suitable for monitoring areas with gentle terrain, while ZY303 was appropriate for a regional scale application.
﹀
|
参考文献: |
︿
[1] MA H, ZHEN L, ZHANG Y, et al. A gully erosion assessment model for the Chinese Loess Plateau based on changes in gully length and area [J]. Catena, 2017, 148(02): 195-203. [2] FU B, YU L, LUE Y, et al. Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China [J]. Ecological Complexity, 2011, 8(04): 284-293. [3] GOODWIN N, ARMSTON J, MUIR J, et al. Monitoring gully change: a comparison of airborne and terrestrial laser scanning using a case study from Aratula, Queensland [J]. Geomorphology, 2017, 282(01): 195-208. [4] 张加琼, 尚月婷, 白茹茹, 等. 稀土元素示踪法在土壤侵蚀与泥沙来源研究中的应用 [J]. 水土保持研究, 2023, 30(03): 55-61. [5] 陈妮, 王静, 陈东, 等. 区域水土流失动态监测软件设计与实践 [J]. 中国水土保持, 2023, 490(01): 35-37. [6] PING Z, WEN A, ZHANG X, et al. Soil conservation and sustainable eco-environment in the Loess Plateau of China [J]. Environmental Earth Sciences, 2013, 68(03): 633-639. [7] ZHAO J, YANG Z, GOVERS G. Soil and water conservation measures reduce soil and water losses in China but not down to background levels: evidence from erosion plot data [J]. Geoderma, 2019, 337(02): 729-741. [8] MEINEN B, ROBINSON D. Where did the soil go? Quantifying one year of soil erosion on a steep tile-drained agricultural field [J]. Science of The Total Environment, 2020, 729(03): 138320. [9] MOSTAZO P, ASENSION-AMADO C, ASENSIO C. Soil erosion modeling and monitoring [J]. Agriculture-Basel, 2023, 13(02): 447-498. [10] 陈万辉, 刘良云, 张超, 等. 基于遥感的土壤侵蚀快速监测方法 [J]. 水土保持研究, 2005, 12(06): 12-14. [11] 金钊. 走进新时代的黄土高原生态恢复与生态治理 [J]. 地球环境学报, 2019, 10(03): 316-322. [12] 穆兴民, 李朋飞, 刘斌涛, 等. 1901—2016年黄土高原土壤侵蚀格局演变及其驱动机制 [J]. 人民黄河, 2022, 44(09): 36-45. [13] MU X, GAO P, HOLDEN J, et al. Comparison of soil erosion models used to study the Chinese Loess Plateau [J]. Earth-Science Reviews, 2017, 170(06): 17-30. [14] LI J, PENG S, ZHI L. Detecting and attributing vegetation changes on China's Loess Plateau [J]. Agricultural and Forest Meteorology, 2017, 247(08): 260-270. [15] 王丹丹, 许海超, 单志杰, 等. 黄土高原刺槐林地根系与枯落物对土壤侵蚀的影响 [J]. 水土保持学报, 2023, 37(02): 83-89. [16] LI P, IRVINE B, HOLDEN J, et al. Spatial variability of fluvial blanket peat erosion rates for the 21st Century modelled using PESERA-PEAT [J]. Catena, 2017, 150(11): 302-316. [17] YANG B, WANG Q, XU X. Evaluation of soil loss change after Grain for Green Project in the Loss Plateau: a case study of Yulin, China [J]. Environmental Earth Sciences, 2018, 77(08): 1-14. [18] YANG X, SUN W, LI P, et al. Reduced sediment transport in the Chinese Loess Plateau due to climate change and human activities [J]. Science of The Total Environment, 2018, 642(06): 591-600. [19] YANG S, LOU H, ZHANG C, et al. Monitoring long-term gully erosion and topographic thresholds in the marginal zone of the Chinese Loess Plateau [J]. Soil and Tillage Research, 2021, 205(01): 104800. [20] 张龙齐, 贾国栋, 吕相融, 等. 黄土高原典型地区不同植被覆盖下坡面土壤侵蚀阈值研究 [J]. 水土保持学报, 2023, 37(02): 187-198. [21] JIAO J, TZANOPOULOS J, XOFIS P, et al. Factors affecting distribution of vegetation types on a bandoned cropland in the hilly-gullied Loess Plateau region of China [J]. Pedosphere, 2008, 18(01): 24-33. [22] MA J, LI Z , MA B. Influences of revegetation mode on soil water dynamic in gully slope of the Chinese Loess hilly–gully region [J]. Natural Hazards, 2020, 104(11): 51-72. [23] LI P, HAO M, HU J, et al. Spatiotemporal patterns of hillslope erosion investigated based on field scouring experiments and terrestrial laser scanning [J]. Remote Sensing, 2021, 13(09): 1674. [24] XU X, ZHENG F, WILSON G. Flow hydraulics in an ephemeral gully system under different slope gradients, rainfall intensities and inflow conditions [J]. Catena, 2021, 203(14): 105359. [25] KARIMINEJAD N, HOSSEINALIZADEH M, POURGHASEMI H, et al. Change detection in piping, gully head forms, and mechanisms [J]. Catena, 2021, 206(03): 105550. [26] ZHU B, ZHOU Z, LI Z. Soil erosion and controls in the slope-gully system of the Loess Plateau of China: a review [J]. Frontiers in Environmental Science, 2021, 9(06): 657030. [27] 雷少华, 徐春, 韩丹妮, 等. 基于遥感的水土流失长时序监测分析 [J]. 江苏水利, 2023, 317(01): 28-31+35. [28] LI M, YAO W, DING W, et al. Effect of grass coverage on sediment yield in the hillslope-gully side erosion system [J]. Journal of Geographical Sciences, 2009, 19(03): 321-330. [29] 陈吉强. 黄土坡面沟蚀发育过程的模拟试验研究 [D]. 杨凌: 西北农林科技大学, 2010. [30] GAO C, LI P, HU J, et al. Development of gully erosion processes: a 3D investigation based on field scouring experiments and laser scanning [J]. Remote Sensing of Environment, 2021, 265(08): 112683. [31] 左飞航, 张少伟, 权红花. 陕西省黄土高原沟道侵蚀分析研究 [J]. 地理空间信息, 2022, 20(05): 128-131. [32] 刘林, 李金峰, 王小平. 黄土高原丘陵沟壑区沟道侵蚀与洞穴侵蚀特征 [J]. 水土保持通报, 2015, 35(01): 14-19. [33] POESEN J, NACHTERGAELE J, VERSTRAETEN G, et al. Gully erosion and environmental change: importance and research Needs [J]. Catena, 2003, 50(2-4): 91-133. [34] MU K. Gully erosion rates and analysis of determining factors: a case study from the semi-arid main ethiopian rift valley [J]. Land Degradation and Development, 2017, 28(02): 602-615. [35] ZHU T. Gully and tunnel erosion in the hilly Loess Plateau region, China [J]. Geomorphology, 2012, 153-154(01): 144-155. [36] DONG Y, XIONG D, SU Z, et al. The influences of mass failure on the erosion and hydraulic processes of gully headcuts based on an in situ scouring experiment in dry-hot valley of China [J]. Catena, 2019, 176(03): 14-25. [37] COX S, DONCASTER D, GODFREY P, et al. Aerial and terrestrial-based monitoring of channel erosion, headcutting, and sinuosity [J]. Environmental Monitoring and Assessment, 2018, 190(12): 717-729. [38] 李浦, 胡凯衡, 陈成. 泥石流沟道纵剖面形态演化试验研究 [J]. 人民黄河, 2017, 39(08): 80-84. [39] 郑粉莉, 王占礼, 杨勤科. 土壤侵蚀学科发展战略 [J]. 水土保持研究, 2004, 11(04): 1-10. [40] NICKEL R, SCHUMMER A, SEIFERLE E, et al. Joint health in free-ranging and confined small bovids-implications for early stage caprine management [J]. Journal of Archaeological Science, 2018, 92(02): 13-27. [41] MILLER D. Revisited: a reflection on eo-research and some suggestions for the future [J]. Entrepreneurship Theory and Practice, 2011, 35(05): 873-894. [42] ELLISON W. Soil erosion by rainstorms [J]. Science, 1950, 111(2880): 245-249. [43] HOLZ D, WILLIARD K, EDWARDS P, et al. Soil erosion in humid regions: a review [J]. Journal of Contemporary Water Research and Education, 2015, 154(01): 48-59. [44] MEYER L. Evolution of the universal soil loss equation [J]. Journal of Soil and Water Conservation, 1984, 39(02): 99-104. [45] MAYER L. Mathematical simulation of the process of soil erosion by water [J]. Translate of Asae, 1969, 12(06): 754-758. [46] 王玲玲, 姚文艺, 王文龙, 等. 黄土丘陵沟壑区多尺度地貌单元输沙能力及水沙关系 [J]. 农业工程学报, 2015, 31(24): 120-126. [47] LU C, BIESOLD M, LIU Y, et al. Doping and ion substitution in colloidal metal halide perovskite nanocrystals [J]. Chemical Society Reviews, 2020, 49(14): 4953-5007. [48] 施政. 坡耕地坡面土壤侵蚀动态监测技术研究进展 [J]. 科技创新导报, 2018, 15(35): 202-204+256. [49] 黄卫丽, 张俊青, 王志波, 等. 国内土壤侵蚀模型研究进展 [J]. 内蒙古林业科技, 2022, 48(02): 55-59. [50] 陈同德, 焦菊英, 王颢霖, 等. 青藏高原土壤侵蚀研究进展 [J]. 土壤学报, 2020, 57(03): 547-564. [51] 左仲国, 肖培青, 黄静. 黄河流域水土保持科研进展及展望 [J]. 中国水土保持, 2016, 414(09): 63-67+93. [52] 黄瑞采, 戴朱恒, 陈邦本, 等. 庐山区土壤的特征 [J]. 土壤学报, 1957, (02): 117-135. [53] 姚文艺, 肖培青. 黄土高原土壤侵蚀规律研究方向与途径 [J]. 水利水电科技进展, 2012, 32(02): 73-78. [54] 夏卫兵. 具有中国特色的水土保持科学体系浅述 [J]. 水土保持通报, 1989, (04): 30-35. [55] 尚敏. 土壤侵蚀与水土保持研究进展 [J]. 中国农业信息, 2015, 45(05): 93-99. [56] 罗来兴. 划分晋西、陕北、陇东黄土区域沟间地与沟谷的地貌类型 [J]. 地理学报, 1956, (03): 201-222. [57] 朱显谟. 重建土壤水库是黄土高原治本之道 [J]. 中国科学院院刊, 2006, 4(04): 320-324. [58] 黄秉维. 地理学与跨学科的综合研究 [J]. 科学, 1998, 50(05): 2-5. [59] 黄秉維. 陕甘黄土区域土壤侵蚀的因素和方式 [J]. 科学通报, 1953, 12(09): 63-75. [60] 张欢乐, 高俊芳. 加强矿区水土流失防治确保县域经济持续发展 [J]. 山西水土保持科技, 2006, 12(01): 40-41. [61] 黄秉维. 编制黄河中游流域土壤侵蚀分区图的经验教训 [J]. 科学通报, 1955, 11(12): 15-21+14. [62] 卜兆宏, 孙金庄, 周伏建, 等. 水土流失定量遥感方法及其应用的研究 [J]. 土壤学报, 1997, 34(03): 235-245. [63] WHITE J, COOPS, THOMAS H, et al. Remote sensing technologies for enhancing forest inventories: a review [J]. Canadian Journal of Remote Sensing, 2016, 42(05): 619-641. [64] WESTOBY M, BRASINGTON J, GLASSER N, et al. 'Structure-from-Motion' photogrammetry: a low-cost, effective tool for geoscience applications [J]. Geomorphology, 2012, 179(01): 300-314. [65] 王洁, 胡少伟, 周跃. 人工模拟降雨装置在水土保持方面的应用 [J]. 水土保持研究, 2005, 369(04): 192-194+198. [66] 夏海江, 杜尧东, 孟维忠. 聚丙烯酰胺防治坡地土壤侵蚀的室内模拟试验 [J]. 水土保持学报, 2000, 14(03): 14-17. [67] 温磊磊, 王教河, 任明, 等. 东北黑土区水土流失综合治理成效 [J]. 中国水土保持, 2021, 471(06): 4-7. [68] ELTNER A, MASS H, FAUST D. Soil micro-topography change detection at hillslopes in fragile mediterranean landscapes [J]. Geoderma, 2018, 313(10): 217-232. [69] 谢小立, 王凯荣. 红壤坡地雨水地表径流及其侵蚀 [J]. 农业环境科学学报, 2004, 23(05): 839-845. [70] 丁文峰, 李勉, 张平仓, 等. 坡沟系统侵蚀产沙特征模拟试验研究 [J]. 农业工程学报, 2006, 22(03): 10-14. [71] 段忠奎. 辽西丘陵山地果园水土流失规律及防治技术研究 [J].水利规划与设计, 2022, 226(08): 58-63. [72] 蔡强国, 张光远. 横厢耕作措施对红壤坡耕地水土流失影响的试验研究 [J]. 水土保持通报, 1994, 14(01): 49-56. [73] 魏霞, 李占斌, 李勋贵. 黄土高原坡沟系统土壤侵蚀研究进展 [J]. 中国水土保持科学, 2012, 10(01): 108-113. [74] 郑粉莉. 黄土高原坡耕地的细沟侵蚀及其防治途径 [J]. 水土保持研究, 1988, 7(01): 19-25. [75] POESEN J. Soil erosion in the anthropocene: research needs [J]. Earth Surface Processes and Landforms, 2018, 43(01): 64-84. [76] 张锦娟, 陆芳春, 赵聚国. 坡面土壤侵蚀监测技术研究现状及展望 [J]. 浙江水利科技, 2012, 184(06): 43-45. [77] 丁绍兰, 王振, 赵串串, 等. 青海黄土丘陵区沟蚀侵蚀模数与其影响因子关系分析 [J]. 干旱区资源与环境, 2012, 26(06): 60-65. [78] 孙根行, 王湜, 赵串串, 等. 青海省黄土丘陵沟壑区沟蚀影响因子的贡献率 [J]. 生态环境学报, 2009, 18(04): 1402-1406. [79] 郑子成, 何淑勤, 吴发启. 坡面水蚀过程中地表糙度的研究进展 [J]. 节水灌溉, 2008, 12(08): 8-11. [80] DIVYA C, KUMAR K, VASANTHARAJ R, et al. Evaluation and implementation of precision agriculture using unmanned aerial system [J]. International Journal of Agricultural Science, 2020, 5(02): 129-135. [81] KING C, BAGHDADI N, LECOMTE V, et al. The application of remote-sensing data to monitoring and modelling of soil erosion [J]. Catena, 2005, 62(2-3): 79-93. [82] 王维仪. 土壤质量监测技术简介 [J]. 广东化工, 2022, 49(09): 78-80. [83] 钱婷, 王蕾, 李宝山. 三维激光扫描点云分类方法研究进展综述 [J]. 电脑与信息技术, 2019, 27(01): 22-25. [84] EPPLE L, KAISER A, SCHINDEWOLF M, et al. A review on the possibilities and challenges of today’s soil and soil surface assessment techniques in the context of process-based soil erosion models [J]. Remote Sensing, 2022, 14(10): 2468. [85] LIN Y, FILIN S, BILLEN R, et al. Co-developing an international TLS network for the 3D ecological understanding of global trees: system architecture, remote sensing models, and functional prospects [J]. Environmental Science and Ecotechnology, 2023, 16(01): 100257. [86] 岳鹏, 史明昌, 杜哲, 等. 激光扫描技术在坡耕地土壤侵蚀监测中的应用 [J]. 中国水土保持科学, 2012, 10(03): 64-68. [87] 王一峰, 牛俊, 张长伟. 基于三维激光扫描仪技术的坡面径流小区土壤侵蚀运用研究 [J]. 中国农业信息, 2013, 159(23): 151-152. [88] 唐辉, 李占斌, 李鹏, 等. 模拟降雨下坡面微地形量化及其与产流产沙的关系 [J]. 农业工程学报, 2015, 31(24): 127-133. [89] YANG S, GUAN Y, ZHAO C, et al. Determining the influence of catchment area on intensity of gully erosion using high-resolution aerial imagery: a 40-year case study from the Loess Plateau, northern China [J]. Geoderma, 2019, 347(12): 90-102. [90] PARTOVI T, DAHNE M, MABOUDI M, et al. Automatic integration of laser scanning and photogrammetric point clouds: from acquisition to co-registration [J]. Remote Sensing and Spatial Information Sciences, 2021, 85(02): 85-92. [91] CASTILLO C, PEREZ R, JAMES M, et al. Comparing the accuracy of several field methods for measuring gully erosion [J]. Soil Science Society of America Journal, 2012, 76(04): 1319-1332. [92] KAISER A, NEUGIRG F, ROCK G, et al. Small-scale surface reconstruction and volume calculation of soil erosion in complex moroccan gully morphology using structure from motion [J]. Remote Sensing, 2014, 6(08): 7050-7080. [93] LANNOEYE W, STAL C, GUYASSA E, et al. The use of SfM-photogrammetry to quantify and understand gully degradation at the temporal scale of rainfall events: an example from the Ethiopian drylands [J]. Physical Geography, 2016, 37(06): 430-451. [94] GUDINO E, NAPOLEON, BIGGS, et al. Measuring ephemeral gully erosion rates and topographical thresholds in an urban watershed using unmanned aerial systems and structure from motion photogrammetric techniques [J]. Land Degradation and Development, 2018, 29(06): 1896-1905. [95] PROSDOCIMI M, BURGUET M, PRIMA S, et al. Rainfall simulation and Structure-from-Motion photogrammetry for the analysis of soil water erosion in Mediterranean vineyards [J]. Science of the Total Environment, 2017, 574(01): 204-215. [96] BALAGUER M, MARQUES A, LUIS L, et al. Estimation of small-scale soil erosion in laboratory experiments with structure from motion photogrammetry [J]. Geomorphology, 2017, 295(15): 285-296. [97] 覃超, 郑粉莉, 徐锡蒙, 等. 基于立体摄影技术的细沟与细沟水流参数测量 [J]. 农业机械学报, 2016, 47(11): 150-156. [98] 刘宝元, 史扬子, 黄婷婷, 等. SfM摄影测量法测定切沟的精度评价 [J]. 水土保持研究, 2020, 27(01): 39-46. [99] GLENDELL M, MCSHANE G, FARROW L, et al. Testing the utility of structure-from-motion photogrammetry reconstructions using small unmanned aerial vehicles and ground photography to estimate the extent of upland soil erosion [J]. Earth Surface Processes and Landforms, 2017, 42(12): 1860-1871. [100] MCSHANE G, JAMES M, QUINTON J, et al. Comparing and combining terrestrial laser scanning with ground- and UAV-based imaging for national-level assessment of soil erosion [R]. Austria: European Geosciences Union, 2014. [101] RICHARD. DEMs of Difference[J]. Geomorphological Techniques, 2012, 2(32): 11-13. [102] ROGER M, THOMAS A. An analysis of cloud cover in multiscale modeling framework global climate model simulations using 4 and 1 km horizontal grids [J]. Geophysical Research, 2010, 115(D16): 132-138. [103] PARRA D, LALINDE J, SANCHEZ J, et al. Perfect spatial hashing for point-cloud-to-mesh registration [R]. Salamanca: Crossmodal Perception in Immersive Environments, 2019. [104] DOWELL S, BARRETO A, MICHAEL J, et al. Cloud to cloud interoperability [C] // International Conference on System of Systems Engineering. International Conference on System of Systems Engineering(6th). Albuquerque: Nanotechnology, 2011: 14-19. [105] BORRADAILE G. Statistics of earth science data : their distribution in time, space and orientation [J]. Borradaile, 2003, 13(02): 11-19. [106] LAGUE D, BRODU N, LEROUX J. Accurate 3D comparison of complex topography with terrestrial laser scanner: application to the rangitikei canyon (N-Z) [J]. Isprs Journal of Photogrammetry and Remote Sensing, 2013, 82(13): 10-26. [107] ANTONIAZZA G, BAKKER M. Revisiting the morphological method in two imensions to quantify bed aterial transport in braided rivers [J]. Earth Surface Processes and Landforms, 2019, 44(11): 2251-2267. [108] HERITAGE G, MILAN D, LARGE A, et al. Influence of survey strategy and interpolation model on DEM quality [J]. Geomorphology, 2009, 112(3-4): 334-344. [109] WHEATON J, BRASINGTON J, DARBY S, et al. Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets [J]. Earth Surface Processes and Landforms, 2010, 35(02): 136-156. [110] TUCKER G, RENGERS F, MOODY J, et al. Illuminating wildfire erosion and deposition patterns with repeat terrestrial lidar [J]. Journal of Geophysical Research: Earth Surface, 2016, 121(03): 588-608. [111] LANE S, WESTAWAY R, HICKS D. Estimation of erosion and deposition volumes in a large gravel-bed, braided river using synoptic remote sensing [J]. Earth Surface Processes and Landforms, 2010, 28(03): 249-271. [112] BRASINGTON J. Monitoring and modelling morphological change in a braided gravel-bed river using high resolution GPS-based survey [J]. Earth Surface Processes and Landforms, 2015, 25(09): 973-990. [113] MILAN D, HERITAGE G, HETHERINGTON D. Application of a 3D laser scanner in the assessment of erosion and deposition volumes and channel change in a proglacial river [J]. Earth Surface Processes and Landforms, 2010, 32(11): 1657-1674. [114] BASH E A, MOORMAN B, GUNTHER A. Detecting short-term surface melt on an arctic glacier using UAV surveys [J]. Remote Sensing, 2018, 10(10): 1547. [115] FABRIS M, FONTANA P, MONEGO M. Expeditious low-cost SfM photogrammetry and a TLS survey for the structural analysis of illasi castle (Italy) [J]. Drones, 2023, 7(02): 101-103. [116] VIVERO S, LAMBIEL C. Monitoring the crisis of a rock glacier with repeated UAV surveys [J]. Geographica Helvetica, 2019, 74(01): 59-69. [117] 高璐媛, 高健健, 党维勤, 等. 辛店试验场发展历史及建设经验 [J]. 中国水土保持, 2022, 02(10): 25-27. [118] 高健健, 艾绍周, 党维勤, 等. 辛店沟水土保持示范园建设成效 [J]. 中国水土保持, 2022, 12(02): 4-8. [119] WU Y, CHENG H. Monitoring of gully erosion on the Loess Plateau of China using a global positioning system [J]. Catena, 2005, 63(23): 154-166. [120] 高健健, 刘立峰, 高璐媛, 等. 新时期水土保持科技示范园建设的实践和思考—以辛店沟水土保持示范园为例 [J]. 中国水土保持, 2022, 3(10): 15-17. [121] 刘见波, 高光耀, 傅伯杰. 黄土区草地不同组分与土壤侵蚀关系及其对降雨情景的响应 [J]. 生态学报, 2023, 43(04): 1496-1505. [122] 汪明霞, 王卫东, 高保林. 黄土高原典型区植被对水土流失影响研究 [J]. 黄河水利职业技术学院学报, 2014, 26(03): 18-21. [123] YUAN X, HAN J, SHAO Y, et al. Geodetection analysis of the driving forces and mechanisms of erosion in the hilly-gully region of northern Shaanxi Province [J]. Geographical Sciences, 2019, 29(05): 779-790. [124] 赵卫东, 周文怡, 马雷, 等. 基于势能信息熵的黄土小流域沟谷网络演化特征研究 [J]. 地理与地理信息科学, 2021, 37(06): 6-7. [125] JIA R, LU Q. Collective action and the implementation of soil and water conservation measures in the Loess Plateau of China [J]. Natural Hazards, 2018, 18(06): 18-21. [126] ZHAI J, SHAO Q, LIU J, et al. Assessing the effects of land use and topography on soil erosion on the Loess Plateau in China [J]. Catena, 2014, 121(08): 151-163. [127] WANG X, WANG Z, XIAO J, et al. Soil erosion fluxes on the central Chinese Loess Plateau during CE 1811 to 1996 and the roles of monsoon storms and human activities [J]. Catena, 2021, 200(01): 105148. [128] 刘思君, 刘立峰, 刘姗姗, 等. 黄土丘陵沟壑区桥沟小流域水沙变化特征及成因分析 [J]. 中国水土保持, 2022, 42(10): 9-15. [129] 王玲玲, 姚文艺, 黄静, 等. 黄土丘陵沟壑区不同空间尺度地貌单元产流时间尺度特征 [J]. 干旱区资源与环境, 2014, 22(07): 4-6. [130] 李来仕, 王清, 孔元元, 等. 基于层次分析法的灰坝桥沟泥石流危险性评价 [J]. 路基工程, 2017, 12(01): 184-188. [131] 袁东, 冯涛, 林之恒, 等. 泥石流灾害对新建康定车站的影响研究 [J]. 高速铁路技术, 2020, 11(04): 88-94. [132] 徐建华. 水利水保工程对黄河中游多沙粗沙区径流泥沙影响研究 [M]// 北京: 北京科学出版社, 2000: 189-196. [133] GONG J, JIA Y, ZHOU Z, et al. An experimental study on dynamic processes of ephemeral gully erosion in loess landscapes [J]. Geomorphology, 2011, 125(01): 203-213. [134] 康宏亮, 王文龙, 薛智德, 等. 冲刷条件下黄土丘陵区浅沟侵蚀形态及产流产沙特征 [J]. 农业工程学报, 2016, 32(20): 161-170. [135] KANG H, GUO M, WANG W. Ephemeral gully erosion in concentrated flow channels induced by rainfall and upslope inflow on steep loessial slopes [J]. Land Degradation and Development, 2021, 32(17): 5037-5051. [136] 黄河中游水土保持委员会. 1954—1963黄河中游水土保持径流测验资料 天水,西峰,绥德站小流域部分 [M]// 陕西: 黄河中游水土保持委员会, 1966: 192-299. [137] SHU W, ZHANG Y, CHONG B. Experimental study on rill erosion processes and flow hydraulic characteristics on loess gentle slope [J]. Sediment Research, 2015, 137(12): 536-544. [138] 郭俊杰. 基于时序Landsat的合肥市土地覆被信息提取研究 [D]. 合肥: 安徽大学, 2018. [139] DURO G, CROSATO A, KLEINHANS M, et al. Bank erosion processes measured with UAV-SfM along complex banklines of a straight mid-sized river reach [J]. Earth Surface Dynamics, 2018, 6(04): 933-953. [140] YANG Y, YSA B, XLA B, et al. Evaluation of structure-from-motion(SfM) photogrammetry on the measurement of rill and interrill erosion in a typical loess [J]. Geomorphology, 2021, 385(06): 107734. [141] JAMES M, ROBSON S. Straightforward reconstruction of 3D surfaces and topography with a camera: accuracy and geoscience application [J]. Journal of Geophysical Research: Earth Surface, 2012, 117(F3): 12-16. [142] GUERRA J, COSENZA D, ESTRAVIZ R, et al. Comparison of ALS- and UAV(SfM)-derived high-density point clouds for individual tree detection in Eucalyptus plantations [J]. International Journal of Remote Sensing, 2018, 00(15): 5211-5235. [143] NADAL E, REVUELTO, ERREA P, et al. The application of terrestrial laser scanner and SfM photogrammetry in measuring erosion and deposition processes in two opposite slopes in a humid badlands area (central Spanish Pyrenees) [J]. Soil, 2015, 1(02): 561-573. [144] VINCI A, TODISCO, RADICIONI F, et al. A smartphone camera for the structure from motion reconstruction for measuring soil surface variations and soil loss due to erosion [J]. Hydrology Research, 2017, 48(03): 673-685. [145] KOOPAEI S, KAZEROONI A, GHAFOORI M, et al. Quantification of multi-parametric magnetic resonance imaging based on radiomics analysis for differentiation of benign and malignant lesions of prostate [J]. Journal of Shiraz University of Medical Sciences, 2021, 22(06): 698-702. [146] ZAPICO I, MOLINA A, LARONNE J, et al. Stabilization by geomorphic reclamation of a rotational landslide in an abandoned mine next to the Alto Tajo Natural Park [J]. Engineering Geology, 2019, 264(03): 105321. [147] 宋晓鹏, 张岩, 王志强, 等. 无人机摄影测量提取黄土高原切沟参数精度分析 [J]. 北京师范大学学报(自然科学版), 2021, 57(05): 606-612. [148] GANG H, WU Y, LIU B, et al. Short-term gully retreat rates over rolling hill areas in black soil of Northeast China [J]. Catena, 2007, 71(02): 321-329. [149] ANGILERI, ELEONORA S, GOMEZ, et al. Using topographical attributes to evaluate gully erosion proneness (susceptibility) in two mediterranean basins: advantages and limitations [J]. Natural Hazards, 2015, 79(01): 291-314. [150] JAMES L, WATSON D, FHANSEN W. Using LiDAR data to map gullies and headwater streams under forest canopy: South Carolina, USA [J]. Catena, 2007, 71(01): 132-144. [151] SEBASTIAN D, IRENE M, KLAUS P, et al. Unmanned aerial vehicle(UAV) for monitoring soil erosion in Morocco [J]. Remote Sensing, 2012, 4(11): 3390-3416. [152] WANG R, HU R, ZHANG S, et al. Gully erosion mapping and monitoring at multiple scales based on multi-source remote sensing data of the sancha river catchment, Northeast China [J]. ISPRS International Journal of Geo-Information, 2016, 5(11): 200-201. [153] LI P, REN F, HU J, et al. Monitoring soil erosion on field slopes by terrestrial laser scanning and structure-from-motion [J]. Land Degradation and Development, 2023, DOI 10.1002/ldr.4712: 1085-3278. [154] ZHANG Y. Accuracy assessment of a UAV direct georeferencing method and impact of the configuration of ground control points [J]. Drones, 2022, 6(02): 101-108. [155] BESELLY S, SAJALI M. Citizen-science with off-the-shelf UAV for coastal monitoring [J]. Earth and Environmental Science, 2021, 930(01): 012001. [156] STCKER C, ELTNER A. KARRASCH P. Measuring gullies by synergetic application of UAV and close range photogrammetry-a case study from Andalusia, Spain [J]. Catena, 2015, 132(06): 1-11. [157] WANG W, ZHANG S, FANG H. Coupling mechanism of slope-gully erosion in typical black soil area of northeast China [J]. Natural Resources, 2012, 12(02): 206-208. [158] MERCURI M, CONFORTI M, CIURLEO M, et al. UAV application for short-time evolution detection of the vomice landslide (South Italy) [J]. Geosciences, 2023, 13(02): 29-31. [159] FALLU D, BROWN A, ZHANG H, et al. Multiplatform-SfM and TLS data fusion for monitoring agricultural terraces in complex topographic and landcover conditions [J]. Remote Sensing, 2020, 12(12): 1946. [160] RUSNK M, MACKA Z, KIDOVA A, et al. Remote sensing of riparian ecosystems [J]. Remote Sensing, 2022, 14(11): 2645. [161] RADOSLAW P, PAULINA L, BOLESLAW Z. Inventory and digital documentation for uncovering the hidden secrets of pre-hispanic heritage sites-an example of ancestral pueblo community from the mesa verde region, southwestern Colorado, USA [J]. Digital Applications in Archaeology and Cultural Heritage, 2023, 28(23): e00256. [162] ROGELIO F, PATRICIA S, GILLBERTO R, et al. LiDAR applications in precision agriculture for cultivating crops: a review of recent advances [J]. Computers and Electronics in Agriculture, 2023, 207(23): 107737. [163] SIMONI A, KLAUS R, AGGELOS P, et al. Detecting and monitoring early post-fire sliding phenomena using UAV-SfM photogrammetry and t-LiDAR-derived point clouds [J]. Fire, 2021, 4(04): 4040087. [164] ZHU X, CAI F, TIAN J, et al. Spatiotemporal fusion of multisource remote sensing data: literature survey, taxonomy, principles, applications, and future directions [J]. Remote Sensing, 2018, 10(04): 527-541. [165] VIHERVAARA P, AUVINEN A, MONONEN L, et al. How essential biodiversity variables and remote sensing can help national biodiversity monitoring[J]. Global Ecology and Conservation, 2017, 10(C): 43-59.
﹀
|
中图分类号: |
P237
|
开放日期: |
2024-06-16
|