论文中文题名: | ZIFs基石墨烯复合材料的构筑及储锂机理研究 |
姓名: | |
学号: | 17213211043 |
保密级别: | 公开 |
论文语种: | chi |
学生类型: | 硕士 |
学位年度: | 2020 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
第一导师姓名: | |
论文外文题名: | Study on the Synthesis of ZIFs-based Graphene Composites and Mechanism of Lithium Storage |
论文中文关键词: | |
论文外文关键词: | Lithium Ion Battery ; ZIFs ; Graphene ; Fe3O4 ; Nanomaterials |
论文中文摘要: |
随着能源技术变革以及新型科技产业的发展,人类对新型储能电池的需求日显迫切,锂离子电池作为新兴能源储存装置也逐渐受到世界各国的重视。开发高能量密度和功率密度、超长循环寿命、安全系数高及低成本的锂离子电池也成为当前科学界的研究热点。高性能电极材料的构筑和开发是提高锂离子电池性能的有效手段之一。本文以石墨烯为基础,设计并构筑了一种沸石咪唑酯骨架化合物(ZIFs)基石墨烯复合材料,考察了其作为负极材料在锂离子电池中的储锂性能,并进一步探讨了复合材料的储锂机理及锂离子在储锂过程的传输动力学与电容定量分析。论文主要工作归纳如下: (1)以氧化石墨烯(GO)为基底,原位生长ZIF-8纳米粒子,并进一步通过一步热解技术制备出由二维(2D)夹层状框架构筑的超高氮掺杂多孔碳石墨烯纳米片(NPC@GNS),并在锂离子电池负极材料中进行探索应用。研究结果表明:NPC@GNS复合材料在电流密度为0.5 A/g时循环100次后可保持906.6 mAh/g的高比容量,在大电流密度5 A/g下经过1000次超长循环后仍可提供378.2 mAh/g的平均比容量。复合材料优异的的循环稳定性和倍率性能证实了丰富的“点和平面”2D夹层结构的可靠性,部分微孔和大量优选的介孔通道有助于电荷快速转移。电荷储存机理经计算表明超过41.30 %的电荷储存来源于活性物质表面电容效应产生更多的非法拉第电流贡献。总容量中较高的电容贡献率和NPC@GNS的独特结构在大电流密度下能实现优异的电荷储存能力,也展现出快速充放电性能。 (2)以Fe-ZIF为前驱体,采用一步水热合成法与GO复合,进而通过高温煅烧成功制备得到Fe3O4氮掺杂石墨烯纳米片(Fe3O4@NGNS)复合材料。考察了复合材料作为锂离子电池负极材料的电化学性能。结果表明:氮含量高达6.02 %的Fe3O4@NGNS复合材料具有最佳电化学性能,在电流密度为0.2 A/g时循环100次后可保持912.8 mAh/g的可逆比容量,在大电流密度2 A/g时经过200次超长循环后仍可提供502.3 mAh/g的可逆比容量。复合材料展现出优异的循环稳定性能和倍率性能主要归因于原位合成策略可以有效地避免纳米球状Fe3O4的团聚,同时复合材料中的石墨烯可以缓冲Fe3O4的体积变化。电荷储存机理研究结果表明超过33.87 %的电荷储存来源于活性物质表面电容效应产生的非法拉第电流贡献,电化学储锂性能增强的原因归因于Fe3O4特有的纳米球状结构均匀分散并牢固锚定在石墨烯网络上,保证复合材料夹层状结构的稳定性,而纳米球状Fe3O4和石墨烯组成特殊的球面结构为电解液提供更多流动通道,以增强离子传输,展现出快速充放电特性。 |
论文外文摘要: |
Driven by changes in energy technology and new technology industries, lithium-ion batteries are emerging as energy storage devices. Many researchs have devoted to devolope of high-energy density and power density, ultra-long cycle life, high safety factor, and low-cost lithium-ion batteries. Developing a high electrochemical performance electrode material is one of feasible approaches to enhance the performance of lithium-ion batteries. In this paper, graphene is used as raw material to construct zeolite imidazolate skeleton compounds (ZIFs) based graphene composites and investigates its electrochemical performance as anode materials in lithium-ion batteries. Further explore the transmission kinetics and capacitance quantitative analysis of composite materials to better understand the charge storage mechanisms. The main work of the paper is summarized as follows: (1) ZIF-8 nanoparticles were grown on the surface of graphene oxide (GO) in situ, and then ultra-high nitrogen-doped porous carbon graphene nanosheets (NPC@GNS) were prepared by one-step pyrolysis. The results show that the NPC@GNS composite can maintain a high specific capacity of 906.6 mAh/g after 100 cycles at a current density of 0.5 A/g. It can still provide an average specific capacity of 378.2 mAh/g after 1000 cycles at a high current density of 5 A/g. Excellent cycle stability and rate performance confirm the reliability of sufficient "point and plane" 2D sandwich structures. Some micropores and abundant mesoporous channels facilitate rapid transfer of Li+. The charge storage mechanism indicates that more than 41.30 % of the charge storage is controlled by surface capacitance In short, the higher capacitance contribution rate of the total capacity and the unique structure of NPC@GNS can achieve excellent charge storage capacity at large current densities, and also exhibit fast charge and discharge performance. (2) Fe3O4 N-doped graphene nanosheets (Fe3O4@NGNS) composite was obtained by simple hydrothermal synthesis using Fe-ZIF precursor and GO as raw materials. Electrochemical tests show that the nitrogen content of Fe3O4@NGNS composites is 6.02 %. And it can maintain a reversible specific capacity of 912.8 mAh/g after 100 cycling at a current density of 0.2 A/g. It can still provide a reversible specific capacity of 502.3 mAh/g after 200 cycles at a high current density of 2 A/g. The excellent cycle stability performance and rate performance of composite mainly due to that situ-synthesis strategy can effectively avoid the agglomeration of nano-spherical Fe3O4 and graphene can buffer the huge volume change of Fe3O4. The results of the charge storage mechanism research show that more than 33.87 % of the charge storage comes from the surface capacitance effect of the active material. The unique nano-spherical structure uniformly disperses and firmly anchored on the graphene network can enhancethe stability of composites. The special structure of composites is benifite to enhance the ion transmission, and finally exhibit fast charging and discharging characteristics. |
中图分类号: | TQ152 |
开放日期: | 2020-07-25 |