论文中文题名: | 液态CO2相变定向破岩机理及应用 |
姓名: | |
学号: | 20203226072 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085700 |
学科名称: | 工学 - 资源与环境 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 矿山压力与岩层控制 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-06-27 |
论文答辩日期: | 2023-06-10 |
论文外文题名: | Mechanism and application of liquid CO2 phase change directional rock breaking |
论文中文关键词: | |
论文外文关键词: | Carbon dioxide phase transformation ; Expansion iMPact ; Directional cracking ; Crack propagation ; Fission pressure relief |
论文中文摘要: |
岩石二氧化碳相变致裂技术,目前已经被广泛应用于边坡工程和岩石开采等相关工程领域,显示了二氧化碳破岩稳定性的显著优势,但在地下开采领域的技术理论研究仍处于初步探索阶段。围绕“双碳”目标,针对二氧化碳的相变储能、封存和合理利用的研究,已经成为当前岩石力学研究的热点。为此,本文针对二氧化碳相变定向破岩问题,采用物理实验、理论分析、数值模拟、现场试验相结合的方法,对二氧化碳岩石致裂机理和二氧化碳定向破岩裂纹扩展规律进行了研究,结合工程背景开展了工程验证。主要取得以下研究成果: (1)通过室内实验测试了岩石的物理力学性能,得到了岩石的抗压、抗拉和抗剪强度参数,利用R-K-S气体状态方程分析计算二氧化碳致裂岩石的所释放的能量、当量和爆容,为理论分析和数值模拟参数的选取提供了依据。 (2)对液态二氧化碳致裂过程中产生的聚能冲击波和低温高压二氧化碳气体联合作用下的破岩过程进行了分析,总结了液态二氧化碳致裂破岩机理。根据线弹性理论,分别得出了在高压二氧化碳气体作用下裂纹尖端以及岩体内部的应力场。引入损伤理论推导得出了在高压二氧化碳气体作用下裂纹尖端有效应力强度因子的表达式,并推导了在高压二氧化碳气体驱动下岩体内裂纹的开裂准则,结合损伤理论分别分析计算得出了在冲击波与应力波作用下粉碎区、裂隙区半径。 (3)利用LS-DYNA软件建立岩体致裂损伤模型,模拟单孔、双孔、导向孔以及孔内多点定向致裂的液态二氧化碳致裂岩体裂隙形成过程,研究了单孔岩体二氧化碳致裂裂纹形成与扩展机理,根据单孔致裂岩体模拟结果确定了二氧化碳相变岩石致裂半径。研究了孔间相互作用致裂岩体裂纹形成与扩展规律,分析计算出了双孔致裂合理孔间距。通过研究导向孔对裂纹的导向作用机理,分析了导向孔对裂纹扩展的影响。研究了不同致裂点间距下的孔内多点致裂岩体效果,确定了孔内多点致裂的合理致裂点间距,分析了多点致裂时孔内岩壁致裂裂纹的扩展贯通规律。 (4)通过大采高综采工作面顶板岩层相变定向致裂卸压现场试验表明,二氧化碳相变致裂顶板岩层卸压的实际效果显著。通过钻孔窥视法对孔内裂缝连通情况进行考察,经顶板岩层定向致裂后,卸压区相比于未卸压区煤柱应力平均降低了约22.2%,巷道顶底板变形量平均减小了46.4%,两帮变形量平均减小了51.8%,有效地控制了巷道围岩。 |
论文外文摘要: |
Rock carbon dioxide phase change cracking technology has been widely used in slope engineering and rock mining and other related engineering fields, showing the significant advantages of carbon dioxide rock breaking stability, but the technical theory research in the field of underground mining is still in the preliminary exploration stage. Focusing on the goal of "dual carbon", the research on phase change energy storage, storage and rational utilization of carbon dioxide has become a hot spot in the current research of rock mechanics. Therefore, this paper studies the cracking mechanism of carbon dioxide rock and the crack propagation law of carbon dioxide directional rock breaking by combining physical experiments, theoretical analysis, numerical simulation and field experiments, and carries out engineering verification based on the engineering background. The following research results have been achieved: (1) The physical and mechanical properties of the rock were tested through indoor experiments, and the relevant physical and mechanical parameters were obtained, and the energy, equivalent and explosive volume released by the constant pressure shear sheet with a release pressure of 270MPa were calculated by the analysis of the R-K-S gas equation of state, which provided a basis for theoretical analysis and the selection of numerical simulation parameters. (2) The rock-breaking process under the combined action of concentrated energy shock wave and low-temperature and high-pressure carbon dioxide gas generated during the cracking process of liquid carbon dioxide is analyzed, and the rock breaking mechanism of liquid carbon dioxide cracking is summarized. According to the linear elastic theory, the stress fields of the crack tip and the interior of the rock mass under the action of high-pressure carbon dioxide gas are obtained. The expression of the effective stress intensity factor of the crack tip under the action of high-pressure carbon dioxide gas is derived by the damage theory, and the cracking criterion of cracks in the rock under the drive of high-pressure carbon dioxide gas is derived, and the radius of the crushing zone and the fracture zone under the action of shock wave and stress wave are analyzed and calculated respectively combined with the damage theory. (3) LS-DYNA software was used to establish the rock mass cracking damage model, simulating the fracture formation process of liquid carbon dioxide fracturing rock mass with single-hole, double-hole, guide hole and multi-point directional cracking in the hole, and the formation and propagation mechanism of carbon dioxide cracking in single-hole rock mass was studied, and the cracking radius of carbon dioxide phase change rock was determined according to the simulation results of single-hole fractured rock mass. The crack formation and propagation law of the fractured rock mass of the interaction between the pores were studied, and the reasonable pore spacing of the double-hole cracking was analyzed and calculated. By studying the guiding mechanism of the guide hole on the crack, the influence of the guide hole on crack propagation was analyzed. The effect of multi-point cracking rock mass in holes under different cracking point spacing was studied, the reasonable cracking point spacing of multi-point cracking in holes was determined, and the propagation law of cracking cracks in rock walls in holes during multi-point cracking was analyzed. (4) The field test of phase change directional cracking and pressure relief of the top slate layer of the large-scale mining and comprehensive mining face shows that the actual effect of pressure relief of the carbon dioxide phase change fracture roof slate layer is remarkable. After directional cracking of the roof rock layer, the stress of the coal column in the pressure relief zone was reduced by about 22.2%, the deformation of the roof and floor of the roadway was reduced by 46.4% on average, and the deformation of the two groups was reduced by 51.8% on average, which effectively controlled the surrounding rock of the roadway. |
参考文献: |
[1] 王军,肖永胜.用二氧化碳爆破技术开采某石灰石矿的大理石材[J].现代矿业,2015, 31(06):15-17. [2] 赵旭.高压氮气冲击致裂煤岩体裂隙发育规律研究[D].中国矿业大学,2017. [3] 黄温钢.残留煤地下气化综合评价与稳定生产技术研究[D].中国矿业大学,2014. [6] 何满潮.无煤柱自成巷110工法关键技术与装备系统.中国矿业大学,2018-04-01. [7] 黄炳香.煤岩体水力致裂弱化的理论与应用研究[D].中国矿业大学,2009. [9] 陈勇.沿空留巷围岩结构运动稳定机理与控制研究[D].徐州:中国矿业大学,2012. [10] 陈勇,郝胜鹏,陈延涛,张自政,武立飞,刘洪林.带有导向孔的浅孔爆破在留巷切顶卸压中的应用研究[J].采矿与安全工程学报,2015,32(02):253-259. [11] 李贤忠,林柏泉,扬威,倪冠华,李全贵.基于多参数协同的高低位爆破防治瓦斯动力灾害技术[J].煤矿安全,2013,44(04):84-87. [12] 申斌学,周宏范,朱磊,吴玉意,秋丰岐,王国普,郭林,黄剑斌.深井复合顶板切顶卸压柔模墙支护沿空留巷技术[J].工矿自动化,2021,47(11):101-106. [13] 朱珍.切顶成巷无煤柱开采围岩结构特征及其控制[D].中国矿业大学(北京),2019. [14] 王琼,郭志飚,欧阳振华,尹松阳,彭瑞.碎石粒径对切顶成巷碎石帮承载变形特性的影响[J].中国矿业大学学报,2022,51(01):100-106. [15] 王高伟.小保当矿强动压巷道切顶卸压-强帮护顶协同控制技术研究[J].煤炭技术,2021,40(09):55-59. [17] 马资敏.店坪矿中厚煤层切顶成巷覆岩运动特征及矿压规律研究[D].中国矿业大学(北京),2019. [21] S.P.Singh.Non-Explosive applications of the PCF concept for underground excavation[J]. Tunneling and Underground Space Technology,1998(13):305-311. [22] 郭勇,柯波,吴著明,任高峰.液态CO2爆破系统相变过程的热力学特性研究[J].爆破,2018,35(04):108-115. [23] 李波,任永婕,张路路,等.超临界CO2作用下煤的孔隙结构变化规律试验研究[J].河南理工大学学报(自然科学版),2018,37(5):33-39. [24] 杜艺,桑树勋,王文峰.超临界CO2注入煤岩地球化学效应研究评述[J].煤炭科学技术,2018,46(3):10-18. [26] 刘国军,鲜学福,周军平,等.超临界CO2致裂后页岩渗透率变化规律及影响因素[J].煤炭学报,2017,42(10):2670-2678. [27] 卢义玉,廖引,汤积仁,等.页岩超临界CO2压裂起裂压力与裂缝形态试验研究[J].煤炭学报,2018,43(1):580-585. [29] 郭志兴.液态二氧化碳爆破筒及现场试爆[J].爆破,1994(3):72-74. [30] 徐颖.高压气体爆破采煤技术的发展及其在我国的应用[J].爆破,1998(01):67-69. [31] 邵鹏,徐颖.高压气体爆破实验系统的研究[J].爆破器材,1997(5):6-8. [32] 高坤.高能气体冲击煤体增透技术实验研究及应用[D].阜新:辽宁工程技术大学,2013. [33] 陈静.高压空气冲击煤体气体压力分布的模拟研究[D].阜新:辽宁工程技术大学,2009. [34] 周西华,门金龙,王鹏辉,白刚.井下液态CO2爆破增透工业试验研究[J].中国安全生产科学技术,2015,11(9):76-82. [35] 梁卫国,吴迪,赵阳升.CO2驱替煤层CH4试验研究[J].岩石力学与工程学报,2010,29(04):665-673. [36] 杨涛,杨栋,康志勤,等.注入超临界CO2对提高煤层渗透性的影响[J].煤炭科学技术,2010,38(4):108-110. [37] 孙可明,吴迪,粟爱国,等.超临界CO2作用下煤体渗透性与省略效体积应力-温度耦合规律试验研究[J].岩石力学与工程学报,2013,32(S2):3760-3767. [38] 岳立新,詹广强,孙可明,等.超临界CO2提高煤层渗透性的实验[J].辽宁工程技术大学学报(自然科学版),2014,33(7):907-911. [39] 岳立新,孙可明,郝志勇.低渗透煤层注超临界CO2增透微观机理研究[J].煤炭科学技术,2016,44(12):85-91. [40] 王兆丰,孙小明,陆庭侃,等.液态CO2相变致裂强化瓦斯预抽试验研究[J].河南理工大学学报(自燃),2015,41(11):2793-2799. [41] 周西华,门金龙,宋东平,等.煤层液态CO2爆破增透促抽瓦斯技术研究[J].中国安全科学学报,2015,25(02):60-65. [42] 文虎,李珍宝,王振平,等.煤层注液态CO2压裂增透过程及裂隙扩展特征试验[J].煤炭学报,2016,41(11):2793-2799. [43] 周西华,门金龙,宋东平,李诚玉.液态CO2爆破煤层增透最优钻孔参数研究[J].岩石力学与工程学报,2016,35(03):524-529. [44] 范迎春,霍中刚,姚永辉.复杂条件下二氧化碳深孔预裂爆破增透技术[J].煤矿安全,2014,45(11):74-77. [45] 朱拴成.二氧化碳炮处理综采工作面巷道三角区悬顶[J].煤矿安全,2013,44(8):144-146. [46] 魏刚,夏洪满,姜凤岗,等.液态CO2爆破器落煤试验研究煤矿开采[J].2009,14(1):22-24. [47] 周建伟.深孔控制二氧化碳预裂爆破在煤巷掘进消突中应用[J].煤炭技术,2014,33(9), [48] 白文信,殷卫峰,王照东,王滨,周连春,马友魁.CO2爆破致裂技术在煤层注水工程的应用[J].煤矿开采,2015,20(6):112-114. [49] 贺超.基于二氧化碳深孔致裂增透技术的低透煤层瓦斯治理[J].煤炭科学技术,2017, [50] 李志强.CO2预裂爆破增透技术在瓦斯抽采中的应用[J].山西焦煤科技,2014,43(7):30-32. [51] 杨小林,孙博,褚怀保.爆破气体在煤体爆破过程中的作用分析[J].金属矿山.2011,425 [52] 石亮,殷卫锋,王滨.基于CO2爆破致裂增透的瓦斯治理技术与实践[J].煤炭科学技术, 2015,43(12):72-74+91. [53] 王海东.突出煤层掘进工作面CO2可控相变致裂防突技术[J].煤炭科学技术,2016,44 [54] 孙建中.基于不同爆破致裂方式的液态二氧化碳相变增透应用研究[D].中国矿业大学, 2015. [55] 张中正.二氧化碳的吸附分离[D].天津:天津大学,2012. [56] 李得飞.超临界二氧化碳驱替煤层瓦斯研究[D].太原:太原理工大学,2012. [57] 杜玉昆,王瑞和,倪红坚,等.超临界二氧化碳射流破岩试验[J].中国石油大学学报(自然科学版),2012(04):93-96. [58] 岳伟民.超临界二氧化碳射流破岩试验装置的研制[D].青岛:中国石油大学,2011. [61] 王新月,杨清真著.热力学与气体动力学基础[M].北京:西北工业大学出版社,2004,68- [62] 李文炜,狄刚,王瑞欣.船运液态二氧化碳储罐爆炸事故的原因分析[J].安全与环境工程,2010,17(1):95-98. [63] 刘鹏,王志全,贺红霞.二氧化碳储罐物理爆炸能量及波及半径的定量评价[J].天然气化工,2004,29(3):76-77. [65] 吴飞鹏,蒲春生,陈德春.高能气体压裂载荷计算模型与合理药量确定方法[J].《中国石油大学学报》,2011.第35卷,第三期,pp.94–98. [66] 刘殿书.岩石爆破破碎的数值分析[D].北京:中国矿业大学北京研究生部,1992. [67] 马英楠.安全评价基础知识[M].北京:中国劳动社会出版社,2010.P:52-54. |
中图分类号: | TD235 |
开放日期: | 2023-06-27 |