- 无标题文档
查看论文信息

题名:

 液态CO2萃取与溶蚀对煤体孔隙结构影响机制研究    

作者:

 王虎    

学号:

 19120089013    

保密级别:

 保密(4年后开放)    

语种:

 chi    

学科代码:

 083700    

学科:

 工学 - 安全科学与工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2022    

学校:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 矿井瓦斯防治    

导师姓名:

 文虎    

导师单位:

 西安科技大学    

提交日期:

 2023-01-08    

答辩日期:

 2022-12-08    

外文题名:

 Study on mechanism of influence of CO2 extraction and dissolution on coal pore structure    

关键词:

 煤体 ; 液态CO2 ; 萃取与溶蚀 ; 孔隙结构 ; 吸附特征    

外文关键词:

 Coal ; Liquid CO2 ; Pore structure ; Adsorption characteristics ; Extraction and dissolution    

摘要:

液态CO2注入煤层驱替置换CH4是近年来强化瓦斯抽采及碳封存的重要手段之一。液态CO2注入煤层后,经“液相渗流-相变增压-气液传质”等过程,与煤体发生物理和化学作用,煤的微观特征如孔隙分布、表面化学性质和吸附特征发生变化。煤孔隙中充填的矿物质及有机质极大堵塞了其连通性,是造成渗透性偏低的主要原因。液态CO2属于非极性流体,煤层注入CO2流体会引起煤体中的无机矿物质、有机质进一步与酸性流体之间发生强烈的水岩相互作用,煤中的矿物质发生不同程度的溶蚀、转化和沉淀,有机物质发生溶出及萃取作用,导致煤岩物理结构、化学结构等储层物化性质进一步改变。因此,研究液态CO2注入煤层后在不同阶段对煤中无机矿物质、有机物质的作用及其对煤体孔隙结构的改造机制具有重要工程应用价值。

选取三种不同变质程度的煤样为研究对象,采用理论分析、数值模拟和实验测试等相结合的研究方法,开展液态CO2萃取与溶蚀对煤体改性相关研究。分别开展不同变质程度、压力和时间等条件下液态CO2萃取和溶蚀煤体实验,对原煤和残煤进行微观结构、组分含量和气体吸附特征测试,掌握液态CO2对煤体理化作用前后物性参数演化规律,取得的主要研究成果如下:

(1)基于萃取物料颗粒的质量守恒和溶蚀过程矿物颗粒分形特征,建立液态CO2萃取及溶蚀煤体数学模型,结合数值模拟分析有机质萃取和矿物溶蚀过程组分演化特征。随萃取压力增大,有机小分子在煤体内扩散速率增大,有利于小分子有机质溶出;在较大孔隙中,液态CO2与孔隙表面接触面积增大,小分子有机质易于析出;矿物在煤体孔裂隙中主要以充填或薄膜状附着两种状态赋存,溶蚀速率与矿物溶蚀相对反应时间呈明显非线性关系,溶蚀前一半矿物颗粒所需时间相对较短,随着CO2压力升高,方解石溶解度迅速增加,其它矿物溶解度增大的速率较为缓慢。

(2)开展了不同变质程度、压力和时间等条件下液态CO2萃取煤样单因素实验,对比分析了不同参数对液态CO2萃取煤中有机质含量的影响规律和动力学特征。三种煤样原煤与萃取后残煤红外光谱基本一致,吸收峰强度有明显差异,液态CO2萃取作用未显著破坏煤的大分子结构;三种煤样经液态CO2萃取后,脂肪烃和芳香烃相对含量与压力呈正相关趋势,酮类、醇类、醚类和酯类化合物的溶出具有阶段性、时序性和爆发性等特点;萃取初始阶段,溶出物多为“游离”于大分子网络结构中、分子间引力较小的小分子化合物,随着萃取压力和时间的增大,呈“嵌入”态、分子作用力较强的烃类、非烃类小分子化合物被溶出。

(3)模拟地层温度和压力进行CO2与含水煤样溶蚀单因素实验,并对原煤样及反应后煤样进行矿物成分和元素相对含量测试分析。元素或元素组合的迁移与矿物赋存特征紧密相关,与碳酸盐矿物有关的Ca、Mn、Cu、Zn和Sr等元素,在反应初期具有较大的迁移率;与硫化物和硫酸盐矿物有关的Fe和S元素,在反应中期迁移率较大;在硅酸盐矿物中赋存的V、Ti、Al和Si等元素在反应后期表现出较大的迁移;三种煤样中高岭石、伊利石、石英和钾长石等矿物在不同溶蚀压力下,在反应过程中发生矿物相互转化作用,在反应中期,含量有明显变化;碳酸盐矿物在反应初期快速溶蚀,CO2压力对反应影响较大,对煤体孔裂隙结构重构起主导作用;黄铁矿在溶蚀反应中期发生微弱氧化还原反应,含量降低。

(4)基于液态CO2萃取及溶蚀煤体的物化反应实验,借助扫描电镜、CT扫描、低温N2吸附等孔裂隙测试手段,分别对液态CO2与煤物化反应前后表面和内部孔隙结构分布及连通性进行测试和对比分析。煤样经液态CO2萃取后,萃取残煤的颗粒大小分布比较均匀,表面形态明显变得平整光滑,矿物的部分溶蚀使孔裂隙和微裂隙进一步扩展和小范围连通,部分矿物反应后表面产生了大量的溶蚀孔;无烟煤、烟煤和褐煤经液态CO2萃取后,微孔数量减少,过渡孔和中孔含量增加,液态CO2萃取对微孔具有扩孔作用;三种煤样在CO2-H2O的溶蚀作用下,微孔、过渡孔和中孔数量均有明显增加,平均孔径增大;三种煤样经液态CO2萃取后,BET比表面积随萃取压力增大逐渐减小,微孔比表面积变化在整个孔隙比表面积中起主导作用,过渡孔和中孔比表面积在萃取前后无显著变化,煤中有机质萃取后,微孔被扩大、连通形成较大的孔,在扩孔的作用下导致煤样的总比表面积变小。

(5)基于液态CO2萃取与溶蚀前后煤体微观孔隙结构测试结果,分析了煤体孔隙结构对气体吸附特征的影响规律。各煤样对CO2气体分子表面吸附属于多层吸附;三种煤样经液态CO2萃取后,孔隙比表面积呈减小趋势,CO2吸附量随萃取压力增大而减小,无烟煤吸附量减小量大于烟煤和褐煤;经不同CO2压力溶蚀后,吸附量随溶蚀压力升高逐渐增大,烟煤吸附量增幅大于无烟煤和褐煤,经溶蚀后,烟煤适合CO2地质封存。

外文摘要:

Liquid CO2 injection into coal seam to displace methane is one of the important means to strengthen gas drainage and carbon sequestration in recent years. After the liquid CO2 is injected into the coal seam, through the process of "liquid seepage-phase change pressurization-gas-liquid mass transfer", it has physical and chemical interaction with coal, and the microscopic characteristics of coal, such as pore distribution, surface chemical properties and adsorption characteristics, change. The minerals and organic matter filled in the pores of coal greatly block its connectivity, which is the main reason for the low permeability. Liquid CO2 is a non-polar fluid. The injection of CO2 fluid into coal seam will cause a strong water-rock interaction between inorganic minerals and organic matter in coal and acidic fluid. Minerals in coal will be corroded, transformed and precipitated in different degrees, and organic matter will be dissolved and extracted, which will further change the physical and chemical properties of coal and rock. Therefore, it is of great engineering application value to study the effect of liquid CO2 fluid on inorganic minerals and organic substances in coal at different stages after liquid CO2 is injected into coal seam, and the mechanism of reforming coal pore structure.

Coal samples with different metamorphic degrees from three regions were selected as the research objects, and the related research on coal modification by liquid CO2 extraction and dissolution was carried out by using theoretical analysis, numerical simulation, experimental test and other research methods. Experiments on extraction and dissolution of coal by liquid CO2 under different metamorphic degrees, pressures, time and other conditions were carried out. The microstructure, component content and gas adsorption characteristics of raw coal and residual coal were tested to master the evolution law of coal physical properties before and after the physical and chemical effects of liquid CO2 on coal. The main research results are as follows:

(1) Based on the mass conservation of extracted material particles and fractal characteristics of mineral particles in the dissolution process, a model of liquid CO2 extraction and dissolution of coal was established, and the evolution characteristics of components in the extraction and dissolution process of organic matter and minerals were analyzed by numerical simulation. With the increase of extraction pressure, the diffusion rate of small organic molecules in coal increases, which is beneficial to the dissolution of small organic molecules. In larger pores, the contact area between liquid CO2 and pore surface increases, and small molecular organic matter is easy to precipitate. In the pores and fissures of mineral coal, it mainly exists in two states: filling or film attachment. The dissolution rate has an obvious nonlinear relationship with the relative reaction time of mineral dissolution. It takes a relatively short time to dissolve the first half of mineral particles. With the increase of CO2 pressure, the solubility of calcite increases rapidly, while the solubility of other minerals increases slowly.

(2) Single-factor experiments of extracting coal samples with liquid CO2 under different metamorphic degrees, pressures, time and other conditions were carried out, and the effects of different parameters on the organic matter content in coal extracted with liquid CO2 and its dynamic characteristics were compared and analyzed. The infrared spectra of raw coal and residual coal after extraction of three coal samples are basically the same, and the absorption peak intensity is obviously different. The macromolecular structure of coal is not obviously damaged by the extraction of liquid CO2. After the three coal samples were extracted by liquid CO2, the relative content of aliphatic hydrocarbon and aromatic hydrocarbon showed a positive correlation trend with the pressure, and the dissolution of ketones, alcohols, ethers and esters was characterized by stages, time series and explosiveness. At the initial stage of extraction, the dissolved substances are mostly small molecular compounds which are "free" in the macromolecular network structure and have low intermolecular attraction. With the increase of extraction pressure and time, hydrocarbon and non-hydrocarbon small molecular compounds which are "embedded" and have strong molecular force are dissolved out.

(3) Simulate the formation temperature and pressure, carry out the single factor experiment of CO2 and water-bearing coal samples, and test and analyze the mineral composition and relative content of elements of raw coal samples and coal samples after reaction. The migration of elements or combination of elements is closely related to the occurrence of minerals, and the elements related to carbonate minerals, such as Ca, Mn, Cu, Zn and Sr, have great mobility at the initial stage of the reaction. Fe and S elements related to sulfide and sulfate minerals have higher mobility in the middle of the reaction. Elements such as V, Ti, Al and Si existing in silicate minerals show great migration in the later stage of the reaction; Minerals such as kaolinite, illite, Shi Ying and potash feldspar in three coal samples undergo mineral transformation in the reaction process under different corrosion pressures, and their contents change obviously in the middle of the reaction. Carbonate minerals are rapidly dissolved in the initial stage of the reaction, and CO2 pressure has a great influence on the reaction, which plays a leading role in the reconstruction of coal pore and fissure structure. In the middle stage of pyrite dissolution reaction, a weak oxidation-reduction reaction occurred, and the content of pyrite decreased.

(4) Based on the experiment of extraction of liquid CO2 and physical and chemical reaction of dissolved coal, with the help of scanning electron microscope, CT scanning and low-temperature N2 adsorption, the surface cracks, internal pore structure distribution and connectivity before and after the physical and chemical reaction of liquid CO2 with coal were tested and compared. After the coal sample is extracted by liquid CO2, the coal particle size distribution of the extracted residual coal is relatively uniform, and the surface morphology becomes smooth obviously. Partial dissolution of minerals makes the pores and micro-cracks further expand and connect in a small range, and a large number of dissolved pores are formed on the surface of some minerals after reaction. After anthracite, bituminous coal and lignite are extracted by liquid CO2, the number of micropores decreases and the content of transition pores and mesopores increases. Liquid CO2 extraction can enlarge micropores. Under the corrosion of CO2-H2O, the number of micropores, transition pores and mesopores of the three coal samples increased obviously, and the average pore diameter increased. After the three kinds of coal samples were extracted by liquid CO2, the BET specific surface area gradually decreased with the increase of extraction pressure, and the change of micropore specific surface area played a leading role in the whole pore specific surface area. The specific surface areas of transition pore and mesopore had no significant change before and after extraction. After the organic matter in coal was extracted, micropores were enlarged and connected to form larger pores, which led to the decrease of total specific surface area of coal samples under the effect of reaming.

(5) The gas adsorption characteristics of coal samples before and after the action of liquid CO2 are compared and analyzed. Based on the test results of coal micro-pore structure before and after the extraction and dissolution of liquid CO2, the influence of coal pore structure reconstruction on gas adsorption characteristics is analyzed. The adsorption of CO2 gas molecules by coal samples on coal surface belongs to multi-layer adsorption; After three kinds of coal samples were extracted by liquid CO2, the pore specific surface area decreased, the adsorption capacity decreased with the increase of extraction pressure, and the adsorption capacity of anthracite coal decreased more than that of bituminous coal and lignite. After CO2 corrosion at different pressures, the adsorption capacity gradually increases with the corrosion pressure, and the adsorption capacity of bituminous coal increases more than that of anthracite and lignite. After corrosion, bituminous coal is suitable for CO2 geological storage.

参考文献:

[1] 袁亮. 我国煤矿安全发展战略研究[J]. 中国煤炭, 2021, 47(06): 1-6.

[2] 谢和平, 周宏伟, 薛东杰, 等. 我国煤与瓦斯共采:理论、技术与工程[J]. 煤炭学报, 2014, 39(08): 1391-1397.

[3] 王家臣. 煤与瓦斯共采需解决的关键理论问题与研究现状[J]. 煤炭工程, 2011(01): 1-3.

[4] 李培超, 孔祥言, 曾清红, 等. 煤层渗透率影响因素综述与分析[J]. 天然气工业, 2002(05): 45-49+8-7.

[5] 康永尚, 孙良忠, 张兵, 等.中国煤储层渗透率分级方案探讨[J]. 煤炭学报, 2017, 42(S1): 186-194.

[6] 刘晓强, 郭天魁, 曲占庆, 等. 水合物藏水力压裂储层改造可行性评价模型及应用[J]. 中南大学学报(自然科学版), 2022, 53(03): 1058-1068.

[7] 肖晓春, 潘一山, 吕祥锋, 等. 超声激励低渗煤层甲烷增透机理[J]. 地球物理学报, 2013, 56(05): 1726-1733.

[8] 廖华林, 王鄂川, 董林, 等. 水力切割模拟水合物储层成孔特性试验[J]. 中南大学学报(自然科学版), 2022, 53(03): 924-932.

[9] 于建新, 李真珍, 高帅杰, 等. 水下深孔爆破岩石裂纹扩展及损伤规律[J]. 科学技术与工程, 2022, 22(07): 2907-2913.

[10] 郑继荣, 张俊, 张苗苗. 焦作煤田煤层渗透率控制因素及预测[J]. 煤矿安全, 2012, 43(10): 174-177.

[11] 王相业, 李建武, 杨志远, 等. 柳林地区煤层渗透率逐步回归分析与预测[J]. 煤田地质与勘探, 2013, 41(03): 22-26.

[12] 唐书恒, 杨起, 汤达祯, 等. 注气提高煤层甲烷采收率机理及实验研究[J]. 石油实验地质, 2002, 24(06): 545-549.

[13] Siemons N, Wolf K H A A, Bruining J. Interpretation of carbon dioxide diffusion behavior in coals[J]. International Journal of Coal Geology, 2007, 72(3-4):315-324.

[14] 邓小妹, 赵红霞, 袁天鹏, 等. CO2热力性质及传输特性显式公式[J]. 制冷技术, 2020, 40(06):36-41+53.

[15] 申建, 秦勇, 傅雪海, 等.深部煤层气成藏条件特殊性及其临界深度探讨[J]. 天然气地球科学, 2014, 25(9): 1470-1476.

[16] White C M, Smith D H, Jones K L, et al. Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery-a review [J]. Energy & Fuels, 2005, 19: 659-724.

[17] Kuuskraa V A, Boyer C M, Kelafant A. Hunt for qualify basins goes abroad [J]. Oil & Gas Journal, 1992, 90: 49-54.

[18] 张春杰, 申建, 秦勇, 等. 注CO2提高煤层气采收率及CO2封存技术[J]. 煤炭科学技术, 2016, 44(06): 205-210.

[19] 降文萍, 崔永君, 张群, 等. 煤表面与CH4, CO2相互作用的量子化学研究[J]. 煤炭学报, 2006, 31(2): 237-240.

[20] Gensterblum Y, Merkel A, Busch A, et al. High-pressure CH4 and CO2 sorption isotherms as a function of coal maturity and the influence of moisture[J].International Journal of Coal Geology,2013,118:45-57.

[21] Liu Y Y, Wilcox J. Molecular simulation of CO2 adsorption in micro- and mesoporous carbons with surface heterogeneity [J]. International Journal of Coal Geology, 2012, 104: 83-95.

[22] 倪冠华, 李钊, 温永瓒, 等. CO2注入下煤层气产出及储层渗透率演化规律[J/OL]. 采矿与安全工程学报: 1-9.

[23] 孙小婷. 不同煤阶煤注CO2提高采收率对比及参数影响研究[J]. 环境科学与技术, 2016, 39(S2): 317-320.

[24] 谢启红, 邵先杰, 战南, 等. 注CO2驱替煤层气过程的影响因素分析[J]. 辽宁石油化工大学学报, 2015, 35(06): 40-43+50.

[25] 白云云, 张永成. CO2置换增产煤层气室内实验研究[J]. 环境保护科学, 2018, 44(02): 71-74.

[26] Liang W, Zhao Y, Wu D, et al. Experiments on Methane Displacement by Carbon Dioxide in Large Coal Specimens[J]. Rock Mechanics & Rock Engineering, 2011, 44(05): 579-589.

[27] 熊炜, 田佳.CO2气驱油藏化学法封窜先导性试验研究[J]. 油气藏评价与开发, 2014, 4(03): 60-63+67.

[28] 叶建平, 张兵, Sam Wong. 山西沁水盆地柿庄北区块3#煤层注入埋藏CO2提高煤层气采收率试验和评价[J]. 中国工程科学, 2012, 14(02): 38-44.

[29] 降文萍, 崔永君. 深部煤层封存CO2的地质主控因素探讨[J]. 中国煤炭地质, 2010, 22(11): 1-6.

[30] 文虎, 刘名阳, 樊世星, 等. 液态CO2溶浸煤体孔裂隙演化特征的实验研究[J]. 西安科技大学学报, 2020, 40(06): 935-944.

[31] 马砺, 魏高明, 王世斌, 等. 低渗透性煤层注液态CO2置换驱替CH4试验[J]. 重庆大学学报, 2018, 41(06): 76-83.

[32] 马砺, 魏高明, 李珍宝, 等. 高瓦斯煤层注液态CO2压裂增透技术试验研究[J]. 矿业安全与环保, 2018, 45(05): 6-11.

[33] 文虎, 李珍宝, 王振平, 等. 煤层注液态CO2压裂增透过程及裂隙扩展特征试验[J]. 煤炭学报, 2016, 41(11): 2793-2799.

[34] 张继兵, 高云. 液态CO2压裂增透技术在松软煤层瓦斯治理上的应用[J]. 煤矿安全, 2018, 49(04): 68-71.

[35] Nishioka M. The associated molecular nature of bituminous coal [J]. Fuel, 1992, 71: 941-948.

[36] 乐嘉炜, 张德祥. 低阶煤中小分子化合物的组成研究[J]. 煤炭技术, 2018, 37(05): 300-302.

[37] 彭英健, 姚有利, 董川龙. 煤中低分子化合物的甲烷溶解能力研究[J]. 矿产综合利用, 2019(04): 139-144.

[38] 耿蒙蒙, 王迎春, 武瑞涛, 等. 煤中小分子化合物相对分子质量和密度的测定[J]. 煤炭转化, 2014, 37(03): 24-26+32.

[39] 张登峰, 贾帅秋, 伦增珉, 等. 煤体中小分子有机物赋存规律及其对煤体理化性质影响的研究进展[J]. 安全与环境学报, 2018, 18(06): 2369-2378.

[40] He Y Y, Zhao R F, Yan L J, et al. The effect of low molecular weight compounds in coal on the formation of light aromatics during coal pyrolysis[J].Journal of Analytical and Applied Pyrolysis, 2017, 123: 49-55.

[41] 张玉贵, 王宝俊, 田亚峻, 等. 抚顺镜煤和树脂煤CS2可溶物的族组成和萃取[J]. 中国矿业大学学报, 2003, 32(3): 65-68.

[42] 连露露, 秦志宏, 李春生, 等. 煤族组分骨架结构的分子模型构建及分子动力学模拟[J]. 煤炭学报, 2021, 46(09): 2776-2792.

[43] 秦志宏. 煤嵌布结构模型理论[J]. 中国矿业大学学报, 2017, 46(05): 939-958.

[44] 秦志宏, 侯翠利, 张迪, 等. 煤中小分子的微孔嵌入特征与溶出特性[J]. 中国矿业大学学报, 2007(05): 586-591.

[45] 秦志宏, 张迪, 侯翠利, 等. 煤全组分的族分离及应用展望[J]. 洁净煤技术, 2007(04): 61-65.

[46] 鞠彩霞, 李凤刚, 宗志敏, 等. 微波辐射条件下两种煤的萃取规律[J]. 辽宁工程技术大学学报(自然科学版), 2013, 32(05): 615-618.

[47] 戴永燕. 煤萃取方法研究综述[J]. 山东化工, 2015, 44(13): 33-34.

[48] 饶建平, 沈春松, 张远志, 等, 许大华. 不同方法萃取罗汉果渣油脂品质及成分分析[J]. 饮料工业, 2016, 19(05): 8-11.

[49] Bongers G D, Jackson W R.Pressurised steam drying of Australian low-rank coals: part 2. Shrinkage and physical properties of steam dried coals,preparation of dried coals with very high porosity[J].Fuel processing technology, 2000, 64(1/2/3):13-23.

[50] Pasadakis N, Gaganis V, Vrotisis N. Accurate determination of aromatic groups in heavy petroleum fractions using HPLC-UV-DAD[J]. Fuel, 2001, 80: 147-153.

[51] Crawford R J, Mainwaring D E. The influence of surfactant adsorption on the surface characterization of Australian coals[J]. Fuel, 2001, 80: 313-320.

[52] 杨永良, 李增华, 季淮君, 等.煤中可溶有机质对煤的孔隙结构及甲烷吸附特性影响[J].燃料化学学报, 2013, 41(04): 385-390.

[53] Wang Y, Ling K,Shen J,et al. A determination and correlation on the solubility of hydrogen in Shenhua coal liquefied oils at high pressures[J]. Energy Sources Part A-Recovery Utilization and Environmental Effects, 2013, 35(21):2002-2009.

[54] Li Z K, Wei X Y, Yang Z S,et al.Characterization of extracts from geting bituminous coal[J].Analytical Letters, 2015, 48(9):1494-1501.

[55] Yan J W. Low molecular weight compounds contained in coal and the behaviors of methane adsorbed by coal at isothermal high-pressure condition in hydraulic equipment and support systems for mining[J],Advanced Materials Research, 2013(619):584-588.

[56] 刘振学, 魏贤勇, 宗志敏. 东胜煤有机溶剂分级萃取物的GC/MS分析研究[J].煤炭转化, 2003(01): 37-40.

[57] Sheng Q T, Shen J, Niu Y X, et al. The effect of small molecular compounds in coal on quick direct coal liquefaction at a high temperature[J]. Energy Sources Part A-Recovery Utilization and Environmental Effects, 2015, 37(1) : 28-37.

[58] Chen H, Li J W, Lei Z, et al. Microwave-assisted extraction of Shenfu coal and its macromolecule structure[J]. Mining Science and Technology, 2009, 19(1): 19-24.

[59] 秦志宏. 煤中有机质溶出行为研究[D]. 徐州:中国矿业大学,2004.

[60] Sun Y, Wang X J, Feng T T, et al. Evaluation of coal extraction with supercritical carbon dioxide /1-methyl-2-pyrrolidone mixed solvent[J]. Energy & Fuels, 2014, 28(2):816-824.

[61] Wang Q Q, Zhang D F, Wang H H, et al. Influence of CO2 exposure on high-pressure methane and CO2 adsorption on various rank coals: implications for CO2 sequestration in coal seams[J]. Energy & Fuels, 2015, 29(6):3785-3795.

[62] Wang Q Q, Li W, Zhang D F, et al. Influence of high-pressure CO2 exposure on adsorption kinetics of methane and CO2 on coals[J]. Journal of Natural Gas Science and Engineering, 2016, 34:811-822.

[63] 刘世奇, 王恬, 杜艺, 等. 超临界CO2对烟煤和无烟煤化学结构的影响[J].煤田地质与勘探,2018,46(5):19-25.

[64] Larsen J W. The effects of dissolved CO2 on coal structure and properties[J]. International Journal of Coal Geology, 2004, 57(1)63-70.

[65] 岳立新, 孙可明, 张凤嘉, 等. 超临界CO2作用下有效应力对煤体渗透性影响[[J].辽宁工程技术大学学报, 2013, 32(9): 1157-1160.

[66] 杨涛, 杨栋, 康志勤, 等. 注入超临界CO2对提高煤层渗透性的影响[J].煤炭科学技术, 2010, 38(04): 108-110.

[67] Kolak J J, Burruss R C. Geochemical Investigation of the Potential for Mobilizing Non-Methane Hydrocarbons during Carbon Dioxide Storage in Deep Coal Beds[J]. Energy&Fuels, 2006, 20(2): 566-574.

[68] Lobanov A A, Shhekoldin K A, Struchkov I A, 等. 液态二氧化碳对俄罗斯某油藏稠油的膨胀与萃取作用实验[J].石油勘探与开发, 2018, 45(05): 861-868.

[69] 施雷庭, 朱诗杰, 马杰, 等. 超临界CO2萃取致密油的数值模拟研究[J].油气藏评价与开发, 2019,9(03):25-31.

[70] 周元. 基于低雷诺数湍流模型的筛板萃取塔液液流场CFD模拟[D].福州大学,2017.

[71] 朱盟翔. 超临界二氧化碳萃取固相物中石油类的实验研究与数值模拟[D].西南石油大学,2017.

[72] 朱恩俊. 超临界流体萃取固态物料的缩芯萃取模型[J].江苏理工大学学报, 1997(05): 16-21.

[73] Fullana M, Trabelsi F, Recasents F. Use of neural net computing for statistical and kinetic modeling and simulation of supercritical fluid extractors[J]. Chemical Engineering Science, 2000, 55:79-95.

[74] 银建中, 毕明树, 孙献文, 李等. 超临界CO2萃取沙棘油的实验研究及数值模拟[J].高校化学工程学报, 2001(05): 481-484.

[75] 银建中. 基于人工神经网络的超临界流体萃取模拟方法研究[D].大连理工大学, 2002.

[76] 周羽, 未根华, 何辉, 等. 基于人工神经网络的磷酸三丁酯络合萃取Np的模拟[J].核化学与放射化学, 2014, 36(03): 149-156.

[77] 余学海, 孙平, 张军营, 等. 神府煤矿物组合特性及微量元素分布特性定量研究[J].煤炭学报,2015, 40(11): 2683-2689.

[78] 煤化学与煤质分析[M]. 冶金工业出版社, 解维伟, 2012.

[79] Liu Zaihua, Dreybrodt W, Han Jun, et al. Equilibrium chemistry of the CaCO3-CO2-H2O system and discussions[J]. Carsologica Sinica, 2005, 24(1): 3-16.

[80] 郭慧, 王延斌, 倪小明, 等. 高岭石与水、CO2作用后Si元素、Al元素溶出动力学研究[J].中国矿业大学学报, 2016, 45(03): 591-596.

[81] Dawson G K W, Golding S D, Massarotto P, et al. Experimental supercritical CO2 and water interac-tions with coal under simulated in situ conditions[J]. Energy Procedia, 2011, 4: 3139-3146.

[82] Gaus I. Role and impact of CO2 interactions during CO2 storage in sedimentary rocks[J]. International Journal of Greenhouse Gas Control, 2010.4(1) :73-89.

[83] Du Y, Sang S X, Wang W F, et al. Experimental study of the reactions of supercritical CO2 and minerals in high-rank coal under formation conditions[J]. Energy& Fuels, 2018, 32(2):1115-1125.

[84] Zhang B N, Liang W G, Ranjith P G, et al. Cou-pling effects of supercritical CO2 sequestration in deep coal seam [J]. Energy & Fuels, 2019, 33(1): 460-473.

[85] Jiang R X, Yu H G. Interaction between sequestered supercritical CO2 and minerals in deep coal seams[J]. International Journal of Coal Geology, 2019, 202:1-13.

[86] Guo H, Ni X M, Wang Y B, et al. Experimental study of CO2-water-mineral interactions and their influence on the permeability of coking coal and implications for CO2-ECBM[J]. Minerals, 2018, 8(3):117.

[87] Wang K R, Xu T F, Wang F G, et al. Experimental study of CO2-brine-rock interaction during CO2 sequestration in deep coal seams[J]. International Journal of Coal Geology, 2016, 154: 265-274.

[88] Massarotto P, Goldinf S D, Bae J S, et al. Changes in reservoir properties from injection of supercritical CO2 into coal seams-a laboratory study[J]. International Journal of Coal Geology, 2010, 82(3): 269-279.

[89] 李紫竹. 煤体渗透率随酸化时间和压力及温度的变化规律[J].煤矿安全, 2019, 50(12): 36-40.

[90] 李全中, 倪小明, 王延斌, 等. CO2分压条件下煤中矿物质溶解度数值模拟[J].煤田地质与勘探, 2013, 41(06): 19-21+42.

[91] 贾立龙, 高莎莎. 沁水盆地南部煤层注CO2后矿物溶解作用模拟[J].煤炭技术, 2019, 38(03):89-91.

[92] 陈雷, 崔卫平, 段平, 等. 基于PHREEQC模型的水泥熟料矿物溶解动力学研究[J].武汉理工大学学报, 2013, 35(12): 6-10.

[93] 黄叶宁. 水岩作用下灰岩溶解机理及表面形貌演化研究[D].三峡大学, 2019.

[94] 刘峰. 地球化学反应模型用于水-岩相互作用的研究[D].中国地质大学(北京), 2010.

[95] 梁冰, 陈楠, 姜利国. 煤矸石内各矿物组分溶解-释放规律的数值模拟研究[J].中国岩溶, 2011, 30(03): 359-362.

[96] 刘思楠, 张力为, 苏学斌, 等. 二氧化碳咸水层封存条件矿物溶解与沉淀化学反应建模与参数取值综述[J].水利水电技术, 2020, 51(11): 13-22.

[97] 黄海, 李晓义. 孔隙尺度下反应性溶质运移和矿物溶解过程的水平集界面追踪模拟[J].南京大学学报(自然科学版), 2011, 47(03): 236-251+235.

[98] Sun Z H, Li D, Ma H X, et al. Characterization of asphaltene isolated from low-temperature coal tar[J]. Fuel Processing Technology, 2015, 138: 413-418.

[99] Zhang Jin, Zhang Dengfeng, Huo Peili, et al. Functional groups on coal matrix surface dependences of carbon dioxide and methane adsorption: a perspective[J]. Chemical Industry and Engineering Progress, 2017, 36(6):1977-1986.

[100] Wang Fei, Zhang Daijun, Li Xiaopeng, et al. Adsorption behaviors for nitrogen by coal, its extractfractions and residues[J]. Journal of Fuel Chemistry and Technology, 2003, 31(5): 395-399.

[101] Mirzaeian M, Hall P J. The interaction of coal with CO2 and its effects on coal structure[J]. Energy Fuels, 2006, 20: 2022-2027.

[102] Kutchko B G, Strazisa B R, Dzombak D A, et al. Degradation of well cement by CO2 under geologic sequestration conditions[J]. Environmemtal Science and Technology, 2007, 41(13): 4787-4792.

[103] 马海军, 李彬, 李恒, 等. 基于低温氮吸附的动态超临界CO2对煤纳米孔隙结构的影响研究[J]. 煤矿安全, 2021, 52(1):30-35.

[104] 李波, 任永婕, 张路路, 等. 超临界CO2作用下煤的孔隙结构变化规律试验研究[J].河南理工大学学报(自然科学版), 2018, 37(05): 33-39.

[105] 闫洁. 中低阶煤的热溶解聚及其可溶有机质的结构特征[D].中国矿业大学,2017.

[106] 余坤坤, 张小东, 张硕, 等.不同煤岩成分的焦煤萃取后FTIR特征研究[J].光谱学与光谱分析, 2018, 38(10): 3077-3083.

[107] 平晓朵, 张小东, 张硕, 等.不同体积分数THF萃取后焦煤的GC/MS和FTIR分析[J].煤炭转化, 2021, 44(04): 45-55.

[108] 张文勇, 倪小明, 王延斌. 注CO2与煤中矿物反应渗透率变化规律[J].煤炭学报, 2015, 40(05): 1087-1092.

[109] 刘长江, 张琨, 宋璠. CO2地质埋藏深度对高阶煤孔隙结构的影响[J].煤田地质与勘探, 2018, 46(05): 32-36.

[110] 孟庆峰, 李琰, 张爱然, 等. 超临界CO2-H2O对无烟煤孔裂隙结构的影响[J].山西煤炭, 2021, 41(03): 70-74.

[111] Liu C J, Wang G X, Sang S X, et al. Changes in pore structure of anthracite coal associated with CO2 sequestration process[J]. Fuel, 2010.89(10):2665.

[112] 武剑, 李伟. 超临界CO2-H2O流体对煤渗流孔隙结构的影响[J].煤矿安全, 2022, 53(03): 9-15.

[113] P. Massarotto, S.D. Golding, J.S. Bae, R. V. Iyer. Rudolph, Changes in reservoir properties from injection of supercritical CO2 into coal seams-A laboratory study, International Journal of Coal Geology, 2010, 82, (3-4):269-279.

[114] 唐巨鹏, 马圆, 田虎楠, 等.煤变质程度对CH4吸附行为影响研究[J].西南石油大学学报(自然科学版), 2018, 40(04): 143-150.

[115] 刘彦伟, 潘保龙, 张加琪, 等.不同粒度软煤与硬煤吸附性能差异性研究[J].煤矿安全, 2017, 48(06): 52-55+59.

[116] Krooss B M, Van Bergen F, Gensterblum Y, et al. High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals[J]. International Journal of Coal Geology. 2002, 51(2): 69-92.

[117] 马东民, 韦波, 蔡忠勇. 煤层气解吸特征的研究[J].地质学报.2008, 82(10): 1432-1436.

[118] 傅雪海, 秦勇, 姜波, 等. 多相介质煤岩体力学实验研究[J].高校地质学报.2002, 8(4): 446-452.

[119] Stevens S H, Kuuskraa V A, Gale J, et al. CO2 injection and sequestration in depleted oil and gas fields and deep coal seams: worldwide potential and costs[J]. Environmental Geosciences, 2001,8(3):200-209.

[120] Wang L, Liu S, Cheng Y, et al. Reservoir reconstruction technologies for coalbed methane recovery in deep seams[J]. International Journal of Mining Science and Technology 2017,27(2):277-284.

[121] 周胜国, 郭淑敏. 煤储层吸附解吸等温曲线测试技术[J], 石油实验地质,1999, 21(1): 76-80.

[122] 唐书恒. 晋城地区煤储层特征及多元其他的吸附-解吸特征[D].徐州:中国矿业大学, 2001.

[123] 崔永君, 张群, 张泓, 等.不同煤级煤对CH4、N2和CO2单组分气体的吸附[J].天然气工业, 2005, 25(1): 61-65.

[124] 余学海, 孙平, 张军营, 等. 神府煤矿物组合特性及微量元素分布特性定量研究[J].煤炭学报, 2015, 40(11): 2683-2689.

[125] Wrad C R. Analysis and significance of mineral matter in coal seams[J]. International Journal of Coal Geology, 2002, 50(1): 135-168.

[126] Colin R. Ward, Significance of mineral matter in coal: An updated review[J]. International Journal of Coal Geology, 165, 2016, 1-27.

[127] 张登峰, 李超, 李艳红, 等. 封存过程中CO2流体与煤中矿物作用关系研究进展[J].安全与环境学报, 2020, 20(01): 297-309.

[128] 煤化学与煤质分析[M].冶金工业出版社, 解维伟, 2012.

[129] 刘贝, 黄文辉, 敖卫华 ,等. 沁水盆地南部煤中矿物赋存特征及其对煤储层物性的影响[J].现代地质, 2014, 28(03): 645-652.

[130] 李小刚, 杨兆中, 苏建政, 等. 粗糙颗粒碳酸盐岩三维酸蚀分形数学模型[J].新疆石油地质, 2010, 31(02): 167-170.

[131] 韩力慧, 陈媛媛, 贾龙, 等. NO2在MgO颗粒物表面的非均相反应[J].中国科学:化学, 2014, 44(12): 2004-2012.

[132] 李苍松, 吴丰收, 赵岩杰, 等. 基于溶蚀实验的微观岩溶形态分形特征和水化学动力学特征研究[J].现代隧道技术, 2018, 55(02): 110-120.

[133] 王长城, 韩小俊, 徐亮, 李和, 徐伟. 分形几何学在桥口地区凝析气藏储层评价中的应用[J].天然气勘探与开发, 2005(04): 9-11+19.

[134] 刘成禹, 李宏松. 岩石溶蚀的表现特征及其对物理力学性质的影响[J].地球与环境, 2012, 40(02): 255-260.

[135] 黄暹, 柯家骏, 陈念贻.金属铝酸溶蚀过程表面分形变化规律的研究[J].化学通报, 1992(06): 36-37.

[136] 孟斐, 刘妮, 王成, 陈利涛. 水合物强化生成过程中传热传质机理研究进展[J].热能动力工程, 2022, 37(03): 115-121.

[137] 霍吉祥, 宋汉周, 管清晨. 基于表面反应和扩散迁移控制的灰岩单裂隙渗流-溶解模型及其数值模拟[J].四川大学学报(工程科学版), 2014, 46(05): 42-48.

[138] 吕天雪, 张国一, 易立新, 等.松辽盆地低渗透储层孔隙结构及分形特征[J].特种油气藏, 2022, 29(01): 59-65.

[139] Rajabzadeh M A, Ghorbani Z, Keshava B. Chemistry, mineralogy and distribution of selected trace-elements in the Parvadeh coals, Tabas, Iran[J]. Fuel, 2016, 174: 216-224.

[140] Oliveiram L S, Ward C R, French D, et al. Mineralogy and leaching characteristics of beneficiated coal products from Santa Catarina, Brazil[J]. International Journal of Coal Geology, 2012, 94 (S1):314-325.

[141] 梁卫国, 贺伟, 阎纪伟. 超临界CO2致煤岩力学特性弱化与破裂机理[J/OL].煤炭学报: 1-12.

[142] Farquhar S M, Pearce J K, Dawson G K W, et al. A fresh approach to investigating CO2, storage: Experimental CO2-water-rock interactions in a low-salinity reservoir system[J]. Chemical Geology, 2015, 399(3): 98-122.

[143] A H G, A Y C, B W L, et al. In situ Raman spectroscopic study of diffusion coefficients of methane in liquid water under high pressure and wide temperatures[J]. Fluid Phase Equilibria, 2013, 360(1):274-278.

[144] Guo H, Chen Y, Hu Q, et al. Quantitative Raman spectroscopic investigation of geo-fluids high-pressure phase equilibria: Part I. Accurate calibration and determination of CO2 solubility in water from 273.15 to 573.15K and from 10 to 120MPa[J]. Fluid Phase Equilibria, 2014, 382:70-79.

[145] Jiang RX, Yu HG. Interaction between sequestered supercritical CO2 and minerals in deep coal seams[J]. International Journal of Coal Geology, 2019, 202: 1-13.

[146] Du Y, Sang SX, Wang WF, et al. Experimental study of the reactions of supercritical CO2 and minerals in high-rank coal under formation conditions[J]. Energy &Fuels,2018, 32(2): 1115-1125.

[147] Berger G, Cadore E, Schott, J. et al. Dissolution rate of quartz in lead and sodium electrolyte solutions between 25 and 300℃: effect of the nature of surface complexes and reaction affinity[J]. Geochimica Et Cosmochimica Acta, 1994, 58(2): 541-551.

[148] 黄可可, 黄思静, 佟宏鹏, 等.长石溶解过程的热力学计算及其在碎屑岩储层研究中的意义[J].地质通报, 2009, 28(4): 474-482.

[149] Thommes M.Physisorption of gases,with special reference to the evaluation of surface area and pore size distribution ( IUPAC Technical Report)[J].Pure Applied Chemistry, 2015,87 (9/10):1051-1069.

[150] 霍多特B B, 宋世钊等译. 煤与瓦斯突出[M].北京:中国工业出版社, 1966.

[151] Credoz A, Bildstein O, Jullien M, et al. Mixed-layer illite-smectite reactivity in acidified solutions: Implications for clayey caprock stability in CO2 geological storage[J]. Applied Clay Science, 2011, 53(3): 402-408.

[152] 张慧. 煤孔隙的成因研究及其成因[J].煤炭学报, 2001;26 (1): 40-44.

[153] Hu Wen, Hu Wang, Shixing Fan, et al. Improving coal seam permeability and displacing methane by injecting liquid CO2: An experimental study[J]. Fuel, 2020, 281.

[154] Raoof Bardestani, Gregory Patience, Serge Kaliaguine. Experimental methods in chemical engineering: specific surface area and pore size distribution measurements-BET, BJH, and DFT[J]. The Canadian Journal of Chemical Engineering, 2019, 97(11): 32-28.

[155] 蔺亚兵, 贾雪梅, 马东民. 基于液氮吸附法对煤的孔隙特征研究与应用[J].煤炭科学技术, 2016, 44(03): 135-140.

[156] 张遵国, 赵丹, 张春华, 等.不同温度下软煤等温吸附/解吸特性[J].辽宁工程技术大学学报(自然科学版), 2021, 40(06): 510-517.

[157] 杜艺, 桑树勋, 王文峰. 超临界CO2注入煤岩地球化学效应研究评述[J].煤炭科学技术, 2018, 46(03): 10-18.

[158] Brunauer S, Emmett P H, Teller E. Adsorption of gases in multimolecular layers[J]. Journal of the American Chemical Society, 2018, 60(2): 309-319.

[159] Cheng X, Wen H, Fan S, et al. Liquid CO2 high-pressure fracturing of coal seams and gas extraction engineering tests using crossing holes: A case study of Panji Coal Mine No.3, Huainan, China[J]. International Journal of Energy Research. 2020, doi:10.1002/er.6124.

[160] Wei G, Wen H, Deng J, et al. Enhanced coalbed permeability and methane recovery via hydraulic slotting combined with liquid CO2 injection[J]. Process Safety and Environmental Protection, 2021, 147: 234-244.

[161] Wei G, Wen H, Deng J, et al. Liquid CO2 injection to enhance coalbed methane recovery: An experiment and in-situ application test[J]. Fuel, 2020, 284: 119403.

[162] Fujioka M, Yamaguchi S, Nako M. CO2-ECBM field tests in the Ishikari Coal Basin of Japan[J]. International Journal of Coal Geology, 2010, 82(3): 287-298.

[163] Sun H, Yao J, Fan D Y, et al. Gas transport mode criteria in ultra-tight porous media[J]. International Journal of Heat & Mass Transfer, 2015, 83:192-199.

[164] Zhang L, Wen Y J, Liu M, et al. Multiple-flow-regime models for real gas transport in fractal porous media at high pressure[J]. Journal of Petroleum Science and Engineering, 2021,196:107684.

[165] Liu J, Chen Z, Elsworth D, et al. Interactions of multiple processes during CBM extraction: A critical review[J]. International Journal of Coal Geology, 2011, 87(3): 175-189.

[166] Liu H H, Rutqvist J. A new coal-permeability model, internal swelling stress and fracture–matrix interaction. Transport in Porous Media, 2010, 82(1): 157–171.

[167] Valliappan S, Wohua Z. Numerical modelling of methane gas migration in dry coal seams[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2015, 20(8): 571-593.

中图分类号:

 TD167    

开放日期:

 2027-01-09    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式