- 无标题文档
查看论文信息

论文中文题名:

 冻融循环作用下裂隙砂岩损伤破坏机制研究    

姓名:

 蒋蓓茹    

学号:

 21204228074    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085900    

学科名称:

 工学 - 工程 - 土木水利    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 土木水利    

研究方向:

 岩土力学与工程应用    

第一导师姓名:

 叶万军    

第一导师单位:

 西安科技大学    

第二导师姓名:

 段瑞凯    

论文提交日期:

 2024-06-14    

论文答辩日期:

 2024-06-03    

论文外文题名:

 Research on the Damage Mechanism of Fractured Sandstone under Freeze-Thaw Action in Regional Contexts    

论文中文关键词:

 裂隙砂岩 ; 冻融循环 ; CT扫描 ; 力学特性 ; 损伤劣化    

论文外文关键词:

 Fractured sandstone ; Freeze-thaw cycle ; CT scanning ; Mechanical properties ; Damage and deterioration    

论文中文摘要:

近年来,随着“一带一路”国家战略的有效实施,岩土建设工程日益增多,岩质边坡因冻融循环引发岩体损伤,并由天然裂隙或节理导致其宏观性能弱化,严重影响了工程建设与运营维护。论文以陕北府谷地区岩质边坡为背景,以不同裂隙倾角 (0°、30°、45°、60°及90°) 红砂岩为研究对象,开展冻融循环前后CT扫描、冻胀力监测、单轴压缩及三轴压缩试验,通过三维重构对岩样进行细观参数分析,并结合冻胀力及力学性质分析其动态力学特性。通过引入分形维数,建立裂隙砂岩冻融荷载损伤模型,进行细观与宏观的关联分析,并探究其损伤劣化机理。主要研究成果如下:

(1)通过对完整及不同裂隙倾角砂岩进行冻融循环试验,得到了冻融循环下砂岩劣化的表现形式及变形破坏模式。研究发现:饱水砂岩与干燥砂岩在裂纹生成方面展现出显著差异;在饱水砂岩中,裂纹首先从其两端开始出现,逐渐向中部延伸,而在干燥砂岩中主要从中部开始;随着冻融循环次数增加,砂岩内部缺陷贯通导致内部颗粒变得更为疏松,孔隙和微裂纹延伸贯通,导致干燥岩样质量及波速呈现加速减小的趋势,而饱水砂岩的质量和波速减小幅度更大。

(2)基于砂岩CT扫描试验结果,结合CT图像三维重构技术,提出了一种提取砂岩宏观裂隙的新技术。研究发现:选用非局部均值滤波与交互式阈值更有利于对宏观裂隙提取,非局部均值滤波可在降噪的同时有效去除环状伪影,交互式阈值适于宏观裂隙提取,在不均匀背景识别方面效果较好,将二者结合以实现阈值分割;冻融循环导致微裂隙逐渐竖向分布,冻融至60次时,每层切片均出现损伤区,预制裂隙岩样总体积和孔隙总体积逐渐增大,最大孔隙等效半径、孔隙体积、孔隙个数及分形维数可以定量表征冻融下砂岩的损伤变化,其细观结构参数均与冻融次数呈正相关;完整砂岩与裂隙砂岩相比,其冻融损伤程度较小,主要由外围产生环状损伤,裂隙岩石的损伤集中区则位于预制裂隙附近;岩样主要由小孔组成,占比达90%以上,随冻融循环次数的增长占比逐渐下降,发育为中孔及大孔,中孔和大孔占比逐渐上升。

(3)通过对砂岩进行冻胀力监测及动态力学测试,得到裂隙砂岩在不同饱水状态、不同裂隙倾角下的损伤力学特性及变形破坏模式。研究发现:饱水状态下的裂隙砂岩因水分的参与,微应变为正值,峰值逐渐增大;而干燥状态下微应变为负值,峰值逐渐降低,45°时微应变峰值最大,0°时微应变变化最小;与完整砂岩相比,裂隙砂岩的损伤更为明显;随裂隙倾角的增加,强度峰值与弹性模量呈“V”型趋势,60°时降低幅度最大,不同裂隙倾角和不同冻融次数都会影响砂岩的强度和变形行为;随着围压升高,裂隙砂岩强度、弹性模量呈现增大趋势,岩样应力-应变曲线出现残余强度,增加岩样塑性特性,抑制微裂隙扩展。在单轴和三轴压缩下,裂隙砂岩的破坏模式随着冻融次数和裂隙倾角的变化而变化,呈现出拉伸、劈裂、拉-剪混合或剪切等不同的破坏形态;随着围压的增加,裂隙砂岩的破坏模式逐渐向压缩破坏转变。

(4)根据试验结果,将弹性模量作为损伤变量,引入细观分形维数作为修正参数,构建考虑宏观及细观结构的裂隙砂岩冻融荷载损伤模型。研究发现:模型与试验结果吻合较好,从冻融荷载损伤演化曲线可以看出,砂岩冻融荷载损伤演化曲线呈“S”型趋势增长。随着冻融次数的增加,冻融损伤值增大,冻融增长速率减小。结合宏观力学性能测试及微观结构参数,分析冻融作用下砂岩的损伤机理,不同裂隙倾角对岩石的冻融损伤具有显著影响,与完整砂岩相比,封闭型倾角岩石在冻融过程中更易产生损伤。

论文外文摘要:

In recent years, with the effective implementation of the "One Belt, One Road" national strategy, geotechnical construction projects are increasing day by day. Rock slopes are damaged by freeze-thaw cycles, and their macro performance is weakened by natural cracks or joints, which seriously affects project construction, operation and maintenance. In this paper, the rock slope in Fugu area of northern Shaanxi province is taken as the background, and the red sandstone with different crack angles (0°, 30°, 45°, 60° and 90°) is taken as the research object. CT scanning, frost heave force monitoring, uniaxial compression and triaxial compression tests before and after freeze-thaw cycle are carried out. Combined with frost heave force and mechanical properties, the dynamic mechanical properties were analyzed. By introducing fractal dimension, the freeze-thaw load damage model of fractured sandstone is established, and the correlation analysis between micro and macro is carried out, and the damage deterioration mechanism is explored. The main research results are as follows:

(1) Through freeze-thaw cycle tests on intact sandstone with different fracture inclination angles, the degradation forms and deformation failure modes of sandstone under freeze-thaw cycle are obtained. The results show that there are significant differences in crack generation between water-saturated sandstone and dry sandstone. In water-saturated sandstones, cracks first appear from both ends and gradually extend to the middle, while in dry sandstones, cracks mainly start from the middle. With the increase of the number of freeze-thaw cycles, the internal particles become more loose due to the penetration of internal defects, and the extension and penetration of pores and micro-cracks, resulting in an accelerated decrease in the quality and wave velocity of dry rock samples, while the mass and wave velocity of water-saturated sandstone decrease more.

(2) Based on the results of sandstone CT scan test and the 3D reconstruction technology of CT images, a new technology for extracting macroscopic cracks in sandstone is proposed. It is found that the selection of non-local mean filtering and interactive threshold is more conducive to macro crack extraction, non-local mean filtering can effectively remove ring artifacts while reducing noise, and the interactive threshold is suitable for macro crack extraction and has a good effect on uneven background recognition. The two are combined to achieve threshold segmentation. The freeze-thaw cycle results in the vertical distribution of microcracks gradually. When freeze-thaw cycles reach 60 cycles, damage zones appear in each layer of slices, and the total volume of prefabricated fissured rock samples and the total volume of pores gradually increase. The maximum pore equivalent radius, pore volume, pore number and fractal dimension can quantitatively characterize the damage changes of sandstone under freeze-thaw cycles, and the microstructural parameters are positively correlated with the freeze-thaw cycles. Compared with fissured sandstone, the degree of freeze-thaw damage of intact sandstone is smaller, and the annular damage is mainly generated from the periphery, while the damage concentration area of fissured rock is located near the precast fracture. The rock samples are mainly composed of small holes, accounting for more than 90%, which gradually decrease with the increase of the number of freeze-thaw cycles, and develop into medium and large pores, and the proportion of medium and large pores gradually increases.

(3) Through frost heave force monitoring and dynamic mechanical testing of sandstone, the damage mechanical properties and deformation and failure modes of fractured sandstone under different water-saturated states and crack inclination angles are obtained. It is found that the micro-strain of fractured sandstone is positive and the peak value increases gradually due to the participation of water in the saturated state. In the dry state, the microstrain is negative and the peak value decreases gradually. The peak value of microstrain is maximum at 45°, and the change of microstrain is minimum at 0°. Compared with intact sandstone, the damage of fractured sandstone is more obvious. The peak strength and elastic modulus show a "V" trend with the increase of crack inclination, and the decrease is the largest at 60°. Different crack inclination and different freeze-thaw times will affect the strength and deformation behavior of sandstone. With the increase of confining pressure, the strength and elastic modulus of fractured sandstone tend to increase, and the residual strength appears in the stress-strain curve of rock sample, which increases the plastic characteristics of rock sample and inhibits the expansion of microcracks. Under uniaxial and triaxial compression, the failure modes of fractured sandstone change with the change of freeze-thaw times and fracture inclination Angle, showing different failure modes such as stretching, splitting, tension-shear mixing or shear. With the increase of confining pressure, the failure mode of fractured sandstone gradually changes to compression failure.

(4) According to the test results, the elastic modulus is taken as the damage variable and the mesoscopic fractal dimension is introduced as the modified parameter to build the freeze-thaw load damage model of fractured sandstone considering both macroscopic and mesoscopic structures. It is found that the model is in good agreement with the experimental results. It can be seen from the freeze-thaw load damage evolution curve that the sandstone freeze-thaw load damage evolution curve presents an "S" type trend. With the increase of freeze-thaw times, the freeze-thaw damage value increases and the freeze-thaw growth rate decreases. Combined with macroscopic mechanical properties and microstructure parameters, the damage mechanism of sandstone under freeze-thaw action is analyzed. Different crack inclination Angle has a significant impact on the freeze-thaw damage of rock. Compared with intact sandstone, closed rock with dip Angle is more prone to damage during freeze-thaw process.

参考文献:

侯志强.高海拔寒区矿山边坡裂隙岩体冻融力学特性及其稳定性研究[D].北京科技大学,2022.

[2] 乔雄,杨小龙,冯勇.高海拔严寒地区隧道冻害研究现状及展望[J].隧道建设(中英文),2024,44(02):233-256.

[3] Nicholson D T, Nicholson F H. Physical deterioration of sedimentary rocks subjected to experimental freeze–thaw weathering[J]. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 2000, 25(12): 1295-1307.

[4] Iñigo A C, Vicente M A, Rives V. Weathering and decay of granitic rocks: its relation to their pore network[J]. Mechanics of Materials, 2000, 32(9): 555-560.

[5] 陈国庆,许强,杨鑫,等.气候变化下高寒区裂隙岩石破裂机制及致灾模式[J/OL].地球科学,1-14[2024-04-26].

[6] Del Roa L M, Lopez F, Esteban F J, et al. Ultrasonic study of alteration processes in granites caused by freezing and thawing[C]//2005 IEEE Ultrasonics Symposium. 2005, 1: 415-418.

[7] 刘华,牛富俊,徐志英,等.循环冻融条件下安山岩和花岗岩的物理力学特性试验研究[J].冰川冻土,2011,33(03):557-563.

[8] 孟凡东,翟越,张韵生,等.冻融损伤后砂岩微结构的多重分形特征[J].地下空间与工程学报,2023,19(06):1791-1799.

[9] 宋勇军,车永新,陈佳星,等.冻融作用下不同饱和度红砂岩损伤力学特性[J].中南大学学报(自然科学版),2020,51(12):3493-3502.

[10] 刘慧,杨更社,任建喜.基于数字图像处理的冻融页岩温度场的数值分析方法[J].岩石力学与工程学报,2007,(08):1678-1683.

[11] 刘杰,张瀚,王瑞红,等.冻融循环作用下砂岩层进式损伤劣化规律研究[J].岩土力学,2021,42(05):1381-1394.

[12] 张慧梅,袁超,慕娜娜,等.冻融岩石CT图像处理及细观特征分析[J].西安科技大学学报,2022,42(02):219-226.

[13] 宋勇军,杨慧敏,谭皓,等.冻融环境下不同饱和度砂岩损伤演化特征研究[J].岩石力学与工程学报,2021,40(08):1513-1524.

[14] 杨慧敏.基于CT扫描的不同饱和度砂岩冻融损伤机理试验研究[D].西安科技大学,2021.

[15] De Argandona V G R, Rey A R, Celorio C, et al. Characterization by computed X-ray tomography of the evolution of the pore structure of a dolomite rock during freeze-thaw cyclic tests[J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 1999, 24(7): 633-637.

[16] 杨鸿锐,刘平,孙博,等.冻融循环对麦积山石窟砂砾岩微观结构损伤机制研究[J].岩石力学与工程学报,2021,40(03):545-555.

[17] Park J, Hyun C U, Park H D. Changes in microstructure and physical properties of rocks caused by artificial freeze–thaw action[J]. Bulletin of Engineering Geology and the Environment, 2015, 74: 555-565.

[18] De Kock T, Boone M A, De Schryver T, et al. A pore-scale study of fracture dynamics in rock using X-ray micro-CT under ambient freeze–thaw cycling[J]. Environmental science & technology, 2015, 49(5): 2867-2874.

[19] Maji V, Murton J B. Micro‐computed tomography imaging and probabilistic modelling of rock fracture by freeze–thaw[J]. Earth Surface Processes and Landforms, 2020, 45(3): 666-680.

[20] 徐光苗,刘泉声,彭万巍,等.低温作用下岩石基本力学性质试验研究[J].岩石力学与工程学报,2006,(12):2502-2508.

[21] Tan X, Chen W, Yang J, et al. Laboratory investigations on the mechanical properties degradation of granite under freeze–thaw cycles[J]. Cold Regions Science and Technology, 2011, 68(3): 130-138.

[22] 杨更社,奚家米,李慧军,等.三向受力条件下冻结岩石力学特性试验研究[J].岩石力学与工程学报,2010,29(03):459-464.

[23] 闻磊,李夕兵,尹彦波,等.冻融循环作用下花岗斑岩和灰岩物理力学性质对比分析及应用研究[J].冰川冻土,2014,36(03):632-639.

[24] 闻磊,李夕兵,唐海燕,等.变温度区间冻融作用下岩石物理力学性质研究及工程应用[J].工程力学,2017,34(05):247-256.

[25] 单仁亮,张蕾,杨昊,等.饱水红砂岩冻融特性试验研究[J].中国矿业大学学报,2016,45(05):923-929.

[26] Winkler E M. Frost damage to stone and concrete: geological considerations[J]. Engineering Geology, 1968, 2(5): 315-323.

[27] Matsuoka N. Mechanisms of rock breakdown by frost action: an experimental approach[J]. Cold Regions Science and Technology, 1990, 17(3): 253-270.

[28] Bayram F. Predicting mechanical strength loss of natural stones after freeze–thaw in cold regions[J]. Cold Regions Science and Technology, 2012, 83: 98-102.

[29] 李新平,路亚妮,王仰君.冻融荷载耦合作用下单裂隙岩体损伤模型研究[J].岩石力学与工程学报, 2013, 32(11): 2307-2315.

[30] 路亚妮,李新平,吴兴宏.三轴压缩条件下冻融单裂隙岩样裂缝贯通机制[J].岩土力学, 2014, 35(06): 1579-1584.

[31] 路亚妮. 2013, 裂隙岩体冻融损伤力学特性试验及破坏机制研究[D]. 武汉理工大学.

[32] Baud P, Wong T, Zhu W. Effects of porosity and crack density on the compressive strength of rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 67: 202-211.

[33] JianPing Y, WeiZhong C, DianSen Y, et al. Numerical determination of strength and deformability of fractured rock mass by FEM modeling[J]. Computers and Geotechnics, 2015, 64: 20-31.

[34] Bubeck A, Walker R J, Healy D, et al. Pore geometry as a control on rock strength[J]. Earth and Planetary Science Letters, 2017, 457: 38-48.

[35] Wu F, Deng Y, Wu J, et al. Stress–strain relationship in elastic stage of fractured rock mass[J]. Engineering geology, 2020, 268: 105498.

[36] Mohd-Nordin M M, Song K I, Kim D, et al. Evolution of joint roughness degradation from cyclic loading and its effect on the elastic wave velocity[J]. Rock Mechanics and Rock Engineering, 2016, 49: 3363-3370.

[37] 肖桃李,李新平,郭运华.三轴压缩条件下单裂隙岩石的破坏特性研究[J].岩土力学, 2012, 33(11): 3251-3256.

[38] 肖桃李,李新平,贾善坡.深部单裂隙岩体结构面效应的三轴试验研究与力学分析[J].岩石力学与工程学报, 2012, 31(08): 1666-1673.

[39] 肖桃李,李新平,贾善坡.含2条断续贯通预制裂隙岩样破坏特性的三轴压缩试验研究[J].岩石力学与工程学报, 2015, 34(12): 2455-2462.

[40] 路亚妮,李新平,肖桃李.三向应力下裂隙岩石力学特性试验研究[J].武汉理工大学学报, 2013, 35(09): 91-95+106.

[41] 路亚妮,李新平,肖家双.单裂隙岩体冻融力学特性试验分析[J].地下空间与工程学报, 2014, 10(03): 593-598+649.

[42] 阎锡东, 刘红岩, 邢闯锋, 等. 基于微裂隙变形与扩展的岩石冻融损伤本构模型研究[J]. 岩土力学, 2015, 36(12): 3489–3499.

[43] 傅鹤林,张加兵,黄震,等.冻融循环作用下板岩弹性参数及单轴抗压强度研究[J].岩土力学, 2017, 38(08): 2203-2212.

[44] Hoek E, Bieniawski Z T. Brittle fracture propagation in rock under compression[J]. International Journal of Fracture Mechanics, 1965, 1: 137-155.

[45] Xu J, Li Z. Damage evolution and crack propagation in rocks with dual elliptic flaws in compression[J]. acta mechanica solida sinica, 2017, 30: 573-582.

[46] 黄凯珠,林鹏,唐春安,等.双轴加载下断续预置裂纹贯通机制的研究[J].岩石力学与工程学报, 2002, (06): 808-816.

[47] 申艳军,杨更社,荣腾龙,等.冻融循环作用下单裂隙类砂岩局部化损伤效应及端部断裂特性分析[J].岩石力学与工程学报, 2017, 36(03): 562-570.

[48] 申艳军,杨更社,王铭,等.冻融–周期荷载下单裂隙类砂岩损伤及断裂演化试验分析[J].岩石力学与工程学报, 2018, 37(03): 709-717.

[49] 李树春,许江,陶云奇,等.岩石低周疲劳损伤模型与损伤变量表达方法[J].岩土力学, 2009, 30(06): 1611-1614+1619.

[50] 贾海梁.多孔岩石及裂隙岩体冻融损伤机制的理论模型和试验研究[D].中国地质大学, 2016.

[51] Krautblatter M, Funk D, Günzel F K. Why permafrost rocks become unstable: a rock–ice‐mechanical model in time and space[J]. Earth Surface Processes and Landforms, 2013, 38(8): 876-887.

[52] Bost M, Pouya A. Stress generated by the freeze–thaw process in open cracks of rock walls: empirical model for tight limestone[J]. Bulletin of Engineering Geology and the Environment, 2017, 76: 1491-1505.

[53] Lu Y, Li X, Chan A. Damage constitutive model of single flaw sandstone under freeze-thaw and load[J]. Cold Regions Science and Technology, 2019, 159: 20-28.

[54] 徐光苗.寒区岩体低温、冻融损伤力学特性及多场耦合研究[J].岩石力学与工程学报, 2007, (05): 1078.

[55] 张慧梅,孟祥振,彭川,等.冻融-荷载作用下基于残余强度特征的岩石损伤模型[J].煤炭学报, 2019, 44(11): 3404-3411.

[56] 刘泉声,康永水,刘小燕.冻结岩体单裂隙应力场分析及热-力耦合模拟[J].岩石力学与工程学报, 2011, 30(02): 217-223.

[57] 陈松,乔春生,叶青,等.冻融荷载下节理岩体的复合损伤模型[J].哈尔滨工业大学学报, 2019, 51(02): 100-108.

[58] 刘泉声,黄诗冰,康永水,等.裂隙岩体冻融损伤研究进展与思考[J].岩石力学与工程学报, 2015, 34(03): 452-471.

[59] 李新平,路亚妮,王仰君.冻融荷载耦合作用下单裂隙岩体损伤模型研究[J].岩石力学与工程学报, 2013, 32(11): 2307-2315.

[60] Wang D, Zeng F, Wei J, et al. Quantitative analysis of fracture dynamic evolution in coal subjected to uniaxial and triaxial compression loads based on industrial CT and fractal theory[J]. Journal of Petroleum Science and Engineering, 2021, 196: 108051.

[61] 彭瑞东, 杨彦从, 鞠杨, 等. 基于灰度 CT 图像的岩石孔隙分形维数计算[J]. 科学通报, 2011, 56(26): 2256-2266.

[62] Cai J, Wei W E I, Hu X, et al. Fractal characterization of dynamic fracture network extension in porous media[J]. Fractals, 2017, 25(2): 1750023.

[63] 李祥庆. 冻融循环条件下岩体损伤-断裂力学特性研究[D].昆明理工大学, 2024.

[64] 杨鸿锐.冻融循环作用下砂砾岩微观结构损伤机制研究[J].工程勘察, 2022, 50(07): 22-29.

[65] 夏晨皓,李斯涵,王天禹,等.裂隙岩体冻胀破坏的研究进展[J].水利规划与设计, 2020(11): 112-116.

[66] 舒佳军,邓正定,伍冰妮.寒区隧道孔隙围岩冻胀起裂破坏判据(英文)[J].水利水电技术(中英文), 2022, 53(03): 176-184.

[67] 郑新雨.寒区富水隧道围岩冻胀力及衬砌结构裂损演化规律研究[D].山东大学, 2023.

[68] 胡玉波. 饱水及冻融作用对砂岩损伤破裂及声发射特性影响的试验研究[D].华北水利水电大学, 2024.

[69] 鄂昱德. 低温下不同含冰饱和度砂岩动态力学性能研究[D].中南大学, 2024.

[70] Tan X,Chen W,Liu H,et al. A unified model for frost heave pressure in the rock with a penny-shaped fracture during freezing[J]. Cold Regions Science and Technology, 2018, 153: 1–9.

[71] Xia C,Lv Z,Li Q,et al. Transversely isotropic frost heave of saturated rock under unidirectional freezing condition and induced frost heaving force in cold region tunnels[J]. Cold Regions Science and Technology, 2018, 152: 48–58.

[72] 刘泉声, 黄诗冰, 康永水, 等. 裂隙冻胀压力及对岩体造成的劣化机制初步研究[J]. 岩土力学, 2016, 37(6): 1530–1542.

[73] 黄诗冰, 刘泉声, 刘艳章, 等. 低温热力耦合下岩体椭圆孔(裂)隙中冻胀力与冻胀开裂特征研究[J].岩土工程学报, 2018, 40(3): 459–467.

[74] 黄诗冰, 刘泉声, 程爱平, 等. 低温岩体裂隙冻胀力与冻胀扩展试验初探[J]. 岩土力学, 2018, 39(1): 78–84.

[75] 周家文, 杨兴国, 符文熹, 等.脆性岩石单轴循环加卸载试验及断裂损伤力学特性研究[J].岩石力学与工程学报, 2010, 29(06): 1172-1183.

[76] 徐光苗.寒区岩体低温、冻融损伤力学特性及多场耦合研究[D].中国科学院研究生院(武汉岩土力学研究所), 2006.

[77] Hallbauer D K, Wagner H, Cook N G W. Some observations concerning the microscopic and mechanical behaviour of quartzite specimens in stiff, triaxial compression tests[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1973, 10(6):713-726.

[78] 王宇.冻融单裂隙英安岩物理力学特性的相似材料试验及损伤本构模型研究[D].成都理工大学, 2019.

[79] Huang SB, Liu QS, Cheng AP, et al. A statistical damage constitutive model under freeze-thaw and loading for rock and its engineering application[J]. Cold Regions Science and Technology, 2018, 145: 142-15

[80] Zhang HM, Meng XZ, Yang GS. A study on mechanical properties and damage model of rock subjected to freeze-thaw cycles and confining pressure[J]. Cold Regions Science and Technology, 2020, 174.

[81] Li SC, Xu J, Tao YQ, et al. Study on damage constitutive model of rocks based on lognormal distribution[J]. Journal of Coal Science and Engineering, 2007, 13(4): 430-433.

[82] 杨更社. 岩石损伤检测技术及其进展[J].长安大学学报(自然科学版), 2003, (06): 47-55.

[83] 曹文贵, 赵衡, 李翔, 等. 基于残余强度变形阶段特征的岩石变形全过程统计损伤 模拟方法[J]. 土木工程学报, 2012, 45(6): 139-145.

[84] 曹文贵,方祖烈,唐学军.岩石损伤软化统计本构模型之研究[J].岩石力学与工程学报, 1998, (06): 628-633.

[85] Krajcinovic D, Silva M A G. Statistical aspects of the continuous damage theory[J]. International Journal of Solids and Structures, 1982, 18(7): 551-562.

[86] Wang Z, Li Y, Wang J G. A damage-softening statistical constitutive model considering rock residual strength[J]. Computers & Geosciences, 2007, 33(1): 1-9.

[87] 张慧梅, 杨更社. 冻融环境下红砂岩力学特性试验及损伤分析[J].力学与实践, 2013, 35(03):57–61.

[88] 宋杰,孟凡震,岳祝凤,等.节理裂隙岩体力学特性的研究进展[J].青岛理工大学学报, 2021, 42(05): 140-150+154.

[89] 李斯涵,夏晨皓,王天禹,等.近年来裂隙岩体冻胀破坏研究进展[J].西部探矿工程, 2021, 33(06): 3-5.

[90] 夏晨皓,李斯涵,王天禹,等.裂隙岩体冻胀破坏的研究进展[J].水利规划与设计, 2020, (11): 112-116.

[91] Yang S Q, Jiang Y Z, Xu W Y, et al. Experimental investigation on strength and failure behavior of pre-cracked marble under conventional triaxial compression[J]. International Journal of Solids and Structures, 2008, 45(17): 4796–4819.

[92] Bagde M N, Petroš V. Fatigue properties of intact sandstone samples subjected to dynamic uniaxial cyclical loading[J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(2): 237–250.

[93] 徐光苗, 刘泉声. 岩石冻融破坏机理分析及冻融力学试验研究[J]. 岩石力学与工程学报, 2005, (17): 3076–3082.

[94] Tuǧrul A. The effect of weathering on pore geometry and compressive strength of selected rock types from Turkey[J]. Engineering geology, 2004, 75(3-4): 215-227.

[95] 张伟, 周国庆, 张海波等. 倾角对裂隙岩体力学特性影响试验模拟研究[J]. 中国矿业大学学报, 2009, 38(01): 30–33.

[96] 童立红,伍冰妮,吴琳琳,等.砂岩应变相关变形损伤本构理论及试验研究[J].长江科学院院报, 2023, 40(08): 105-111.

[97] 刘小红,晏鄂川,朱杰兵等.三轴加卸载条件下岩石损伤破坏机理CT试验分析[J].长江科学院院报, 2010, 27(12): 42-46+51.

[98] 郭萍,曾兴贵.动静荷载作用下岩体共线含水裂隙扩展规律研究[J].水利水电技术(中英文), 2022, 53(10): 198-209.

[99] 程斌斌,傅子群,陈军涛.裂隙长度对大尺寸岩样裂隙演化及破裂的影响特征[J].山东煤炭科技, 2022, 40(12): 163-165.

[100] 裴向军, 蒙明辉, 袁进科, 等. 干燥及饱水状态下裂隙岩石冻融特征研究[J]. 岩土力学, 2017.

中图分类号:

 TU452    

开放日期:

 2024-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式