- 无标题文档
查看论文信息

论文中文题名:

 纳米(氢)氧化铝与表面活性剂复配的泡沫热稳定研究    

姓名:

 阎灿彬    

学号:

 20220226113    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 消防科学与工程    

第一导师姓名:

 盛友杰    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-19    

论文答辩日期:

 2023-06-03    

论文外文题名:

 Study on Thermal Stability of Composite Foam of Aluminum Hydroxide (or Alumina) nanoparticles and Surfactants    

论文中文关键词:

 纳米颗粒 ; 表面活性剂 ; 泡沫析液 ; 泡沫衰减 ; 泡沫热稳定性    

论文外文关键词:

 Nanoparticles ; Surfactant ; Foam drainage ; Foam decay ; Foam thermal stability    

论文中文摘要:

       水成膜泡沫(Aqueous Film-Forming Foam,AFFF)能够快速有效地扑灭液体燃料类火灾。然而,AFFF的核心成分长链氟碳表面活性剂(C8-C10)存在严重的环境危害,已被国际公约禁用。为了开发高效环保泡沫灭火剂,本文以短链氟碳表面活性剂(C6)和碳氢表面活性剂复配溶液为起泡剂,以纳米(氢)氧化铝作为稳泡剂,复配制备新型泡沫体系,研究热作用下纳米颗粒对泡沫稳定性的影响,揭示纳米颗粒对泡沫热稳定增强机理,对于开发纳米颗粒强化的新一代高效环保泡沫灭火剂具有重要意义。

       首先,分别将不同浓度(氢)氧化铝纳米颗粒(Al(OH)3、α-Al2O3、β-Al2O3、γ-Al2O3)与FS-50/APG-0810溶液复配,对泡沫混合液表面活性、粘性、电导率和起泡性展开了深入的研究。研究发现,随着(氢)氧化铝纳米颗粒浓度的增加,泡沫混合液的表面活性降低,粘度逐渐增加,当浓度超过5%时,泡沫混合液粘度急剧增加。此外,泡沫混合液电导率随β-Al2O3颗粒浓度的增加逐渐增加,随Al(OH)3、α-Al2O3、γ-Al2O3的加入逐渐降低。当Al(OH)3和α-Al2O3纳米颗粒浓度低于5%,β-Al2O3和γ-Al2O3纳米颗粒浓度低于7.5%时,均降低了FS-50/APG-0810溶液的初始起泡高度;当颗粒浓度超过相应值时,泡沫混合液的初始起泡高度随颗粒浓度增加逐渐增大。

       其次,探究了不同浓度的(氢)氧化铝纳米颗粒对常温下泡沫形态和结构、泡沫析液和泡沫粗化特性影响规律。结果表明,随着纳米颗粒浓度的增加,泡沫外观形态从流体到凝胶状转变,泡沫流动性变差。(氢)氧化铝纳米颗粒的加入延缓了泡沫析液和粗化速率,泡沫稳定性增强,随着纳米颗粒浓度的增加,泡沫稳定性进一步增强。研究发现,(氢)氧化铝纳米颗粒增强泡沫稳定性的规律为Al(OH)3>β-Al2O3>γ-Al2O3>α-Al2O3

       最后,本文利用自主搭建的泡沫热稳定性实验装置,探究了在热作用下泡沫层厚度衰减、析液高度和泡沫粗化规律,分析纳米颗粒浓度、晶型对泡沫热稳定性影响规律,揭示纳米颗粒对泡沫热稳定增强机理。结果表明,热辐射作用下,泡沫层会呈现出三个连续的阶段,即膨胀阶段、平衡稳定阶段和衰减阶段。热作用加速了泡沫厚度衰减、析液和粗化,但泡沫的热稳定性随着纳米颗粒浓度的增加而增强。表面活性剂在纳米颗粒上的吸附,导致亲水性纳米颗粒变成疏水性聚集体,能够吸附在气泡液膜和Plateau边界上,增强了泡沫液膜稳定性,从而增强泡沫层的耐热性能。此外,热辐射作用下泡沫衰减后形成了一层纳米壳层,增强了泡沫层的隔热能力,对下层泡沫起到了保护作用。

论文外文摘要:

       Aqueous Film-Forming Foam (AFFF) can be used to extinguish liquid fuel fires quickly and effectively. However, long-chain fluorocarbon surfactants (C8-C10), the core component of AFFF, pose serious environmental hazards and have been banned by international conventions. In order to develop an efficient and environmentally friendly foam extinguishing agent, a new foam system was prepared by using a combination system of short-chain fluorocarbon surfactant (C6) and hydrocarbon surfactant as foaming agent, and nano (hydrogen) alumina as foaming stabilizing agent. The influence of nanoparticles on foam stability under heat action was studied, and the mechanism of enhancing the thermal stability of foam by nanoparticles was revealed. It is of great significance to develop a new generation of high efficiency and environmental protection foam extinguishing agent strengthened by nanoparticles.

       Firstly, Al(OH)3, α-Al2O3, β-Al2O3, and γ-Al2O3 with different concentrations were mixed with FS-50/APG-0810 solution, and the surface activity, viscosity, conductivity and foamability of the foam mixture were investigated. It was found that with the addition of nanoparticles concentration, the surface activity of the foam mixture decreased and the viscosity gradually increased, and when the concentration exceeded 5%, the viscosity of the foam mixture increased sharply. In addition, the electrical conductivity of the foam mixture gradually increased with the increase of β-Al2O3 particle concentration and gradually decreased with the addition of Al(OH)3, α-Al2O3, and γ-Al2O3. The addition of nanoparticles reduced the initial foaming height of FS-50/APG-0810 solution, and the initial foaming height of the foam mixture gradually increased when the concentration of Al(OH)3 and α-Al2O3 particle concentration is higher than 5%, and the concentration of β-Al2O3 and γ-Al2O3 nanoparticles is lower than 7.5%.

       Secondly, measurements and analyses on foam morphology and structural changes, foam drainage and foam coarsening characteristics were carried out to investigate the foam stabilization characteristics of the foam stabilized by different concentrations of aluminum hydroxide (alumina) nanoparticles at room temperature. The results showed that the foam appearance morphology changed from liquid to gel-like with the increase of nanoparticle concentration, and the foam fluidity became poor. The addition of (hydro)alumina nanoparticles delayed the foam drainage and coarsening rate, enhanced the foam stability, and further enhanced the foam stability with the increase of nanoparticle concentration. It was found that the law of (hydro)alumina nanoparticles enhancing foam stability was Al(OH)3>β-Al2O3>γ-Al2O3>α-Al2O3.

       Finally, the experimental measurement platform of foam ablation and foam thermal coarsening was built independently in this paper. The decay of foam layer thickness, precipitation height and foam coarsening laws under the thermal action were investigated, and the influence law of different concentrations and different particle shapes nanoparticles on the thermal stability of foam was analyzed to study the mechanism of nanoparticles on foam thermal stability. The results show that the foam layer will show three successive stages under the action of thermal radiation, i.e. expansion stage, equilibrium stage and collapse stage. The thermal action accelerates the foam thickness decay, liquid precipitation and bubble coarsening, but the thermal stability and thermal insulation properties of the foam are enhanced with the increase of nanoparticle concentration. The adsorption of surfactants on nanoparticles makes hydrophilic nanoparticles hydrophobic and thus adsorbs on the bubble liquid film and plateau boundary, which enhances the foam film stability and thus the thermal insulation performance of the foam layer. In addition, the foam decay forms a particle shell layer after decaying under the effect of thermal radiation, which enhances the thermal insulation performance of the foam layer and protects the lower foam layer.

参考文献:

[1] 范维澄, 刘乃安. 中国火灾科学基础研究进展与展望[J]. 中国科学技术大学学报, 2006, 36(1): 1-8.

[2] 张博. 化工火灾事故调查方法研究[J]. 化工管理, 2023, No.660(09): 112-115.

[3] U.S. Naval Research Laboratory. Full-scale fire modelling test studies of light water and protein type foams, NRL Report 6573 [R]. Washington, DC: U.S. Naval Research Laboratory, 1967.

[4] Yu X, Jiang N, Miao X, et al. Comparative studies on foam stability, oil-film interaction and fire extinguishing performance for fluorine-free and fluorinated foams[J]. Process Safety and Environmental Protection, 2019, 133, 201–215.

[5] Persson H, Milovancevic M. Measurements european commission, programme testing. Fair firefighting foams: small scale fire test procedure: improvement of drainage and expansion methodology [M]. SP Swedish National Testing and Research Institute, Fire Technology, 1996.

[6] Williams B, Murray T, Butterworth C, et al. Extinguishment and burnbactests of fluorinated and fluorine-free firefighting foams with and without film formation[C]. Suppression, Detection, and signaling Research and Applications Technical Working Conference(SUPDET). Florida. 2011.

[7] Fleming J W, Sheinson R S. Development of a cup burner apparatus for fire suppression evaluation of high-expansion foams [J]. Fire Technology, 2010, 48(3): 615-23.

[8] 余威, 王鹏翔, 田亮, 等. PFOS 受控的公约进展及中国消防行业使用 PFOS 情况[J]. 消防科学与技术, 2010, 29(6): 513-515.

[9] UNEP. Stockholm convention on persistent organic pollutants (POPs). Geneva, Switzerland: Secretariat of the stockholm convention, 2009.

[10] 盛友杰. 碳氢和有机硅表面活性剂混合液为基剂的泡沫灭火剂研究[D]. 中国科学技术大学, 2018.

[11] 端木亭亭, 王嘉, 梁路, 等. 非PFOA型水成膜泡沫灭火剂[J]. 消防科学与技术2011,30(9):825-829.

[12] Sheng Y, Jiang N, Lu S, et al. Fluorinated and fluorine-free firefighting foams spread on heptane surface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 552: 1-8.

[13] Zhou F, Ren W, Wang D, et al. Application of three-phase foam to fight an extraordinarily serious coal mine fire[J]. International Journal of Coal Geology, 2006, 67(1-2): 95-100.

[14] 吕科宗, 蒋新生, 何标, 等. 白云母/硅微粉疏水改性对三相泡沫热稳定性的影响[J]. 中国安全生产科学技术, 2017 (4): 153-159.

[15] 蒋新生, 翟琰, 尤杨, 等. 超细粉体三相泡沫灭火剂热稳定性研究[J]. 中国安全科学学报, 2015, 25 (12):42-47.

[16] Qin B, Lu Y, Li Y, et al. Aqueous three-phase foam supported by fly ash for coal spontaneous combustion prevention and control[J]. Advanced Powder Technology, 2014, 25(5): 1527-1533

[17] 秦波涛, 王德明. 三相泡沫的稳定性及温度的影响[J]. 金属矿山, 2006, 4: 62-65.

[18] Binks B P. Particles as surfactants—similarities and differences[J]. Current Opinion in Colloid & Interface Science, 2002, 7(1): 21-41.

[19] Binks B P, Kirkland M, Rodrigues J A. Origin of stabilisation of aqueous foams in nanoparticle—surfactant mixtures[J]. Soft Matter, 2008, 4 (12): 2373-2382.

[20] Arriaga L R, Drenckhan W, Salonen A, et al. On the long-term stability of foams stabilised by mixtures of nano-particles and oppositely charged short chain surfactants[J]. Soft Matter, 2012, 8(43): 11085-11097.

[21] 李兆敏, 孙乾, 李松岩, 等. 纳米颗粒提高泡沫稳定性机理研究[J]. 油田化学, 2013, 30(4): 625-634.

[22] Murray B S. Recent developments in food foams[J]. Current Opinion in Colloid & Interface Science, 2020, 50: 101394.

[23] Al Yousef Z A, Almobarky M A, Schechter D S. Surfactant and a mixture of surfactant and nanoparticles to stabilize CO2/brine foam, control gas mobility, and enhance oil recovery[J]. Journal of Petroleum Exploration and Production Technology, 2020, 10: 439-445.

[24] Wang Y, Ge J, Zhang W, et al. Surface property and enhanced oil recovery study of foam aqueous dispersions comprised of surfactants–organic acids–nanoparticles[J]. RSC advances, 2016, 6(114): 113478-113486.

[25] 王鹏. SiO2纳米颗粒提高CO2泡沫稳定性实验研究与应用[D]. 中国石油大 学(华东),2015.

[26] 王腾飞, 王杰祥, 韩蕾, 等. 纳米氢氧化铝稳定泡沫性能研究[J]. 西安石油大学学报(自然科学版), 2012, 27(5): 78-81.

[27] Zitha P J, 戚倩. 疏水型SiO2纳米颗粒的稳泡性研究[J]. 能源化工, 2018, 39(1): 1-6.

[28] Zhou R, Lang X, Zhang X, et al. Thermal stability and insulation characteristics of three-phase fire-fighting foam exposed to radiant heating[J]. Process Safety and Environmental Protection, 2021, 146: 360-368.

[29] Lattimer B Y, Hanauska C P, Scheffey J L., et al. The use of small-scale test data to characterize some aspects of fire fighting foam for suppression modeling [J]. Fire Safety Journal, 2003, 38(2): 117-46.

[30] Williams B, Murray T, Butterworth C, et al. Extinguishment and Burnback Tests of Fluorinated and Fluorine-free Firefighting Foams with and without Film Formation[C]. Suppression, Detection, and signaling Research and ApplicationsA Technical Working Conference(SUPDET). Florida. 2011.

[31] Hanauska B, Lattimer B. Modeling of foam fire extinguishment [J]. 2001, 1-13.

[32] Carruette M L, Persson H, Pabon M. New additive for low viscosity of AFFF/AR concentrates—study of the potential fire performance [J]. Fire Technology, 2004, 40(4): 367-84.

[33] Figueredo R C, Sabadini E. Firefighting foam stability: the effect of the dragreducer poly(ethylene) oxide [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 215(1–3): 77-86.

[34] Isaksson S, Persson H. Fire extinguishing foam test method for heat exposure characterisation, SP Report 1997:09 [R]: Swedish National Testing and Research Institute, 1997.

[35] Persson B. FOAMSPEX:large scale foam application modelling of foam spread and extinguishmen[J]. Fire Technology, 2001, 39:347-362.

[36] Persson H, Fire extinguishing foams resistance against heat radiation, SP Report 1992:54 [R]: Swedish National Testing and Research Institute, 1992.

[37] Magrabi S A, Dlugogorski B Z, Jameson G J. The performance of aged aqueous foams for mitigation of thermal radiation[J]. Developments in Chemical Engineering and Mineral Processing, 2000, 8(1-2): 93-112.

[38] 陈现涛, 孟亚伟, 郭建生, 等. 温度对水成膜泡沫灭火剂性能影响的实验研究[J]. 消防科学与技术, 2017, 36(4): 511-514.

[39] 贺元骅, 王耀帅, 陈现涛, 等. 低压环境下泡沫灭火剂热稳定性研究[J]. 消防科学与技术, 2019, 287(5):73-76.

[40] Britan A, Liverts M, Ben-Dor G, et al. The effect of fine particles on the drainage and coarsening of foam [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 344(1-3): 15-23.

[41] Dickinson E, Ettelaie R, Kostakis T, et al. Factors controlling the formation and stability of air bubbles stabilized by partially hydrophobic silica nanoparticles[J]. Langmuir, 2004, 20(20): 8517-8525.

[42] Kim D W, Lee J Y, Lee S M, et al. Surface modification of calcium carbonate nanoparticles by fluorosurfactant[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 536: 213-223.

[43] Sun Q, Li Z, Wang J, et al. Aqueous foam stabilized by partially hydrophobic nanoparticles in the presence of surfactant[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 471(8): 54-64.

[44] Zhou R, Dou X, Lang X, et al. Foaming ability and stability of silica nanoparticle-based triple-phase foam for oil fire extinguishing: experimental[J]. Soft Materials, 2018, 16(4): 327-338.

[45] Stocco A, Drenckhan W, Rio E, et al. Particle-stabilised foams: an interfacial study[J]. Soft Matter, 2009, 5(11): 2215-2222.

[46] 岳野. 改性纳米SiO2颗粒对泡沫稳定性的影响研究[J]. 当代化工, 2020, 049(003):597-600.

[47] 崔燕贞. 纳米碳酸钙—表面活性剂混合体系的泡沫性能研究[D]. 江南大学, 2009.

[48] 周日峰, 郎需庆, 吴京峰, 等. 微米级空心玻璃微珠三相泡沫稳定性研究[J]. 火灾科学, 2019(3): 185-189.

[49] Mohanty K K . Incorporation of clay nano-particles in aqueous foams[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2009, 340(1-3):174-181.

[50] Singh R, Mohanty K K. Study of Nanoparticle-Stabilized Foams in Harsh Reservoir Conditions[J]. Transport in porous media, 2020(131): 135-155.

[51] Lu Y, Wang T, Pang M, et al. Preparation and high temperature resistance of a novel aqueous foam for fire extinguishing[J]. Procedia engineering, 2018, 211: 514-520.

[52] Fei Y, Zhu J, Xu B, et al. Experimental investigation of nanotechnology on worm-like micelles for high-temperature foam stimulation[J]. Journal of industrial and engineering chemistry, 2017(50): 190-198.

[53] French R J. The resistance of fire-fighting foams to destruction by radiant heat[J]. Journal of Applied Chemistry, 1952, 2(2): 60-64.

[54] Xie T, He Y L, Hu Z J. Theoretical study on thermal conductivities of silica aerogel composite insulating material[J]. International journal of heat and mass transfer, 2013, 58(1-2): 540-552.

[55] 王德明. 矿井防灭火新技术—三相泡沫[J]. 煤矿安全, 2004, 35(7): 16-18.

[56] 陈伟红, 刘然, 郭子东, 等. 空心玻璃微珠对泡沫灭火剂起泡能力和热稳定性影响研究[D], 2007.

[57] 唐宝华. 强化油品抗烧三相泡沫灭火剂开发及性能研究[D]. 河北工业大学, 2016.

[58] 唐宝华, 陈伟红, 杨双华, 等. 粉体对泡沫灭火剂起泡能力和热稳定性影响研究[J]. 辽宁化工, 2014, 043(009):1101-1103.

[59] 杨守生. 多元复合灭火剂稳定性研究[J]. 武警学院学报, 2013, 29(02):5-8.

[60] 边云朋. 纳米ATH三相泡沫制备及防灭火特性研究[D].安徽理工大学, 2021.

[61] Andra S, Balu S, Jeevanandam J, et al. Emerging nanomaterials for antibacterial textile fabrication[J]. Naunyn-Schmiedeberg's Archives of Pharmacology, 2021, 394: 1355-1382.

[62] Hagenaars A, Meyer I J, Herzke D, et al. The search for alternative aqueous film forming foams (AFFF) with a low environmental impact: Physiological and transcriptomic effects of two Forafac® fluorosurfactants in turbot[J]. Aquatic toxicology, 2011, 104(3-4): 168-176.

[63] Sha M, Xing P, Jiang B. Strategies for synthesizing non-bioaccumulable alternatives to PFOA and PFOS[J]. Chinese Chemical Letters, 2015, 26(5): 491-498.

[64] Shen J, Bai Y, Tai X, et al. Surface activity, spreading, and aggregation behavior of ecofriendly perfluoropolyether amide propyl betaine in aqueous solution[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 6183-6191.

[65] Sheng Y, Yan C, Peng Y, et al. Influence of nano-aluminum hydroxide on foam properties of the mixtures of hydrocarbon and fluorocarbon surfactants[J]. Journal of Molecular Liquids, 2022, 357: 119158.

[66] Sheng Y, Xue M, Ma L, et al. Environmentally friendly firefighting foams used to fight flammable liquid fire[J]. Fire Technology, 2021, 57(5): 2079-2096.

[67] Krafft M P, Riess J G. Selected physicochemical aspects of poly- and perfluoroalkylated substances relevant to performance, environment and sustainability—Part one[J]. Chemosphere, 2014, 129:4-19.

[68] 王建立. 超细氢氧化铝的制备及提高其热稳定性技术研究[D]. 中南大学, 2009.

[69] 刘慧姝, 段纪淼, 蒋新生, 等. 三相泡沫灭火剂油面热稳定性试验[J]. 安全与环境学报, 2019.

[70] Gonzenbach U T, Studart A R, Tervoort E, et al. Tailoring the microstructure of particle-stabilized wet foams[J]. Langmuir, 2007, 23(3):1025-1032.

[71] Shirodkar S, Hutchinson R L, Perry D L, et al. Aluminum compounds used as adjuvants in vaccines[J]. Pharmaceutical research, 1990, 7(12): 1282-1288.

[72] 李旺兴. 氧化铝生产理论与工艺[M].中南大学出版社, 2010:176-180

[73] Obrenovi Z, Milanovi M, Djenadi R R, et al. The effect of glucose on the formation of the nanocrystalline transition alumina phases[J]. Ceramics International, 2011, 37(8):3253-3263.

[74] Ishizawa N, Miyata T, Minato I, et al. A structural investigation of α-Al2O3 at 2170 K[J]. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry, 1980, 36(2): 228-230.

[75] Walker J R, Catlow C R A. Structure and transport in non-stoichiometric β Al2O3[J]. Journal of Physics C: Solid State Physics, 1982, 15(30): 6151.

[76] Prins, R. On the structure of γ-Al2O3[J]. Journal of Catalysis, 2020, 392, 336-346.

[77] Eastoe J, Dalton J S. Dynamic surface tension and adsorption mechanisms of surfactants at the air-water interface[J]. Advances in colloid and interface science, 2000, 85(2-3): 103-144.

[78] 吴向君, 张光辉, 苏小博. 水成膜泡沫阻热性能模型[J]. 科技导报, 2011, 29(20):7.

[79] Magrabi S, Dlugogorski B Z, Jameson G J. The performance of aged aqueous foams for mitigation of thermal radiation[J]. Asia-Pacific Journal of Chemical Engineering, 2010, 8(1-2):93-112.

[80] Gaillard T, Roché M, Honorez C, et al. Controlled foam generation using cyclic diphasic flows through a constriction[J]. International Journal of Multiphase Flow,2017,96:173-187.

[81] Shen J, Bai Y, Yin Q, et al. Adsorption, aggregation and wetting behaviors of biodegradable surfactant: Perfluoropolyether quaternary ammonium salt[J]. Journal of industrial and engineering chemistry, 2017, 56: 82-89.

[82] Sheng Y, Xue M, Wang Y, et al. Aggregation behavior and foam properties of the mixture of hydrocarbon and fluorocarbon surfactants with addition of nanoparticles[J]. Journal of Molecular Liquids, 2020, 323(3):115070.

[83] Luo M, Jia Z, Sun H, et al. Rheological behavior and microstructure of an anionic surfactant micelle solution with pyroelectric nanoparticle[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 395: 267-275.

[84] 顾雪婷, 李茂德. 纳米流体强化传热研究分析[J]. 能源研究与利用, 2008(1):4.

[85] Binks B P, Campbell S, Mashinchi S, et al. Shengbehavior and aqueous foams in mixtures of a vesicle-forming surfactant and edible nanoparticles[J]. Langmuir, 2015, 31(10): 2967-2978.

[86] Wang J, Xue G, Tian B, et al. Interaction between surfactants and SiO2 nanoparticles in multiphase foam and its plugging ability[J]. Energy and Fuels, 2017, 31(1): 408-417.

[87] 姜宁. 基于短链碳氟-碳氢混合液的耐海水型水成膜泡沫灭火剂研究[D]. 中国科学技术大学.

[88] Sheng Y, Yan C, Li Y, et al. Thermal stability of gel foams co-stabilized by nano-aluminum hydroxide and surfactants[J]. Journal of Sol-Gel Science and Technology, 2022: 1-12.

[89] Yun-hua C, An L, Fu-xing G. Current status of chemical modification methods for nano particles[J]. China Surface Engineering, 2005 (2): 5-11.

[90] Zhang C, Li Z, Sun Q, et al. CO2 foam properties and the stabilizing mechanism of sodium bis (2-ethylhexyl) sulfosuccinate and hydrophobic nanoparticle mixtures[J]. Soft Matter, 2016, 12(3): 946-956.

[91] Gonzenbach U T, Studart A R, Tervoort E, et al. Ultrastable particle-stabilized foams[J]. Angewandte Chemie International Edition, 2006, 45(21): 3526-3530.

[92] Goudarzi M, Ghanbari D, Salavati N M. Room temperature preparation of aluminum hydroxide nanoparticles and flame retardant poly vinyl alcohol nanocomposite[J]. 2015, 5: 110-115.

[93] Yekeen N, Manan M A, Idris A K, et al. Experimental investigation of minimization in surfactant adsorption and improvement in surfactant-foam stability in presence of silicon dioxide and aluminum oxide nanoparticles[J]. Journal of Petroleum Science and Engineering, 2017, 159: 115-134.

[94] Conroy M W, Taylor J C, Farley P, et, al. Liquid drainage from high-expansion (HiEx) aqueous foams during and after filling of a container [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 426: 70-97.

[95] Conroy M W, Taylor J C, Fowler M E, Caldis Peter H,et al. Liquid drainage and flow behavior of high expansion (HiEx) aqueous fire suppression foams [C]. Suppression, Detection and Signaling Research and Applications Technical Working Conference (SUPDET 2011). Orlando, F L, 2011.

[96] Saint-Jalmes A. Physical chemistry in foam drainage and coarsening[J]. Soft Matter, 2006, 2(10): 836-849.

[97] Saint-Jalmes A, Langevin D. Time evolution of aqueous foams: drainage and coarsening[J]. Journal of Physics Condensed Matter, 2002, 14(40):9397.

[98] Shojaei M J, Méheust Y, Osman A, et al. Combined effects of nanoparticles and surfactants upon foam stability[J]. Chemical Engineering Science, 2021, 238: 116601.

[99] Sheng Y, Peng Y, Yan C, et al. Influence of nanoparticles on rheological properties and foam properties of mixed solutions of fluorocarbon and hydrocarbon surfactants[J]. Powder Technology, 2022, 398: 117067.

[100] Politova N, Tcholakova S, Valkova Z, et al. Self-regulation of foam volume and bubble size during foaming via shear mixing[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2017, 539:18-28.

[101] Yu X, Qiu K, Li H, et al. Interfacial and rheological properties of long-lived foams stabilized by rice proteins complexed to transition metal ions in the presence of alkyl polyglycoside[J]. Journal of Colloid and Interface Science, 2023, 630: 645-657.

[102] Xie T, He Y L, Hu Z J. Theoretical study on thermal conductivities of silica aerogel composite insulating material[J]. International journal of heat and mass transfer, 2013, 58(1-2): 540-552.

[103] Hwang K S, Ha H J, Lee S H, et al. Flow and convective heat transfer characteristics of nanofluids with various shapes of alumina nanoparticles[C]//International Conference on Micro/Nanoscale Heat Transfer. 2009, 43895: 455-460.

[104] 蔡洋, 刘方, 朱威全. 纳米颗粒形状对螺旋管强化传热的影响[J]. 上海电力学院学报, 2018, 34(2): 9.

中图分类号:

 TD753    

开放日期:

 2024-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式